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We show the existence and uniqueness of solutions for an antiperiodic boundary value problemof nonlinear impulsive 𝑞𝑘-difference
equations by applying some well-known fixed point theorems. An example is presented to illustrate the main results.

1. Introduction

The subject of 𝑞-calculus (also known as quantum calculus)
is regarded as ordinary calculus without the idea of limit.
The systematic development of 𝑞-calculus started with the
work of Jackson [1] at the beginning of the twentieth century.
The application of 𝑞-calculus covers a variety of topics such
as special functions, particle physics and supersymmetry,
combinatorics, initial and boundary value problems of 𝑞-
difference equations, operator theory, and control theory. For
details of the advancement of 𝑞-calculus, we refer the reader
to the texts [2–4] and papers [5–13].

One of the advantages for considering 𝑞-difference equa-
tions is that these equations are always completely con-
trollable and appear in the 𝑞-optimal control problem [14].
The variational 𝑞-calculus is regarded as a generalization
of the continuous variational calculus due to the presence
of an extra parameter 𝑞 whose nature may be physical
or economical. The variational calculus on the 𝑞-uniform
lattice includes the study of the 𝑞-Euler equations and its
applications to the isoperimetric and Lagrange problem and
commutation equations. In other words, it suffices to solve
the 𝑞-Euler-Lagrange equation for finding the extremum of
the functional involved instead of solving the Euler-Lagrange
equation [15]. Further details can be found in [16–22].

Impulsive differential equations have extensively been
studied in the past two decades. In particular, initial and
boundary value problems of impulsive fractional differential

equations have attracted the attention of many researchers;
for instance, see [23–34] and references therein. In a recent
work [32], the authors discussed the existence anduniqueness
of solutions for impulsive 𝑞𝑘-difference equations.

Motivated by [32], we investigate the existence and
uniqueness of solutions for an antiperiodic boundary value
problem of nonlinear impulsive 𝑞𝑘-difference equation in this
paper. Precisely, we consider

𝐷𝑞𝑘
𝑢 (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡)) , 0 < 𝑞𝑘 < 1, 𝑡 ∈ 𝐽


,

Δ𝑢 (𝑡𝑘) = 𝐼𝑘 (𝑢 (𝑡𝑘)) , 𝑘 = 1, 2, . . . , 𝑚,

𝑢 (0) = − 𝑢 (𝑇) ,

(1)

where 𝐷𝑞𝑘 are 𝑞𝑘-derivatives (𝑘 = 0, 1, 2, . . . , 𝑚), 𝑓 ∈ 𝐶(𝐽 ×
R,R), 𝐼𝑘 ∈ 𝐶(R,R), 𝐽 = [0, 𝑇] (𝑇 > 0), 0 = 𝑡0 < 𝑡1 <
⋅ ⋅ ⋅ < 𝑡𝑘 < ⋅ ⋅ ⋅ < 𝑡𝑚 < 𝑡𝑚+1 = 𝑇, 𝐽


= 𝐽 \ {𝑡1, 𝑡2, . . . , 𝑡𝑚},

and Δ𝑢(𝑡𝑘) = 𝑢(𝑡
+

𝑘
) − 𝑢(𝑡

−

𝑘
), where 𝑢(𝑡+

𝑘
) and 𝑢(𝑡−

𝑘
) denote the

right and the left limits of 𝑢(𝑡) at 𝑡 = 𝑡𝑘 (𝑘 = 1, 2, . . . , 𝑚),
respectively.

Here, we remark that the classical 𝑞-difference equations
cannot be considered with impulses as the definition of 𝑞-
derivative fails to work when an impulse point 𝑡𝑘 ∈ (𝑞𝑡, 𝑡)
for some 𝑘 ∈ N. On the other hand, this situation does not
arise for impulsive problems on 𝑞-time scale as the points 𝑡
and 𝑞𝑡 are consecutive points. In quantum calculus on finite
intervals, the points 𝑡 and 𝑞𝑘𝑡 + (1 − 𝑞𝑘)𝑡𝑘 are considered
only in an interval [𝑡𝑘, 𝑡𝑘+1]. Therefore, the problems with
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impulses at fixed times can be considered in the framework
of 𝑞𝑘-calculus. For more details, see [32].

2. Preliminaries

Let us set 𝐽0 = [0, 𝑡1], 𝐽1 = (𝑡1, 𝑡2], . . . , 𝐽𝑚−1 =

(𝑡𝑚−1, 𝑡𝑚], 𝐽𝑚 = (𝑡𝑚, 𝑇] and introduce the space as follows:

PC (𝐽,R) = {𝑢 : 𝐽 → R | 𝑢 ∈ 𝐶 (𝐽𝑘) , 𝑘 = 0, 1, . . . , 𝑚,

and 𝑢 (𝑡+
𝑘
) exist, 𝑘 = 1, 2, . . . , 𝑚}

(2)

with the norm ‖𝑢‖ = sup
𝑡∈𝐽
|𝑢(𝑡)|. Then, PC(𝐽,R) is a Banach

space.
Let us recall some basic concepts of 𝑞𝑘-calculus [32].
For 0 < 𝑞𝑘 < 1 and 𝑡 ∈ 𝐽𝑘, we define the 𝑞𝑘-derivatives of

a real valued continuous function 𝑓 as

𝐷𝑞𝑘
𝑓 (𝑡) =

𝑓 (𝑡) − 𝑓 (𝑞𝑘𝑡 + (1 − 𝑞𝑘) 𝑡𝑘)

(1 − 𝑞𝑘) (𝑡 − 𝑡𝑘)
,

𝐷𝑞𝑘
𝑓 (𝑡𝑘) = lim

𝑡→ 𝑡𝑘

𝐷𝑞𝑘
𝑓 (𝑡) .

(3)

Higher order 𝑞𝑘-derivatives are given by

𝐷
0

𝑞𝑘
𝑓 (𝑡) = 𝑓 (𝑡) ,

𝐷
𝑛

𝑞𝑘
𝑓 (𝑡) = 𝐷𝑞𝑘

𝐷
𝑛−1

𝑞𝑘
𝑓 (𝑡) ,

𝑛 ∈ N, 𝑡 ∈ 𝐽𝑘.

(4)

The 𝑞𝑘-integral of a function 𝑓 is defined by

𝑡𝑘
𝐼𝑞𝑘
𝑓 (𝑡) := ∫

𝑡

𝑡𝑘

𝑓 (𝑠) 𝑑𝑞𝑘
𝑠

= (1 − 𝑞𝑘) (𝑡 − 𝑡𝑘) ×

∞

∑

𝑛=0

𝑞
𝑛

𝑘
𝑓 (𝑞
𝑛

𝑘
𝑡 + (1 − 𝑞

𝑛

𝑘
) 𝑡𝑘) ,

𝑡 ∈ 𝐽𝑘,

(5)

provided that the series converges. If 𝑎 ∈ (𝑡𝑘, 𝑡) and 𝑓 is
defined on the interval (𝑡𝑘, 𝑡), then

∫

𝑡

𝑎

𝑓 (𝑠) 𝑑𝑞𝑘
𝑠 = ∫

𝑡

𝑡𝑘

𝑓 (𝑠) 𝑑𝑞𝑘
𝑠 − ∫

𝑎

𝑡𝑘

𝑓 (𝑠) 𝑑𝑞𝑘
𝑠. (6)

Observe that

𝐷𝑞𝑘
(𝑡𝑘
𝐼𝑞𝑘
𝑓 (𝑡)) = 𝐷𝑞𝑘

∫

𝑡

𝑡𝑘

𝑓 (𝑠) 𝑑𝑞𝑘
𝑠 = 𝑓 (𝑡) ,

𝑡𝑘𝐼𝑞𝑘 (𝐷𝑞𝑘𝑓 (𝑡)) = ∫

𝑡

𝑡𝑘

𝐷𝑞𝑘𝑓 (𝑠) 𝑑𝑞𝑘𝑠 = 𝑓 (𝑡) ,

𝑎𝐼𝑞𝑘 (𝐷𝑞𝑘𝑓 (𝑡)) = ∫

𝑡

𝑎

𝐷𝑞𝑘𝑓 (𝑠) 𝑑𝑞𝑘𝑠 = 𝑓 (𝑡) − 𝑓 (𝑎) ,

𝑎 ∈ (𝑡𝑘, 𝑡) .

(7)

Note that if 𝑡𝑘 = 0 and 𝑞𝑘 = 𝑞 in (3) and (5), then𝐷𝑞𝑘𝑓 =
𝐷𝑞𝑓 and 𝑡𝑘𝐼𝑞𝑘𝑓=0𝐼𝑞𝑓, where 𝐷𝑞 and 0𝐼𝑞 are the well-known
𝑞-derivative and 𝑞-integral of the function 𝑓(𝑡) defined by

𝐷𝑞𝑓 (𝑡) =
𝑓 (𝑡) − 𝑓 (𝑞𝑡)

(1 − 𝑞) 𝑡
,

0𝐼𝑞𝑓 (𝑡) = ∫

𝑡

0

𝑓 (𝑠) 𝑑𝑞𝑠 =

∞

∑

𝑛=0

𝑡 (1 − 𝑞) 𝑞
𝑛
𝑓 (𝑡𝑞
𝑛
) .

(8)

Lemma 1. A function 𝑢 ∈ 𝐶(𝐽,R) is a solution of the impulsive
antiperiodic boundary value problem (1) if and only if it is a
solution of the following impulsive 𝑞𝑘-integral equation:

𝑢 (𝑡)

=

{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{

{

∫

𝑡

0

𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑞0
𝑠

−
1

2
[

𝑚

∑

𝑖=0

∫

𝑡𝑖+1

𝑡𝑖

𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑞𝑖
𝑠 +

𝑚

∑

𝑖=1

𝐼𝑖 (𝑢 (𝑡𝑖))] , 𝑡 ∈ 𝐽0;

∫

𝑡

𝑡𝑘

𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑞𝑘
𝑠

+ ∑

0<𝑡𝑘<𝑡

[∫

𝑡𝑘

𝑡𝑘−1

𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑞𝑘−1
𝑠 + 𝐼𝑘 (𝑢 (𝑡𝑘))]

−
1

2
[

𝑚

∑

𝑖=0

∫

𝑡𝑖+1

𝑡𝑖

𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑞𝑖
𝑠 +

𝑚

∑

𝑖=1

𝐼𝑖 (𝑢 (𝑡𝑖))] , 𝑡 ∈ 𝐽𝑘.

(9)

Proof. Let 𝑢 be a solution of (1). For 𝑡 ∈ 𝐽0, 𝑞0-integrating
both sides of (1), we get

𝑢 (𝑡) = 𝑢 (0) +𝑡0
𝐼𝑞0
𝑓 (𝑡, 𝑢 (𝑡)) = 𝑢 (0) + ∫

𝑡

0

𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑞0
𝑠.

(10)

Thus, we have

𝑢 (𝑡
−

1
) = 𝑢 (0) + ∫

𝑡1

0

𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑞0
𝑠. (11)

For 𝑡 ∈ 𝐽1, 𝑞1-integrating both sides of (1), we obtain

𝑢 (𝑡) = 𝑢 (𝑡
+

1
) + ∫

𝑡

𝑡1

𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑞1
𝑠. (12)

In view of Δ𝑢(𝑡1) = 𝑢(𝑡
+

1
) − 𝑢(𝑡

−

1
) = 𝐼1(𝑢(𝑡1)), it follows that

𝑢 (𝑡) = 𝑢 (0) + ∫

𝑡

𝑡1

𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑞1
𝑠

+ ∫

𝑡1

0

𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑞0
𝑠 + 𝐼1 (𝑢 (𝑡1)) , ∀𝑡 ∈ 𝐽1.

(13)

Similarly, we get

𝑢 (𝑡) = 𝑢 (0) + ∫

𝑡

𝑡𝑘

𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑞𝑘
𝑠

+ ∑

0<𝑡𝑘<𝑡

[∫

𝑡𝑘

𝑡𝑘−1

𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑞𝑘−1
𝑠 + 𝐼𝑘 (𝑢 (𝑡𝑘))] ,

𝑡 ∈ 𝐽𝑘.

(14)
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Using the antiperiodic boundary value condition 𝑢(0) =
−𝑢(𝑇), we obtain (9). Conversely, assume that 𝑢 is a solution
of the impulsive 𝑞𝑘-integral equation (9); then by a direct
computation, it follows that the solution given by (9) satisfies
𝑞𝑘-difference equation (1). This completes the proof.

3. Main Results

Define an operatorT : PC(𝐽,R) → PC(𝐽,R) as

T𝑢 (𝑡) = ∫
𝑡

𝑡𝑘

𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑞𝑘
𝑠

+ ∑

0<𝑡𝑘<𝑡

[∫

𝑡𝑘

𝑡𝑘−1

𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑞𝑘−1
𝑠 + 𝐼𝑘 (𝑢 (𝑡𝑘))]

−
1

2
[

𝑚

∑

𝑖=0

∫

𝑡𝑖+1

𝑡𝑖

𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑞𝑖
𝑠 +

𝑚

∑

𝑖=1

𝐼𝑖 (𝑢 (𝑡𝑖))] .

(15)

Obviously, problem (1) is equivalent to a fixed point problem
𝑢 = T𝑢. In consequence, problem (1) has a solution if and
only if the operatorT has a fixed point.

Theorem 2. Assume that there exist continuous functions
𝑎(𝑡), 𝑏(𝑡) and a nonnegative constant 𝐿 such that

𝑓 (𝑡, 𝑢 (𝑡))
 ≤ 𝑎 (𝑡) + 𝑏 (𝑡) |𝑢 (𝑡)| ,

𝐼𝑘 (𝑢)
 ≤ 𝐿, 𝑘 = 1, 2, . . . , 𝑚.

(16)

Then, problem (1) has at least one solution.

Proof. Let us denote sup
𝑡∈𝐽
|𝑎(𝑡)| = 𝐴 and sup

𝑡∈𝐽
|𝑏(𝑡)| = 𝐵.

Take 𝑅 ≥ 3(𝐴𝑇 + 𝑚𝐿)/(2 − 3𝐵𝑇) > 0 and define 𝐵𝑅 = {𝑢 ∈
PC(𝐽,R) | ‖𝑢‖ ≤ 𝑅}. It is easy to verify that 𝐵𝑅 is a bounded,
closed, and convex subset of PC(𝐽,R).

In order to show that there exists a solution for problem
(1), we have to establish that the operatorT has a fixed point
in 𝐵𝑅. The proof consists of two steps:

(i)T : 𝐵𝑅 → 𝐵𝑅.
For any 𝑢 ∈ 𝐵𝑅, we have

|T𝑢 (𝑡)| ≤ ∫
𝑡

𝑡𝑘

𝑓 (𝑠, 𝑢 (𝑠))
 𝑑𝑞𝑘

𝑠

+ ∑

0<𝑡𝑘<𝑡

[∫

𝑡𝑘

𝑡𝑘−1

𝑓 (𝑠, 𝑢 (𝑠))
 𝑑𝑞𝑘−1

𝑠 +
𝐼𝑘 (𝑢 (𝑡𝑘))

]

+
1

2
[

𝑚

∑

𝑖=0

∫

𝑡𝑖+1

𝑡𝑖

𝑓 (𝑠, 𝑢 (𝑠))
 𝑑𝑞𝑖
𝑠 +

𝑚

∑

𝑖=1

𝐼𝑖 (𝑢 (𝑡𝑖))
]

≤ ∫

𝑡

𝑡𝑘

[𝑎 (𝑠) + 𝑏 (𝑠) |𝑢 (𝑠)|] 𝑑𝑞𝑘
𝑠

+ ∑

0<𝑡𝑘<𝑡

[∫

𝑡𝑘

𝑡𝑘−1

[𝑎 (𝑠) + 𝑏 (𝑠) |𝑢 (𝑠)|] 𝑑𝑞𝑘−1
𝑠 + 𝐿]

+
1

2
[

𝑚

∑

𝑖=0

∫

𝑡𝑖+1

𝑡𝑖

[𝑎 (𝑠) + 𝑏 (𝑠) |𝑢 (𝑠)|] 𝑑𝑞𝑖
𝑠 +

𝑚

∑

𝑖=1

𝐿]

≤ [𝐴 + 𝐵 ‖𝑢‖] (𝑡 − 𝑡𝑘)

+ [𝐴 + 𝐵 ‖𝑢‖] 𝑡𝑘 + 𝑚𝐿 +
1

2
[(𝐴 + 𝐵 ‖𝑢‖) 𝑇 + 𝑚𝐿]

≤
3 (𝐴𝑇 + 𝑚𝐿)

2
+
3𝐵𝑇 ‖𝑢‖

2
≤ 𝑅,

(17)

which means ‖T𝑢‖ ≤ 𝑅. So, T is 𝐵𝑅 → 𝐵𝑅. Consider the
following:

(ii) the operatorT is relatively compact.
Let sup

(𝑡,𝑢)∈𝐽×𝐵𝑅
|𝑓(𝑡, 𝑢)| = 𝑓. For any 𝑡, 𝑡 ∈ 𝐽𝑘 (𝑘 =

0, 1, 2, . . . , 𝑚) with 𝑡 < 𝑡, we have


T𝑢 (𝑡


) −T𝑢 (𝑡


)


≤



∫

𝑡


𝑡𝑘

𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑞𝑘
𝑠 − ∫

𝑡


𝑡𝑘

𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑞𝑘
𝑠



≤ ∫

𝑡


𝑡

𝑓 (𝑠, 𝑢 (𝑠))
 𝑑𝑞𝑘

𝑠

≤ 𝑓

𝑡

− 𝑡


(18)

which is independent of 𝑢 and tends to zero as 𝑡 − 𝑡 →
0. Thus, T is equicontinuous. Hence, T𝐵𝑅 is relatively
compact as T𝐵𝑅 ⊂ 𝐵𝑅 is uniformly bounded. Further,
it is obvious that the operator T is continuous in view
of continuity of 𝑓 and 𝐼𝑘. Therefore, the operator T :

PC(𝐽,R) → PC(𝐽,R) is completely continuous on 𝐵𝑅.
By the application of Schauder fixed point theorem, we
conclude that the operator T has at least one fixed point in
𝐵𝑅. This, in turn, implies that problem (1) has at least one
solution.

Theorem 3. Assume that there exist a function 𝑀(𝑡) ∈

𝐶(𝐽,R+) and a positive constant𝑁 such that 3(𝑀𝑇+𝑚𝑁) < 2
and

𝑓 (𝑡, 𝑢) − 𝑓 (𝑡, V)
 ≤ 𝑀 (𝑡) |𝑢 − V| ,

𝐼𝑘 (𝑢) − 𝐼𝑘 (V)
 ≤ 𝑁 |𝑢 − V| ,

(19)

for 𝑡 ∈ 𝐽, 𝑢, V ∈ R and 𝑘 = 1, 2, . . . , 𝑚, and𝑀 = sup
𝑡∈𝐽
|𝑀(𝑡)|.

Then, problem (1) has a unique solution.
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Proof. For ∀𝑢, V ∈ PC(𝐽,R), we have

|(T𝑢) (𝑡) − (TV) (𝑡)|

≤ ∫

𝑡

𝑡𝑘

𝑓 (𝑠, 𝑢 (𝑠)) − 𝑓 (𝑠, V (𝑠))
 𝑑𝑞𝑘

𝑠

+ ∑

0<𝑡𝑘<𝑡

[∫

𝑡𝑘

𝑡𝑘−1

𝑓 (𝑠, 𝑢 (𝑠)) − 𝑓 (𝑠, V (𝑠))
 𝑑𝑞𝑘−1

𝑠

+
𝐼𝑘 (𝑢 (𝑡𝑘)) − 𝐼𝑘 (V (𝑡𝑘))

 ]

+
1

2
[

𝑚

∑

𝑖=0

∫

𝑡𝑖+1

𝑡𝑖

𝑓 (𝑠, 𝑢 (𝑠)) − 𝑓 (𝑠, V (𝑠))
 𝑑𝑞𝑖
𝑠

+

𝑚

∑

𝑖=1

𝐼𝑖 (𝑢 (𝑡𝑖)) − 𝐼𝑖 (V (𝑡𝑖))
]

≤ ∫

𝑡

𝑡𝑘

𝑀(𝑠) |(𝑢 − V) (𝑠)| 𝑑𝑞𝑘𝑠

+ ∑

0<𝑡𝑘<𝑡

[∫

𝑡𝑘

𝑡𝑘−1

𝑀(𝑠) |(𝑢 − V) (𝑠)| 𝑑𝑞𝑘−1𝑠

+𝑁
(𝑢 − V) (𝑡𝑘)

 ]

+
1

2
[

𝑚

∑

𝑖=0

∫

𝑡𝑖+1

𝑡𝑖

𝑀(𝑠) |(𝑢 − V) (𝑠)| 𝑑𝑞𝑖𝑠

+

𝑚

∑

𝑖=1

𝑁
(𝑢 − V) (𝑡𝑖)

]

≤ {∫

𝑡

𝑡𝑘

𝑀(𝑠) 𝑑𝑞𝑘
𝑠 + ∑

0<𝑡𝑘<𝑡

[∫

𝑡𝑘

𝑡𝑘−1

𝑀(𝑠) 𝑑𝑞𝑘−1
𝑠 + 𝑁]

+
1

2
[

𝑚

∑

𝑖=0

∫

𝑡𝑖+1

𝑡𝑖

𝑀(𝑠) 𝑑𝑞𝑖
𝑠 + 𝑚𝑁]} ‖𝑢 − V‖

≤ {[𝑀𝑇 + 𝑚𝑁] +
1

2
[𝑀𝑇 + 𝑚𝑁]} ‖𝑢 − V‖

≤
3 (𝑀𝑇 + 𝑚𝑁)

2
‖𝑢 − V‖ .

(20)

By the given condition, 3(𝑀𝑇 + 𝑚𝑁) < 2, it follows that
‖T𝑢 − TV‖ < ‖𝑢 − V‖. Therefore, T is a contraction. By
the contraction mapping principle, problem (1) has a unique
solution.

4. Example

Example 1. Consider impulsive antiperiodic boundary value
problem of nonlinear 𝑞𝑘-difference equation:

𝐷1/(5+𝑘)𝑢 (𝑡) =
𝑡
2

10
sin 𝑢 (𝑡) + 2 + 𝑒𝑡, 𝑡 ∈ [0, 1] , 𝑡 ̸=

𝑘

3 + 𝑘
,

Δ𝑢(
𝑘

3 + 𝑘
) = 𝑒
−𝑢
2
(𝑘/(3+𝑘))

, 𝑘 = 1, 2, . . . , 5,

𝑢 (0) = −𝑢 (1) ,

(21)

where 𝑞𝑘 = 1/(5 + 𝑘) (𝑘 = 0, 1, 2, . . . , 5), 𝑡𝑘 = 𝑘/(3 + 𝑘) (𝑘 =
1, 2, . . . , 5), 𝑓(𝑡, 𝑢) = (𝑡2/10) sin 𝑢 + 2 + 𝑒𝑡, and 𝐼𝑘(𝑢) = 𝑒

−𝑢
2

.
With 𝑎(𝑡) = 2 + 𝑒𝑡, 𝑏(𝑡) = 𝑡2/10, and 𝐿 = 1, it is easy to verify
that all conditions of Theorem 2 hold. Thus, by Theorem 2,
problem (21) has at least one solution.

Example 2. Consider impulsive antiperiodic boundary value
problem of nonlinear 𝑞𝑘-difference equation:

𝐷1/(4+𝑘)𝑢 (𝑡) =
𝑡
3

15
arc tan 𝑢 (𝑡) + ln (2 + 𝑡) ,

𝑡 ∈ [0, 1] , 𝑡 ̸=
2 + 𝑘

3 + 𝑘
,

Δ𝑢(
2 + 𝑘

3 + 𝑘
) =

𝑒
𝑡

45
sin 𝑢(2 + 𝑘

3 + 𝑘
) , 𝑘 = 1, 2, 3,

𝑢 (0) = −𝑢 (1) ,

(22)

where 𝑞𝑘 = 1/(4 + 𝑘) (𝑘 = 0, 1, 2, 3), 𝑡𝑘 = (2 + 𝑘)/(3 + 𝑘) (𝑘 =
1, 2, 3), 𝑓(𝑡, 𝑢) = (𝑡3/15)arc tan 𝑢 + ln(2 + 𝑡), and 𝐼𝑘(𝑢) =
(𝑒
𝑡
/45) sin 𝑢. With𝑀(𝑡) = 𝑡3/15,𝑀 = 1/15, and 𝑁 = 𝑒/45,

combining with 𝑇 = 1 and 𝑚 = 3, it is easy to verify that all
conditions of Theorem 3 hold. Thus, by Theorem 3, problem
(22) has a unique solution.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

This work was supported by the Natural Science Foundation
for Young Scientists of Shanxi Province, China (2012021002-
3).

References

[1] F. H. Jackson, “On 𝑞-difference equations,” American Journal of
Mathematics, vol. 32, pp. 305–314, 1910.

[2] V. Kac and P. Cheung, Quantum Calculus, Springer, 2002.
[3] T. Ernst, A Comprehensive Treatment of q-Calculus, Springer,

2012.
[4] A. Aral, V. Gupta, and R. P. Agarwal, Applications of q-Calculus

in Operator Theory, Springer, 2013.
[5] M. El-Shahed and H. A. Hassan, “Positive solutions of 𝑞-

difference equation,” Proceedings of the American Mathematical
Society, vol. 138, no. 5, pp. 1733–1738, 2010.

[6] B. Ahmad and S. K. Ntouyas, “Boundary value problems for 𝑞-
difference inclusions,” Abstract and Applied Analysis, vol. 2011,
Article ID 292860, 15 pages, 2011.

[7] B. Ahmad, S. K. Ntouyas, and I. K. Purnaras, “Existence results
for nonlinear 𝑞-difference equations with nonlocal boundary
conditions,” Communications on Applied Nonlinear Analysis,
vol. 19, pp. 59–72, 2012.



Abstract and Applied Analysis 5

[8] B. Ahmad, A. Alsaedi, and S. K. Ntouyas, “A study of
second-order 𝑞-difference equations with boundary condi-
tions,” Advances in Difference Equations, vol. 2012, article 35,
2012.

[9] M. Bohner and R. Chieochan, “Floquet theory for 𝑞-difference
equations,” Sarajevo Journal of Mathematics, vol. 8, no. 21, pp.
355–366, 2012.

[10] B. Ahmad and J. J. Nieto, “Basic theory of nonlinear third-order
𝑞-difference equations and inclusions,”Mathematical Modelling
and Analysis, vol. 18, pp. 122–135, 2013.

[11] N. Pongarm, S. Asawasamrit, and J. Tariboon, “Sequential
derivatives of nonlinear 𝑞-difference equations with three-point
𝑞-integral boundary conditions,” Journal of Applied Mathemat-
ics, vol. 2013, Article ID 605169, 9 pages, 2013.

[12] I. Area, E. Godoy, and J. J. Nieto, “Fixed point theory approach
to boundary value problems for second-order difference equa-
tions on non-uniform lattices,” Advances in Difference Equa-
tions, vol. 2014, article 14, 2014.

[13] I. Area, N. Atakishiyev, E. Godoy, and J. Rodal, “Linear partial
q-difference equations on 𝑞-linear lattices and their bivariate
𝑞-orthogonal polynomial solutions,” Applied Mathematics and
Computation, vol. 223, pp. 520–536, 2013.

[14] G. Bangerezako, “𝑞-Difference linear control systems,” Journal
of Difference Equations and Applications, vol. 17, no. 9, pp. 1229–
1249, 2011.

[15] G. Bangerezako, “Variational 𝑞-calculus,” Journal ofMathemati-
cal Analysis and Applications, vol. 289, no. 2, pp. 650–665, 2004.

[16] J. D. Logan, “First integrals in the discrete variational calculus,”
Aequationes Mathematicae, vol. 9, no. 2-3, pp. 210–220, 1973.

[17] S. Guermah, S. Djennoune, and M. Bettayeb, “Controllabil-
ity and observability of linear discrete-time fractional-order
systems,” International Journal of Applied Mathematics and
Computer Science, vol. 18, no. 2, pp. 213–222, 2008.

[18] Z. Bartosiewicz and E. Pawłuszewicz, “Realizations of linear
control systems on time scales,”Control and Cybernetics, vol. 35,
no. 4, pp. 769–786, 2006.

[19] D. Mozyrska and Z. Bartosiewicz, “On observability concepts
for nonlinear discrete-time fractional order control systems,”
New Trends in Nanotechnology and Fractional Calculus Appli-
cations, vol. 4, pp. 305–312, 2010.

[20] T. Abdeljawad, F. Jarad, and D. Baleanu, “Vartiational optimal-
control problems with delayed arguments on time scales,”
Advances in Difference Equations, vol. 2009, Article ID 840386,
2009.

[21] F. Mainardi, “Fractional calculus: some basic problems in
continuum and statistical mechanics,” in Fractals and Frac-
tional Calculus in Continuum Mechanics, A. Carpinteri and F.
Mainardi, Eds., Springer, New York, NY, USA, 1997.

[22] O. Agrawal, “Some generalized fractional calculus operators
and their applications in integral equations,” Fractional Calculus
and Applied Analysis, vol. 15, pp. 700–711, 2012.

[23] B. Ahmad and S. Sivasundaram, “Existence results for nonlinear
impulsive hybrid boundary value problems involving fractional
differential equations,” Nonlinear Analysis: Hybrid Systems, vol.
3, no. 3, pp. 251–258, 2009.

[24] Y. Tian and Z. Bai, “Existence results for the three-point impul-
sive boundary value problem involving fractional differential
equations,” Computers and Mathematics with Applications, vol.
59, no. 8, pp. 2601–2609, 2010.

[25] G. M. Mophou, “Existence and uniqueness of mild solutions to
impulsive fractional differential equations,” Nonlinear Analysis:

Theory,Methods andApplications, vol. 72, no. 3-4, pp. 1604–1615,
2010.

[26] G. Wang, B. Ahmad, and L. Zhang, “Impulsive anti-periodic
boundary value problem for nonlinear differential equations
of fractional order,” Nonlinear Analysis: Theory, Methods and
Applications, vol. 74, no. 3, pp. 792–804, 2011.

[27] B. Ahmad and J. J. Nieto, “Anti-periodic fractional boundary
value problems,”Computers andMathematics with Applications,
vol. 62, no. 3, pp. 1150–1156, 2011.
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