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Based on magnetometer and gyro measurement, a sequential scheme is proposed to determine the orbit and attitude of small
satellite simultaneously. In order to reduce the impact of orbital errors on attitude estimation, a robust adaptive Kalman filter
is developed. It uses a scale factor and an adaptive factor, which are constructed by Huber function and innovation sequence,
respectively, to adjust the covariance matrix of system state and observational noise, change the weights of predicted and measured
parameters, get suitable Kalman filter gain and approximate optimal filtering results. Numerical simulations are carried out and
the proposed filter is approved to be robust for the noise disturbance and parameter uncertainty and can provide higher accuracy
attitude estimation.

1. Introduction

Small satellite, as an integration of new concept, new theory,
and new method, has been widely used in the fields of
remote sensing, communication, astronomical observation,
and new technology experiment. Restricted by the size and
weight of small satellite, microsensors are required to be
used in its navigation system. Magnetometer is widely used
in the satellite because of its characteristics of low cost and
high reliability [1]. Especially micromagnetometer with new
technologies such as microelectronics and micromechanical
can be made as light as dozens of grams. And its measuring
information contains both the orbit and attitude information.
For the above reasons, micromagnetometer became the first
choice of the small satellite navigation sensors. But because
of the low accuracy of magnetic field measurement, satellite
navigation precision, especially the attitude angular velocity
estimation precision, is not high. So, the magnetometer and
gyro combination can significantly improve the navigation
accuracy.

In 1993, Psiaki put forward the thought of the satellite nav-
igation by using the geomagnetic field [2].Then, many schol-
ars made a lot of work on it and have made a lot of research
achievements [3–5]. In current research, satellite orbit and

attitude are mostly considered as two independent systems
when determining them and tandem orbit and attitude deter-
mination strategy are taken. In the orbital state estimation
stage, to avoid the influence of attitude errors, the modulus
of geomagnetic field vector is taken as observed quantity.
And in the attitude determination stage, orbital parameters
are considered to be known; attitude optimal estimation is
obtained by using the standard Kalman filtering algorithm,
regardless of the influence of orbit determination errors
[6].

However, in the attitude determination stage, both state
equation and observation equation of system are functions
of orbit parameters. On this occasion, the errors of orbit
parameters given by orbit filter are bigger, and especially
when the system has not been convergent, the traditional
Kalman filter will not be able to obtain the optimal results of
attitude determination. It is necessary to put forward a kind of
filtering algorithm to realize high precision attitude determi-
nation considering the effects of orbit errors.

Extended Kalman filtering (EKF) algorithm has been
widely used in the nonlinear estimation problem such as
satellite attitude determination. The estimation performance
of EKF is not only associated with the model precision of
system but also related to the statistical characteristic of
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noise. But in practice, due to the complex surroundings, the
characteristics of the noise are very difficult to get accurately
[7]. Traditional EKF does not have the adjust ability for
noise and is not sensitive to uncertainty of model parameters,
which directly affects the estimation performance of EKF. In
order to solve these problems, the traditional EKF needs to be
improved. A feasible method is to use adaptive Kalman filter-
ing. It can estimate online the statistical characteristic of the
noise in real time, so as to adjust the filter parameter [8].Many
results on estimation and adaptive filtering design for dif-
ferent kinds of dynamic systems have been obtained [9–18].
Adaptive filtering can be divided into three basic types: mul-
timode self-adaptive filtering, self-adaptive filtering based on
the innovation, and adaptive filtering based on the residual
[19]. Multimode adaptive filtering requires multiple filters;
they are calculated in parallel according to the different
model. This method is not only complex but also with heavy
computing burdens [20]. In the self-adaptive filter based
on innovation or residual, covariance matrix could adjust
adaptively according to the innovation or residual sequence
through fuzzy logic control. But the fuzzy rules are often
established based on people’s experience [21, 22]. The other
feasible method is adaptive fading Kalman filter. It uses a
suboptimal fading factor to enhance the impact of innovation
sequence, but filtering accuracy will be reduced [23].

For the attitude determination problem considered in
this paper, there is still some limitations by using the above
improved EKF method singly. So, on the basis of the above
research, a robust adaptive Kalman filtering has been raised
in this paper. It combines the robust filtering methods and
adaptive filtering. By adjusting the observation noise and the
system covariance matrix, it changes the weights of original
data and observation information in the filter and then gets
more reasonable filter gain and effectively improves attitude
determination accuracy, which provide a feasible way for
small satellite autonomous navigation problem based on low-
cost sensors.

2. Problem Description

For the satellite orbit and attitude determination problem
based on magnetometer and gyro, a sequential scheme is
adopted, in which the determination of orbit and attitude are
considered as two independent stages. In the stage of estimat-
ing orbit states xorb, in order to avoid the influence of satellite
attitude, EKF is taken to determine the orbit parameters, by
taking the modulus of geomagnetic field vector measured
by magnetometer as observation. In attitude determination
stage, filtering algorithm is adopted to estimate attitude using
the estimated orbital parameters and geomagnetic field vec-
tor, as well as gyro measurement; see Figure 1. Orbit estima-
tion stage will not be studied in this paper because there have
been a lot of research results about it; see [3]. By the reason
of taking the sequential orbit and attitude determination
scheme, the attitude determination is not only affected by the
precision of sensor precision but also affected by the precision
of orbit estimation. Focusing on the attitude determination
stage, a satellite attitude determination algorithm, which can
inhibit the influence of orbit errors, is put forward.

Orbit
filter

Attitude
filter

z = |Bb|

z = Bb

x̂ orb

x̂ orb
x̂ att

u

Figure 1: Sequential orbit and attitude determination scheme.

Satellite attitude kinematics equation can be described as

q̇ = 1
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𝑇 represents the attitude quaternion
from orbital coordinate system to body coordinate system
and 𝜔bo = [𝜔bo1, 𝜔bo2, 𝜔bo3]

𝑇 represents the body angular
velocity relative to orbital coordinate system. And Ω(𝜔bo) is
written as
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[

[

[

[
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]
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]

. (2)

The gyro measurement model usually takes the following
form:

u = 𝜔 + b + 𝜂
1
, (3)

where u is the actual output value of gyro; 𝜔 is the body
inertial angular velocity; b is the gyro constant drift; and 𝜂

1
is

the Gaussian white noise with the variance of 𝜎2
𝑔
.

The body inertial angular velocity is calculated in (3).
Consider

𝜔 = u − b − 𝜂
1
. (4)

And, approximately,

̇b = 𝜂
2
, (5)

where 𝜂
2
is drift slope white noise of gyro: 𝜂

2
∼ 𝑁(0, 𝛿

2

𝑏
).

In the satellite attitude kinematics equation, the body
angular velocity relative to orbital coordinate system can be
calculated by the following equation:

𝜔bo = 𝜔 − C (q)𝜔
𝑜
, (6)

whereC(q) is the attitude transformationmatrix from orbital
coordinate system to body coordinate system and 𝜔

𝑜
repre-

sents the orbit angular velocity, which can be obtained from
orbit parameters.

When determining the attitude, taking three-axis mag-
netic field vector measured by magnetometer as observation,
the observation equation is

B
𝑏
= h (xorb, q) + v

𝐵
= C (q)B

𝑜
(xorb) + v

𝐵
, (7)
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where B
𝑏
represents the actual measured value of magne-

tometer and B
𝑜
(xorb) is the magnetic field vector in the

orbital coordinate system, which can be calculated by IGRF.
v
𝐵
represents magnetometer measurement errors, which is

Gaussian white noise.
It is can be seen from (6) and (7) that both the system

state equation and observation equation are functions of orbit
parameters in the process of attitude determination. But the
real value of orbit parameters cannot be gotten, so we can
only use the result of orbit filter to replace them. So, addi-
tional errors were introduced for the system. Therefore, the
traditional Kalman filter will not be able to obtain the optimal
results of altitude determination. The errors that occurred
in this part can be considered as parameter uncertainty. The
purpose of this paper is to design a robust adaptive filter to
cope with the attitude determination problem caused by the
uncertainty of orbital parameters and improve the accuracy
of attitude determination.

3. Robust Adaptive Filtering Algorithm for
Attitude Determination

Satellite attitude determination system is a continuous non-
linear system, and it should be linearized and discretized for
application of EKF filtering. For convenience of derivation,
robust adaptive filter for linear discrete system is firstly con-
sidered in this section, and then it is extended to nonlinear
continuous system.

3.1. The Design of Robust Adaptive Filter. Consider the linear
discrete system

x
𝑘
= Φ
𝑘−1

x
𝑘−1

+ w
𝑘−1
, (8a)

z
𝑘
= H
𝑘
x
𝑘
+ v
𝑘
, (8b)

where x
𝑘
represents 𝑛 × 1 state vector, z

𝑘
represents 𝑚 × 1

observation vector, and Φ
𝑘−1

and H
𝑘
are the state transition

matrix and the observationmatrix, respectively.w
𝑘
and v
𝑘
are

the process noise and observation noise with average of 0 and
variance ofQ and R, respectively.

In the process of filtering, state one-step prediction can be
expressed as

x̂
𝑘
(−) = Φ

𝑘−1
x̂
𝑘−1 (9)

and the covariance of one-step prediction error is

P
𝑘
(−) = Φ

𝑘−1
P
𝑘−1
Φ
𝑇

𝑘−1
+Q
𝑘−1
. (10)

The prediction state residual vector and themeasurement
residual vector can be defined as (11), respectively

v
𝑥𝑘(−)

= x̂
𝑘
(+) − x̂

𝑘
(−) = x̂

𝑘
(+) −Φ

𝑘−1
x̂
𝑘−1

(+) ,

v
𝑘
= H
𝑘
x̂
𝑘
(+) − z

𝑘
.

(11)

According to rule of robustness, build the following
extreme function based on residual equation (11):

Ω
𝑘
= v𝑇
𝑘
R−1
𝑘
v
𝑘
+ 𝛼

𝑘
v𝑇
𝑥𝑘(−)

P−1
𝑘
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− 2𝜆

𝑇

𝑘
(H
𝑘
x̂
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(+) − z

𝑘
− v
𝑘
) ,

(12)

where R
𝑘
is the equivalent covariance matrix of 𝑧

𝑘
, which is

the adaptive estimate ofmeasuring covariancematrix.𝛼
𝑘
(0 <

𝛼

𝑘
≤ 1) is the adaptive factor and 𝜆

𝑘
is Lagrangian multiplier.

Take the partial respect of (12) to v
𝑘
and x̂

𝑘
(+), respec-

tively, then let them be equal to 0

𝜕Ω
𝑘

𝜕v
𝑘

= 2v𝑇
𝑘
R−1
𝑘
+ 2𝜆

𝑇

𝑘
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𝑘
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R−1
𝑘
H
𝑘
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P−1
𝑘
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H
𝑘
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(13)

According to (13), it is can be deduced that

2H𝑇
𝑘
R−1
𝑘
v
𝑘
+ 𝛼

𝑘
P−𝑇
𝑘
(−) v
𝑥𝑘(−)
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(14)

Substituting (11) in (14), we obtain

2H𝑇
𝑘
R−1
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𝑘
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(15)

From (15), we have

x̂
𝑘
(+) = (H𝑇

𝑘
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𝑘
H
𝑘
+

𝛼

𝑘

2
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𝛼
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2
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𝑘
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(16)

Let

K
𝑘
= (H𝑇
𝑘
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𝑘
H
𝑘
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𝛼

𝑘

2

P−1
𝑘
(−))

−1

H𝑇
𝑘
R−1
𝑘
.

(17)

Then, (16) can be written as

x̂
𝑘
(+) = K

𝑘
[z
𝑘
+ (K−1
𝑘
−H
𝑘
) x̂
𝑘
(−)] . (18)

Further, we can write (17) as

K
𝑘
=

1

𝛼

𝑘

P
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𝑘
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1
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𝑘

H
𝑘
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+ R
𝑘
)
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.
(19)

So, the robust adaptive filtering algorithm for linear
discrete system can be described as

x̂
𝑘
(−) = Φ

𝑘−1
x̂
𝑘−1
, (20a)
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P
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𝑘
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3.2. The Equivalent Covariance Matrix R
𝑘
of Observation

Vector z
𝑘
. From [24], the equivalent covariance matrix can

be obtained from bifactor variance expanding model, whose
element is

𝜎

𝑘𝑖𝑗
=
√
𝜆

𝑖
√𝜆

𝑗
𝜎

𝑘𝑖𝑗
,

(21)

where 𝜎
𝑘𝑖𝑗

is the corresponding element of prior variance
covariance and R

𝑘
, 𝜆
𝑖
, and 𝜆

𝑗
are variance inflation factors,

which can be taken as the reciprocal of Huber weight
function; that is,
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Ṽ
𝑖

󵄨

󵄨

󵄨

󵄨

𝑐

󵄨

󵄨

󵄨

󵄨

Ṽ
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(22)

where 𝑐 is constant and 𝑐 = 1.0 ∼ 1.5, Ṽ
𝑖
is standard-

ized residual. Therefore, the observation covariance matrix
inflates when the observed error exceeds a certain range.
Otherwise, the prior variance remains unchanged.

3.3. The Selection of Adaptive Factor 𝛼
𝑘
. Because the innova-

tion vector can reflect the errors of the system, we consider
solving the adaptive factor by using innovation.

In the process of filtering, the innovation sequence can be
described as

vinn,𝑘 = z
𝑘
−H
𝑘
x̂
𝑘
(−) (23)

and its theoretical covariance matrix is

Pinn,𝑘 = H
𝑘
P
𝑘
(−)H𝑇
𝑘
+ R
𝑘
. (24)

It can be seen from (20a)–(20e), in robust adaptive
filtering, innovation covariance is adjusted to

Pinn,𝑘 =
1

𝛼

𝑘

H
𝑘
P
𝑘
(−)H𝑇
𝑘
+ R
𝑘
. (25)

Considering that ̂Pinn,𝑘 represent actual innovation
covariance matrix, the optimal adaptive factor 𝛼

𝑘
based on

innovation covariance satisfies

̂Pinn,𝑘 = Pinn,𝑘. (26)

That is,

̂Pinn,𝑘 =
1

𝛼

𝑘

H
𝑘
P
𝑘
(−)H𝑇
𝑘
+ R
𝑘
. (27)

From (27), we obtain

𝛼

𝑘
(

̂Pinn,𝑘 − R
𝑘
) = H

𝑘
P
𝑘
(−)H𝑇
𝑘
. (28)

Substituting (24) in (28), we have

𝛼

𝑘
(

̂Pinn,𝑘 − R
𝑘
) = Pinn,𝑘 − R

𝑘
. (29)

So, the optimal adaptive factor could be expressed as

𝛼

𝑘
=

tr (Pinn,𝑘 − R
𝑘
)

tr (̂Pinn,𝑘 − R
𝑘
)

. (30)

As the value range of adaptive factor 𝛼
𝑘
is (0, 1],

𝛼

𝑘
=

{

{

{

{

{

{

{

1 tr (Pinn,𝑘) ≥ tr (̂Pinn,𝑘)

tr (Pinn,𝑘 − R
𝑘
)

tr (̂Pinn,𝑘 − R
𝑘
)

tr (Pinn,𝑘) < tr (̂Pinn,𝑘) ,
(31)

where tr(⋅) is trace of matrix. By omitting the same items in
(31), an approximate optimal adaptive factor can be obtained

𝛼

𝑘
=

{

{

{

{

{

1 tr (Pinn,𝑘) ≥ tr (̂Pinn,𝑘)

tr (Pinn,𝑘)

tr (̂Pinn,𝑘)
tr (Pinn,𝑘) < tr (̂Pinn,𝑘) .

(32)

Using the innovation vector of current sampling time to
describe the real covariance, we have

̂Pinn,𝑘 = Vinn,𝑘V
𝑇

inn,𝑘. (33)

Consider

tr (̂Pinn,𝑘) = V𝑇inn,𝑘Vinn,𝑘. (34)

The approximate optimal adaptive factor can be described
as

𝛼

𝑘
=

{

{

{

{

{

1 tr (Pinn,𝑘) ≥ tr (̂Pinn,𝑘)

tr (Pinn,𝑘)

V𝑇inn,𝑘Vinn,𝑘
tr (Pinn,𝑘) < tr (̂Pinn,𝑘) .

(35)

Compared with the standard EKF, the robust adaptive
filtering only adds a judgment process of two scalar factors in
the loop of each step, the complexity and calculated quantity
of which will not be increased substantially. When the vari-
ance inflation factor𝜆

𝑖𝑖
= 1, thismeans that themeasurement

noise is the same as the original statistical characteristic, the
robust adaptive filtering degenerate into adaptive filtering.
When the adaptive factor 𝛼

𝑘
= 1, it degenerates into robust

filtering. When 𝜆

𝑖𝑖
= 1 and 𝛼

𝑘
= 1, it is the traditional

Kalman filtering. So, the robust adaptive filtering is still
Kalman filtering substantially, which is capable of adapting to
the influence of uncertain factors by adjusting the parameters
properly and can realize the states estimate in the condition
of uncertain factors.

For nonlinear continuous system,

ẋ = 𝑓 (x) + w, (36a)

z = ℎ (x) + v. (36b)
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By Taylor series expansion and discretization, we obtain a
robust adaptive filtering algorithm for nonlinear continuous
system. Consider

x̂
𝑘
(−) = ∫

𝑘Δ𝑡

(𝑘−1)Δ𝑡

𝑓 (x̂
𝑘−1

(+)) 𝑑𝑡,
(37a)

P
𝑘
(−) =

1

𝛼

𝑘

(Φ
𝑘−1

P
𝑘−1

(+)Φ
𝑇

𝑘−1
+Q
𝑘
) , (37b)

K
𝑘
= P
𝑘
(−)H𝑇
𝑘
(H
𝑘
P
𝑘
(−)H𝑇
𝑘
+ R
𝑘
)

−1 (37c)

x̂
𝑘
(+) = x̂

𝑘
(−) + K

𝑘
(z
𝑘
− ℎ (x̂

𝑘
(−))) , (37d)

P
𝑘
(+) = (I − K

𝑘
H
𝑘
)P
𝑘
(−) , (37e)

where Φ
𝑘
= 𝐼 + (𝜕𝑓(𝑥)/𝜕𝑥)|x=x̂𝑘(−) ⋅ Δ𝑡, H𝑘 = (𝜕ℎ(𝑥)/

𝜕𝑥)|x=x̂𝑘(−), and Δ𝑡 are sampling time steps.

4. Mathematical Simulation and Analysis

In this section, the performance of the robust adaptive
filtering is verified by mathematical simulation.

In the simulation, the real parameters ofmicrosatellite are
given as below.

The moment of inertia of satellite is

J = [
[

18.1 0.4 −0.48

0.4 16.3 −4.61

−0.48 −4.61 17.95

]

]

kgm2
. (38)

The initial position and velocity of satellite are

r
0
= [5163062.03, 4275992.16, −8.56]

𝑇m,

v
0
= [−3288.1720, 3964.9749, 5263.4825]

𝑇m/s.
(39)

The initial attitude quaternion and angular velocity are

q
0
= [0, 0, 0, 1]

𝑇
,

𝜔
0
= [0, 0, 0]

𝑇 rad/s.
(40)

The measurement accuracy of magnetometer is 100 nT,
the constant drift of gyro is 3 deg/h, the measurement
accuracy of it is 0.1 rad/h, the sampling period is 1 s, and the
simulation time is 10000 s.

For the determination of orbit, taking the earth magnetic
field as measurement information and using the standard
EKF algorithm for estimation, the initial simulation parame-
ters are set as follows and the simulation results are shown in
Figure 2 to Figure 3:

r̂
0
= [5164062.03, 4276992.16, 1000]

𝑇m,

v̂
0
= [−3188.1720, 3864.9749, 5163.4825]

𝑇m/s.

Q
0
= diag ([1, 1, 1, 1, 1, 1] ∗ 1𝑒 − 8) ,

P
0
= diag ([1000, 1000, 1000, 100, 100, 100]2) .

(41)
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Figure 2: Position estimation errors.

After determining the satellite orbit parameters, taking
the estimated results as the input of the attitude determine
system, attitude robust adaptive filtering algorithm is adopted
to determine the attitude and simulation initial parameters as
follows and the simulation results are shown in Figure 4:

q̂
0
= [0.0523, −0.0474, 0.0523, 0.9961]

𝑇
,

̂b
0
= [3.5, 3.5, 3.5]

𝑇 deg /h,

Q
0
= diag ([1, 1, 1, 1, 1, 1] ∗ 1𝑒 − 10) ,

P
0
= diag ( [0.0474, 0.0523, 0.0474, 0.24𝑒 − 5,

0.24𝑒 − 5, 0.24𝑒 − 5]

2
) .

(42)

Figure 2 shows the three-axis position estimation errors
by taking the magnitude of the geomagnetic field as observa-
tion; Figure 3 shows the estimation errors of corresponding
orbital elements. As seen from the figures, when the position
error is 1000meters, the effect of the errors cannot be ignored
for both attitude kinematics equation and the observation
equation. Figure 4 shows the attitude estimation errors based
on traditional EKF and robust adaptive filter. It is can be seen
from Figure 4. The estimation precision of the traditional
EKF is about 0.2 degrees, and the maximum estimate error of
the robust adaptive filter proposed in this paper is 0.1 degrees;
the accuracy has improved significantly. Furthermore, the
oscillation of robust adaptive filter estimation results is
smaller, and the curve is smoother; it also illustrates that
the robust adaptive filter has stronger ability to adapt to the
interference or uncertainty.

5. Conclusions

In this paper, a robust adaptive Kalman filtering algorithm
is proposed, aiming to investigate the influence of the orbit
determination errors on the attitude determination. This
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Figure 3: Orbital elements estimation errors.
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algorithm not only adaptively adjusts the covariance of the
observation noise, but also adjusts the covariance matrix of
one-step prediction using the adaptive factor, which changes
the weight of old data and observation information in the
filter, getting a more appropriate Kalman gain. The noise
variance inflation factor based on Huber weight function
and adaptive factor based on the innovation proposed in
this paper ensure the approximate optimal of filtering results.
By taking attitude determination of small satellite with
magnetometer and gyro combination as an example, a series
of mathematical simulations are carried out.The results show
that the proposed robust adaptive filtering algorithm can
better cope with the interference of noise and uncertainty
of system model parameter which provide a higher accuracy
of attitude determination results under the premise of errors
existing in orbit parameters determination.
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