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The idea of [𝜆, 𝜇]-almost convergence (briefly,F[𝜆,𝜇]-convergence) has been recently introduced and studied by Mohiuddine and
Alotaibi (2014). In this paper first we define a norm on F[𝜆,𝜇] such that it is a Banach space and then we define and characterize
those four-dimensional matrices which transformF[𝜆,𝜇]-convergence of double sequences 𝑥 = (𝑥𝑗𝑘) intoF[𝜆,𝜇]-convergence. We
also define aF[𝜆,𝜇]-core of 𝑥 = (𝑥𝑗𝑘) and determine a Tauberian condition for core inclusions and core equivalence.

1. Background, Notations, and Preliminaries

We begin by recalling the definition of convergence for
double sequences which was introduced by Pringsheim [1]. A
double sequence 𝑥 = (𝑥𝑗𝑘) is said to be 𝑐𝑜𝑛V𝑒𝑟𝑔𝑒𝑛𝑡 to 𝐿 in the
Pringsheim’s sense (or 𝑃-convergent to 𝐿) if for given 𝜖 > 0
there exists an integer 𝑁 such that |𝑥𝑗𝑘 − 𝐿| < 𝜖 whenever
𝑗, 𝑘 > 𝑁. We will write this as

𝑃- lim
𝑗,𝑘→∞

𝑥𝑗𝑘 = 𝐿, (1)

where 𝑗 and 𝑘 are tending to infinity independent of each
other.We denote byC𝑃 the space of 𝑃-convergent sequences.

We say that a double sequence 𝑥 = (𝑥𝑗𝑘) is 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 if

‖𝑥‖ = sup
𝑗,𝑘≥0


𝑥𝑗𝑘

< ∞. (2)

Denote byL∞ the space of all bounded double sequences.
If a double sequence 𝑥 = (𝑥𝑗𝑘) in L∞ and 𝑥 is also 𝑃-

convergent to 𝐿, then we say that it is boundedly 𝑃-convergent
to 𝐿 (or, BP-convergent to 𝐿). We denote by CBP the space
of all boundedly 𝑃-convergent double sequences. Note that
CBP ⊂L∞.

We remark that, in contrast to the case for single
sequences, a 𝑃-convergent double sequence need not be
bounded.

Let 𝐴 = (𝑎𝑝𝑞𝑗𝑘 : 𝑗, 𝑘 = 0, 1, 2, . . .) be a four-dimensional
infinite matrix of real numbers for all 𝑝, 𝑞 = 0, 1, 2, . . . and
𝑆1 a space of double sequences. Let 𝑆2 be a double sequences
space, converging with respect to a convergence rule ] ∈
{𝑃,BP}. Define

𝑆
𝐴,]
1

=
{

{

{

𝑥 = (𝑥𝑗𝑘) : 𝐴𝑥 = (𝐴𝑝𝑞 (𝑥))

= ] −∑
𝑗,𝑘

∑
𝑘

𝑎𝑝𝑞𝑗𝑘𝑥𝑗𝑘 exists, 𝐴𝑥 ∈ 𝑆1
}

}

}

.

(3)

Then, we say that a four-dimensionalmatrix𝐵maps the space
𝑆2 into the space 𝑆1 if 𝑆2 ⊂ 𝑆

𝐵,]
1 and is denoted by (𝑆2, 𝑆1).

The idea of almost convergence of Lorentz [2] is narrowly
connected with the limits of Banach (see [3]) as follows. A
sequence 𝑥 = (𝑥𝑗) in 𝑙∞ is almost convergent to 𝐿 if all of
its Banach limits are equal, where 𝑙∞ denotes the space of
all bounded sequences. Mohiuddine [4] applies this concept
to established some approximation theorems for sequence of
positive linear operator. Móricz and Rhoades [5] extended
the notion of almost convergence from single to double
sequences as follows.
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A double sequence 𝑥 = (𝑥𝑗,𝑘) of real numbers is said to be
almost convergent to a number 𝐿 if

lim
𝑝,𝑞→∞

sup
𝑚,𝑛>0



1

𝑝𝑞

𝑚+𝑝−1

∑
𝑗=𝑚

𝑛+𝑞−1

∑
𝑘=𝑛

𝑥𝑗,𝑘 − 𝐿



= 0. (4)

Formore details on almost convergence for single and double
sequences, one can refer to [6–13].

The two-dimensional analogue of Banach limit has been
defined by Mursaleen and Mohiuddine [14] as follows. A
linear functionalL onL∞ is said to be Banach limit if it has
the following properties:

(BL1) L(𝑥) ≥ 0 if 𝑥 ≥ 0 (i.e., 𝑥𝑗𝑘 ≥ 0 for all 𝑗, 𝑘),
(BL2) L(𝐸) = 1, where 𝐸 = (𝑒𝑗𝑘) with 𝑒𝑗𝑘 = 1 for all 𝑗, 𝑘,
(BL3) L(𝑆11𝑥) =L(𝑥) =L(𝑆10𝑥) =L(𝑆01𝑥),

where the shift operators 𝑆01, 𝑆10, and 𝑆11 are defined by

𝑆01𝑥 = (𝑥𝑗,𝑘+1) , 𝑆10𝑥 = (𝑥𝑗+1,𝑘) ,

𝑆11𝑥 = (𝑥𝑗+1,𝑘+1) .

(5)

Denote byB the set of all Banach limits onL∞. Note that if
(BL3) holds, then wemay also writeL(𝑆𝑥) =L(𝑥). A double
sequence𝑥 = (𝑥𝑗𝑘) is said to be almost convergent to a number
𝐿 ifL(𝑥) = 𝐿 for allL ∈B.

Let𝜆 = (𝜆𝑚 : 𝑚 = 0, 1, 2, . . .) and𝜇 = (𝜇𝑛 : 𝑛 = 0, 1, 2, . . .)
be two nondecreasing sequences of positive reals and each
tending to∞ such that 𝜆𝑚+1 ≤ 𝜆𝑚 + 1, 𝜆1 = 0, 𝜇𝑛+1 ≤ 𝜇𝑛 + 1,
𝜇1 = 0, and

I𝑚𝑛 (𝑥) =
1

𝜆𝑚𝜇𝑛
∑
𝑗∈𝐽
𝑚

∑
𝑘∈𝐼
𝑛

𝑥𝑗𝑘, (6)

is called the double generalized de la Valée-Poussin mean,
where 𝐽𝑚 = [𝑚−𝜆𝑚+1,𝑚] and 𝐼𝑛 = [𝑛−𝜇𝑛+1, 𝑛]. We denote
the set of all 𝜆 and 𝜇 type sequences by using the symbol Λ.

Quite recently, Mohiuddine and Alotaibi [15] presented
a generalization of the notion of almost convergent double
sequence with the help of de la Vallée-Poussin mean and
called it [𝜆, 𝜇]-almost convergent. In the samepaper, they also
defined and characterized some four-dimensional matrices.
For more details on double sequences, four-dimensional
matrices, and other related concepts, one can refer to [16–26].

A double sequence 𝑥 = (𝑥𝑗𝑘) of reals is said to be [𝜆, 𝜇]-
almost convergent (briefly, F[𝜆,𝜇]-convergent) [15] to some
number 𝐿 if 𝑥 ∈ F[𝜆,𝜇], where

F[𝜆,𝜇]

= {𝑥 = (𝑥𝑗𝑘) : 𝑃- lim
𝑚,𝑛→∞

Ω𝑚𝑛𝑠𝑡 (𝑥) = 𝐿 exists,

uniformly in 𝑠, 𝑡; 𝐿 = F[𝜆,𝜇]-lim𝑥} ,

Ω𝑚𝑛𝑠𝑡 (𝑥) =
1

𝜆𝑚𝜇𝑛
∑
𝑗∈𝐽
𝑚

∑
𝑘∈𝐼
𝑛

𝑥𝑗+𝑠,𝑘+𝑡.

(7)

Denote by F[𝜆,𝜇] the space of all [𝜆, 𝜇] almost convergent
sequences (𝑥𝑗,𝑘). Note thatCBP ⊂ F[𝜆,𝜇] ⊂L∞.

We remark that if we take 𝜆𝑚 = 𝑚 and 𝜇𝑛 = 𝑛, then
the notion of [𝜆, 𝜇]-almost convergence coincides with the
notion of almost convergence for double sequences due to
Móricz and Rhoades [5].

2. (F[𝜆,𝜇],F[𝜆,𝜇])-Matrices

We will assume throughout this paper that the limit of a
double sequence means limit in the Pringsheim sense. We
define the following matrix classes and establish interesting
results.

Definition 1. A four-dimensional matrix𝐴 = (𝑎𝑝𝑞𝑗𝑘) is said to
be [𝜆, 𝜇]-almost regular if𝐴𝑥 ∈ F[𝜆,𝜇] for all 𝑥 = (𝑥𝑗𝑘) ∈ CBP
with F[𝜆,𝜇]-lim𝐴𝑥 = lim 𝑥, and one denotes this by 𝐴 ∈

(CBP,F[𝜆,𝜇])reg.

Definition 2. A matrix 𝐴 = (𝑎𝑝𝑞𝑗𝑘) is said to be of class
(F[𝜆,𝜇],F[𝜆,𝜇]) if it maps every F[𝜆,𝜇]-convergent double
sequence into F[𝜆,𝜇]-convergent double sequence; that is,
𝐴𝑥 ∈ F[𝜆,𝜇] for all 𝑥 = (𝑥𝑗𝑘) ∈ F[𝜆,𝜇]. In addition, if
F[𝜆,𝜇]-lim𝐴𝑥 = F[𝜆,𝜇]-lim𝑥, then 𝐴 is F[𝜆,𝜇]-regular and,
in symbol, one will write 𝐴 ∈ (F[𝜆,𝜇],F[𝜆,𝜇])reg.

Now we define the norm onF[𝜆,𝜇] as follows.

Theorem 3. F[𝜆,𝜇] is a Banach space normed by

‖𝑥‖ = sup
𝑚,𝑛,𝑠,𝑡

Ω𝑚𝑛𝑠𝑡 (𝑥)
 . (8)

Proof. It can be easily verified that (8) defines a norm on
F[𝜆,𝜇]. We show that F[𝜆,𝜇] is complete. Now, let (𝑥𝑏) be
a Cauchy sequence in F[𝜆,𝜇]. Then for each 𝑗, 𝑘, (𝑥𝑏𝑗𝑘) is a
Cauchy sequence in R. Therefore 𝑥𝑏𝑗𝑘 → 𝑥𝑗𝑘 (say). Put
𝑥 = (𝑥𝑗𝑘); given 𝜖 there exists an integer𝑁(𝜖) = 𝑁, say, such
that, for each 𝑏, 𝑑 > 𝑁,


𝑥
𝑏
− 𝑥
𝑑
<
𝜖

2
. (9)

Hence

sup
𝑚,𝑛,𝑠,𝑡


Ω𝑚𝑛𝑠𝑡 (𝑥

𝑏
− 𝑥
𝑑
)

<
𝜖

2
; (10)

then, for each𝑚, 𝑛, 𝑠, 𝑡 and 𝑏, 𝑑 > 𝑁, we have

Ω𝑚𝑛𝑠𝑡 (𝑥

𝑏
− 𝑥
𝑑
)

<
𝜖

2
. (11)

Taking limit 𝑑 → ∞, we have for 𝑏 > 𝑁 and for each of
𝑚, 𝑛, 𝑠, 𝑡


Ω𝑚𝑛𝑠𝑡 (𝑥

𝑏
− 𝑥)


<
𝜖

2
. (12)

Now for fixed 𝑏, the above inequality holds. Since for fixed 𝑏,
𝑥
𝑏
∈ F[𝜆,𝜇], we get

lim
𝑚,𝑛→∞

Ω𝑚𝑛𝑠𝑡 (𝑥
𝑏
) = ℓ (13)



Abstract and Applied Analysis 3

uniformly in 𝑠, 𝑡. For given 𝜖 > 0, there exist positive integers
𝑚0, 𝑛0 such that


Ω𝑚𝑛𝑠𝑡 (𝑥

𝑏
) − ℓ


<
𝜖

2
, (14)

for 𝑚 ≥ 𝑚0, 𝑛 ≥ 𝑛0 and for all 𝑠, 𝑡. Here 𝑚0, 𝑛0 are
independent of 𝑠, 𝑡 but depend upon 𝜖. Now by using (12) and
(14), we get

Ω𝑚𝑛𝑠𝑡 (𝑥) − ℓ


=

Ω𝑚𝑛𝑠𝑡 (𝑥) − Ω𝑚𝑛𝑠𝑡 (𝑥

𝑏
) + Ω𝑚𝑛𝑠𝑡 (𝑥

𝑏
) − ℓ



≤

Ω𝑚𝑛𝑠𝑡 (𝑥) − Ω𝑚𝑛𝑠𝑡 (𝑥

𝑏
)

+

Ω𝑚𝑛𝑠𝑡 (𝑥

𝑏
) − ℓ



< 𝜖,

(15)

for 𝑚 ≥ 𝑚0, 𝑛 ≥ 𝑛0 and for all 𝑠, 𝑡. Hence 𝑥 = (𝑥𝑗𝑘) ∈ F[𝜆,𝜇]
andF[𝜆,𝜇] is complete.

Now we characterize the matrix class (F[𝜆,𝜇],F[𝜆,𝜇]) as
well as (F[𝜆,𝜇],F[𝜆,𝜇])reg. LetM[𝜆,𝜇] be the subspace ofF[𝜆,𝜇]
such that 𝑃-lim𝑚,𝑛→∞Ω𝑚𝑛𝑠𝑡(𝑥) = 0, uniformly in 𝑠, 𝑡; that is

M[𝜆,𝜇] = {𝑥 = (𝑥𝑗𝑘) ∈ F[𝜆,𝜇] : 𝑃- lim
𝑚,𝑛→∞

Ω𝑚𝑛𝑠𝑡 (𝑥) = 0,

uniformly in 𝑠, 𝑡} .
(16)

Note that every 𝑦 ∈ F[𝜆,𝜇] can be written as

𝑦 = 𝑥 + ℓ𝐸, (17)

where 𝑥 ∈ M[𝜆,𝜇], ℓ = 𝑃-lim𝑚,𝑛Ω𝑚𝑛𝑠𝑡(𝑦) uniformly in 𝑠, 𝑡,
and 𝐸 = (𝑒𝑗𝑘) with 𝑒𝑗𝑘 = 1 for all 𝑗, 𝑘.

Theorem 4. A matrix 𝐴 = (𝑎𝑝𝑞𝑗𝑘) ∈ (F[𝜆,𝜇],F[𝜆,𝜇]) if and
only if

(AC1) ‖𝐴‖ = sup𝑝,𝑞∑
∞

𝑗=0∑
∞

𝑘=0 |𝑎𝑝𝑞𝑗𝑘| < ∞,

(AC2) 𝑎 = (∑
∞

𝑗=0∑
∞

𝑘=0 𝑎𝑝𝑞𝑗𝑘)
∞
𝑝,𝑞=1 ∈ F[𝜆,𝜇],

(AC3) 𝐴(𝑆 − 𝐼) ∈ (L∞,F[𝜆,𝜇]),

where 𝑆 is the shift operator.

Proof.
Necessity. Let 𝐴 ∈ (F[𝜆,𝜇],F[𝜆,𝜇]). We know that CBP ⊂

F[𝜆,𝜇] ⊂ L∞, so we have 𝐴 ∈ (CBP,L∞). Hence the
necessity of (AC1) follows. Since ∈ F[𝜆,𝜇], then 𝐴𝐸 ∈ F[𝜆,𝜇].
This is equivalent to

(

∞

∑
𝑗=0

∞

∑
𝑘=0

𝑎𝑝𝑞𝑗𝑘 )

∞

𝑝,𝑞=1

∈ F[𝜆,𝜇]; (18)

that is, (AC2) holds. For each 𝑥 = (𝑥𝑗𝑘) ∈ L∞, we have 𝑆𝑥 −
𝑥 ∈ F[𝜆,𝜇] because

L (𝑆𝑥 − 𝑥) =L (𝑆𝑥) −L (𝑥) = 0 (19)

for all Banach limit L. Hence 𝐴(𝑆𝑥 − 𝑥) ∈ F[𝜆,𝜇]; that is,
(AC3) holds.

Sufficiency. Let conditions (AC1)–(AC3) hold and 𝑦 = (𝑦𝑗𝑘) ∈
F[𝜆,𝜇]. Then

𝑦 = 𝑥 + ℓ𝐸, (20)

where 𝑥 = (𝑥𝑗𝑘) ∈ M[𝜆,𝜇], ℓ = 𝑃-lim𝑚,𝑛→∞Ω𝑚𝑛𝑠𝑡(𝑦),
uniformly in 𝑠, 𝑡 and 𝐸 = (𝑒𝑗𝑘) with 𝑒𝑗𝑘 = 1 for all 𝑗, 𝑘. Taking
𝐴-transform in (20), we obtain

𝐴𝑦 = 𝐴𝑥 + ℓ𝐴𝐸

= 𝐴𝑥 + ℓ(

∞

∑
𝑗=0

∞

∑
𝑘=0

𝑎𝑝𝑞𝑗𝑘 )

∞

𝑝,𝑞=1

.
(21)

If 𝑥 = (𝑥𝑗𝑘) ∈ L∞, then by (AC3) we have 𝐴(𝑆𝑥 − 𝑥) ∈
F[𝜆,𝜇]. Since by (AC1),𝐴 is bounded linear operator onL∞,
we get 𝐴M[𝜆,𝜇] ⊂ F[𝜆,𝜇]. This yields 𝐴𝑥 ∈ F[𝜆,𝜇]. Now
from condition (AC2) and (21), 𝐴𝑦 ∈ F[𝜆,𝜇]. Therefore 𝐴 ∈
(F[𝜆,𝜇],F[𝜆,𝜇]).

Corollary 5. A matrix 𝐴 = (𝑎𝑝𝑞𝑗𝑘) ∈ (F[𝜆,𝜇],F[𝜆,𝜇])reg if and
only if conditions (A𝐶1) and (A𝐶2) withF[𝜆,𝜇]- lim 𝑎 = 1 and
(A𝐶3) hold.

3. Some Core Theorems

The core or Knopp core of a real number single sequence
𝑥 is the closed interval [lim inf 𝑥, lim sup 𝑥] (see [27,
28]). In 1999, Patterson [29] extended the Knopp core
from single sequences to double sequences and called
it Pringsheim core (shortly, 𝑃-core) which is given by
[𝑃- lim inf 𝑥, 𝑃- lim sup 𝑥]. In the recent past, the 𝑀-core
and 𝜎-core for double sequences have been defined and
studied by Mursaleen and Edely [30] and Mursaleen and
Mohiuddine [31, 32], respectively, while the 𝜎-core for single
sequences is given by Mishra et al. [33]. In 2011, Kayaduman
and Çakan [34] presented the concept of Cesáro core of
double sequences.

We define the following sublinear functional onL∞:

Γ (𝑥) = lim sup
𝑚,𝑛→∞

sup
𝑠,𝑡

1

𝜆𝑚𝜇𝑛
∑
𝑗∈𝐽
𝑚

∑
𝑘∈𝐼
𝑛

𝑥𝑗+𝑠,𝑘+𝑡. (22)

Thenwe define theF[𝜆,𝜇]-core of a real-valued bounded dou-
ble sequence (𝑥𝑗𝑘) to be the closed interval [−Γ(−𝑥), Γ(𝑥)].

Since every BP-convergent double sequence is F[𝜆,𝜇]-
convergent, we have

Γ (𝑥) ≤ 𝐿 (𝑥) , (23)

where 𝐿(𝑥) = 𝑃-lim sup 𝑥, and hence it follows that
F[𝜆,𝜇]-core{𝑥} ⊆ 𝑃-core{𝑥} for all 𝑥 ∈L∞.

Theorem 6. For every 𝑥 = (𝑥𝑗𝑘) ∈ F[𝜆,𝜇],

Γ (𝐴𝑥) ≤ Γ (𝑥) (𝑜𝑟 F[𝜆,𝜇]-core {𝐴𝑥} ⊂ F[𝜆,𝜇]-core {𝑥})
(24)

if and only if
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(CR1) 𝐴 isF[𝜆,𝜇]-regular,
(CR2) lim sup𝑚,𝑛→∞sup𝑠,𝑡∑

∞

𝑗=0∑
∞

𝑘=0 |𝛼(𝑚, 𝑛, 𝑠, 𝑡, 𝑗, 𝑘)| = 1,

where

𝛼 (𝑚, 𝑛, 𝑠, 𝑡, 𝑗, 𝑘) =
1

𝜆𝑚𝜇𝑛
∑
𝑝∈𝐽
𝑚

∑
𝑞∈𝐼
𝑛

𝑎𝑝+𝑠,𝑞+𝑡,𝑗,𝑘. (25)

Proof.
Necessity. Suppose that (24) holds for all 𝑥 = (𝑥𝑗𝑘) ∈ F[𝜆,𝜇].
One obtains

−Γ (−𝑥) ≤ −Γ (−𝐴𝑥) ≤ Γ (𝐴𝑥) ≤ Γ (𝑥) ; (26)

that is,

F[𝜆,𝜇]-lim inf 𝑥 ≤ − Γ (−𝐴𝑥) ≤ Γ (𝐴𝑥)

≤ F[𝜆,𝜇]-lim sup 𝑥.
(27)

If 𝑥 = (𝑥𝑗𝑘) ∈ F[𝜆,𝜇], then

−Γ (−𝐴𝑥) = Γ (𝐴𝑥) = F[𝜆,𝜇]-lim𝑥; (28)

that is,

F[𝜆,𝜇]-lim (𝐴𝑥) = F[𝜆,𝜇]-lim𝑥. (29)

Therefore 𝐴 is F[𝜆,𝜇]-regular. This yields the necessity of
(CR1).

Now, with the help of Lemma 2.1 of [35], there is a double
sequence 𝑥 = (𝑥𝑗𝑘) ∈L∞ such that ‖𝑥‖ ≤ 1 and

lim sup
𝑚,𝑛→∞

sup
𝑠,𝑡

∞

∑
𝑗=0

∞

∑
𝑘=0

𝛼 (𝑚, 𝑛, 𝑠, 𝑡, 𝑗, 𝑘) 𝑥𝑗𝑘

= lim sup
𝑚,𝑛→∞

sup
𝑠,𝑡

∞

∑
𝑗=0

∞

∑
𝑘=0

𝛼 (𝑚, 𝑛, 𝑠, 𝑡, 𝑗, 𝑘)
 .

(30)

If a double sequence 𝑥 = (𝑥𝑗𝑘) defined by

𝑥𝑗𝑘 = {
1; if 𝑗 = 𝑘,
0; otherwise,

(31)

then

1 = Γ

(𝐴𝑥) = lim inf

𝑚,𝑛→∞
sup
𝑠,𝑡

∞

∑
𝑗=0

∞

∑
𝑘=0

𝛼 (𝑚, 𝑛, 𝑠, 𝑡, 𝑗, 𝑘)


≤ Γ (𝐴𝑥) ≤ Γ (𝑥) ≤ ‖𝑥‖ ≤ 1,

(32)

where

Γ

(𝑥) = lim inf

𝑚,𝑛→∞
sup
𝑠,𝑡

1

𝜆𝑚𝜇𝑛

𝑝

∑
𝑗=0

𝑞

∑
𝑘=0

𝑥𝑗+𝑠,𝑘+𝑡. (33)

This yields the necessity of (CR2).

Sufficiency. We know that CBP ⊂ F[𝜆,𝜇]. Following the lines
of Theorem 2 of [31] for translation mapping, one obtains

Γ (𝐴𝑥) ≤ 𝐿 (𝑥) . (34)

For any 𝑥 ∈M[𝜆,𝜇], we have

Γ (𝐴𝑥 + 𝐴𝑥

) ≤ 𝐿 (𝑥 + 𝑥


) . (35)

Taking infimum over 𝑥 ∈M[𝜆,𝜇], we obtain

inf
𝑥∈M

[𝜆,𝜇]

Γ (𝐴𝑥 + 𝐴𝑥

) ≤ inf
𝑥∈M

[𝜆,𝜇]

lim sup
𝑚,𝑛→∞

(𝑥𝑚𝑛 + 𝑥


𝑚𝑛)

= 𝑤 (𝑥) , say.
(36)

Thus

sup
𝑠,𝑡

lim sup
𝑚,𝑛→∞

Ω𝑚𝑛𝑠𝑡 (𝐴𝑥) + inf
𝑥∈M

[𝜆,𝜇]

inf
𝑠,𝑡

lim inf
𝑚,𝑛→∞

Ω𝑚𝑛𝑠𝑡 (𝐴𝑥

)

≤ 𝑤 (𝑥) .

(37)

Since 𝐴𝑥 ∈ F[𝜆,𝜇], we can write

𝐴𝑥

= 𝑥 + ℓ𝐸, (38)

where 𝑥 ∈ M[𝜆,𝜇], ℓ = F[𝜆,𝜇]-lim𝐴𝑥

(= F[𝜆,𝜇]-lim𝑥

, since
𝐴 isF[𝜆,𝜇]-regular). OperatingΩ𝑚𝑛𝑠𝑡 to (38), one obtains

Ω𝑚𝑛𝑠𝑡 (𝐴𝑥

) = Ω𝑚𝑛𝑠𝑡 (𝑥) + Ω𝑚𝑛𝑠𝑡 (ℓ𝐸) . (39)

By [𝜆, 𝜇]-almost regularity, we have

lim inf
𝑚,𝑛→∞

Ω𝑚𝑛𝑠𝑡 (𝐴𝑥

) = lim
𝑚,𝑛→∞

Ω𝑚𝑛𝑠𝑡 (𝑥)

+ ℓ lim
𝑚,𝑛→∞

∞

∑
𝑗=0

∞

∑
𝑘=0

𝛼 (𝑚, 𝑛, 𝑠, 𝑡, 𝑗, 𝑘) .

(40)

From the definition ofM[𝜆,𝜇], we get

lim
𝑚,𝑛→∞

Ω𝑚𝑛𝑠𝑡 (𝑥) = 0 (41)

uniformly in 𝑠, 𝑡. Also

lim
𝑚,𝑛→∞

∞

∑
𝑗=0

∞

∑
𝑘=0

𝛼 (𝑚, 𝑛, 𝑠, 𝑡, 𝑗, 𝑘) = 1. (42)

Therefore we obtain from (40) that

lim inf
𝑚,𝑛→∞

Ω𝑚𝑛𝑠𝑡 (𝐴𝑥

) = 1 (43)

uniformly in 𝑠, 𝑡. Equations (37) and (43) give that

Γ (𝐴𝑥) + 1 ≤ 𝑤 (𝑥) ; (44)

that is,

Γ (𝐴𝑥) ≤ 𝑤 (𝑥) . (45)

As 𝑤(𝑥) = Γ(𝑥), one obtains Γ(𝐴𝑥) ≤ Γ(𝑥).
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Note that F[𝜆,𝜇]-core{𝑥} ⊆ 𝑃-core{𝑥}. This motivates us
to prove the following result by adding a condition to get a
more general result.

Theorem 7. For 𝑥 = (𝑥𝑗𝑘) ∈L∞, if

lim
𝑠,𝑡
(𝑥s𝑡 − 𝑥𝑠+1,𝑡+1) = 0 (46)

holds, then 𝑃-core{x} ⊆ F[𝜆,𝜇]-core{x}.

Proof. By the definition of 𝑃-core andF[𝜆,𝜇]-core, we have to
show that 𝐿(𝑥) ≤ Γ(𝑥). Let Γ(𝑥) = ℓ. Then, for given 𝜖 > 0,
for all 𝑗, 𝑘, 𝑠, 𝑡 and for large𝑚, 𝑛 it follows from the definition
of Γ that

1

𝜆𝑚𝜇𝑛
∑
𝑗∈𝐽
𝑚

∑
𝑘∈𝐼
𝑛

𝑥𝑗+𝑠,𝑘+𝑡 < ℓ +
𝜖

2
. (47)

We can write

𝑥𝑠𝑡 = 𝑥𝑠𝑡 −
1

𝜆𝑚𝜇𝑛
∑
𝑗∈𝐽
𝑚

∑
𝑘∈𝐼
𝑛

𝑥𝑗+𝑠,𝑘+𝑡 +
1

𝜆𝑚𝜇𝑛
∑
𝑗∈𝐽
𝑚

∑
𝑘∈𝐼
𝑛

𝑥𝑗+𝑠,𝑘+𝑡

≤



𝑥𝑠𝑡 −
1

𝜆𝑚𝜇𝑛
∑
𝑗∈𝐽
𝑚

∑
𝑘∈𝐼
𝑛

𝑥𝑗+𝑠,𝑘+𝑡



+ ℓ +
𝜖

2
.

(48)

Since (46) holds, for given 𝜖 > 0, we get that


𝑥𝑠𝑡 − 𝑥𝑗+𝑠,𝑘+𝑡


<
𝜖

2
, (49)

for all 𝑗, 𝑘 ≥ 0. Thus we have



𝑥𝑠𝑡 −
1

𝜆𝑚𝜇𝑛
∑
𝑗∈𝐽
𝑚

∑
𝑘∈𝐼
𝑛

𝑥𝑗+𝑠,𝑘+𝑡



=
1

𝜆𝑚𝜇𝑛



𝜆𝑚𝜇𝑛𝑥𝑠𝑡 − ∑
𝑗∈𝐽
𝑚

∑
𝑘∈𝐼
𝑛

𝑥𝑗+𝑠,𝑘+𝑡



≤
1

𝜆𝑚𝜇𝑛
𝜆𝑚𝜇𝑛


𝑥𝑠𝑡 − 𝑥𝑗+𝑠,𝑘+𝑡


, 𝑗, 𝑘 ≥ 0.

(50)

Equation (49) yields



𝑥𝑠𝑡 −
1

𝜆𝑚𝜇𝑛
∑
𝑗∈𝐽
𝑚

∑
𝑘∈𝐼
𝑛

𝑥𝑗+𝑠,𝑘+𝑡



<
𝜖

2
. (51)

Taking lim sup𝑠,𝑡 in (48) and using (51), one obtains 𝐿(𝑥) ≤
ℓ + 𝜖. Since 𝜖 is arbitrary, we obtain 𝐿(𝑥) ≤ Γ(𝑥).

Corollary 8. If (46) holds and 𝑥 = (𝑥𝑗𝑘) isF[𝜆,𝜇]-convergent,
then 𝑥 is convergent.

Finally, we define the concepts of [𝜆, 𝜇]-almost uniformly
positive and [𝜆, 𝜇]-almost absolutely equivalent and establish
a theorem related to these concepts.

Definition 9. A matrix 𝐴 = (𝑎𝑝𝑞𝑗𝑘) is said to be [𝜆, 𝜇]-almost
uniformly positive, denoted byF[𝜆,𝜇]-uniformly positive, if

lim
𝑚,𝑛→∞

sup
𝑠,𝑡

∞

∑
𝑗=0

∞

∑
𝑘=0

1

𝜆𝑚𝜇𝑛



∑
𝑝∈𝐽
𝑚

∑
𝑞∈𝐼
𝑛

𝑎𝑝+𝑠,𝑞+𝑡,𝑗,𝑘



= 1. (52)

Definition 10. Let 𝐴 = (𝑎𝑝𝑞𝑗𝑘) and 𝐵 = (𝑏𝑝𝑞𝑗𝑘) be twoF[𝜆,𝜇]-
regular matrices and

𝑦𝑝𝑞 =

∞

∑
𝑗=0

∞

∑
𝑘=0

𝑎𝑝𝑞𝑗𝑘𝑥𝑗𝑘, 𝑦


𝑝𝑞 =

∞

∑
𝑗=0

∞

∑
𝑘=0

𝑏𝑝𝑞𝑗𝑘𝑥𝑗𝑘. (53)

Then 𝐴 and 𝐵 are said to be [𝜆, 𝜇]-almost absolutely equiva-
lent, denoted byF[𝜆,𝜇]-absolutely equivalent, onL∞ when-
everF[𝜆,𝜇]-lim(𝑦𝑝𝑞 − 𝑦


𝑝𝑞) = 0; that is, either (𝑦𝑝𝑞) and (𝑦


𝑝𝑞)

both tend to the sameF[𝜆,𝜇]-limit or neither of them tends to
aF[𝜆,𝜇]-limit, but their difference tends toF[𝜆,𝜇]-limit zero.

Before proceeding further, first we state the following
lemma which we will use to our next result.

Lemma 11. For 𝑥, 𝑦 ∈ L∞, if F[𝜆,𝜇]-lim|x − y| = 0, then
F[𝜆,𝜇]-core{x} = F[𝜆,𝜇]-core{y}.

Proof of the lemma is straightforward and thus omitted.

Theorem 12. Let 𝐴 = (𝑎𝑝𝑞𝑗𝑘) be a F[𝜆,𝜇]-regular matrix.
Then, Γ(𝐴𝑥) ≤ Γ(𝑥) for all 𝑥 = (𝑥𝑗𝑘) ∈L∞ if and only if there
is a F[𝜆,𝜇]-regular matrix 𝐵 = (𝑏𝑝𝑞𝑗𝑘) such that 𝐵 is F[𝜆,𝜇]-
uniformly positive andF[𝜆,𝜇]-absolutely equivalent with 𝐴 on
L∞.

Proof. Let there be a F[𝜆,𝜇]-regular matrix 𝐵 such that 𝐵
isF[𝜆,𝜇]-uniformly positive andF[𝜆,𝜇]-absolutely equivalent
with 𝐴 on L∞. Then, by (53) and F[𝜆,𝜇]-absolutely equiva-
lent of 𝐴 and 𝐵, we have

F[𝜆,𝜇]-lim

𝑦𝑚𝑛 − 𝑦



𝑚𝑛



= lim
𝑚,𝑛→∞

sup
𝑠,𝑡



∞

∑
𝑗=0

∞

∑
𝑘=0

1

𝜆𝑚𝜇𝑛

× ∑
𝑝∈𝐽
𝑚

∑
𝑞∈𝐼
𝑛

[𝑎𝑝+𝑠,𝑞+𝑡,𝑗,𝑘 − 𝑏𝑝+𝑠,𝑞+𝑡,𝑗,𝑘] 𝑥𝑗𝑘



≤ ‖𝑥‖ lim
𝑚,𝑛→∞

sup
𝑠,𝑡

∞

∑
𝑗=0

∞

∑
𝑘=0

1

𝜆𝑚𝜇𝑛

×



∑
𝑝∈𝐽
𝑚

∑
𝑞∈𝐼
𝑛

[𝑎𝑝+𝑠,𝑞+𝑡,𝑗,𝑘 − 𝑏𝑝+𝑠,𝑞+𝑡,𝑗,𝑘]



= 0,

(54)

uniformly in 𝑠, 𝑡. Now, by Lemma 11, F[𝜆,𝜇]-core{𝐴𝑥} =
F[𝜆,𝜇]-core{𝐵𝑥} for all 𝑥 ∈ L∞. By Theorem 6, we have
Γ(𝐴𝑥) ≤ Γ(𝑥), since 𝑥 is arbitrary.



6 Abstract and Applied Analysis

Conversely, let Γ(𝐴𝑥) ≤ 𝛾(𝑥) for all 𝑥 ∈ L∞. Then by
Theorem 6, 𝐴 is F[𝜆,𝜇]-uniformly positive. Now we define a
matrix 𝐵 = (𝑏𝑝𝑞𝑗𝑘) as

𝑏𝑝𝑞𝑗𝑘 =
1

2
(𝑎𝑝𝑞𝑗𝑘 + 𝑎𝑝,𝑞,𝑗+1,𝑘+1) (55)

for all 𝑝, 𝑞, 𝑗, 𝑘 ∈ N. Then it is easy to see that 𝐵 is F[𝜆,𝜇]-
regular since 𝐴 isF[𝜆,𝜇]-regular, and

F[𝜆,𝜇]-lim (𝐴𝑥) = F[𝜆,𝜇]-lim (𝐵𝑥) . (56)

Further

lim
𝑚,𝑛→∞

sup
𝑠,𝑡

∞

∑
𝑗=0

∞

∑
𝑘=0

1

𝜆𝑚𝜇𝑛



∑
𝑝∈𝐽
𝑚

∑
𝑞∈𝐼
𝑛

𝑏𝑝+𝑠,𝑞+𝑡,𝑗,𝑘



≤
1

2
[

[

lim
𝑚,𝑛→∞

sup
𝑠,𝑡

∞

∑
𝑗=0

∞

∑
𝑘=0

1

𝜆𝑚𝜇𝑛



∑
𝑝∈𝐽
𝑚

∑
𝑞∈𝐼
𝑛

𝑎𝑝+𝑠,𝑞+𝑡,𝑗,𝑘



+ lim
𝑚,𝑛→∞

sup
𝑠,𝑡

∞

∑
𝑗=0

∞

∑
𝑘=0

1

𝜆𝑚𝜇𝑛

×



∑
𝑝∈𝐽
𝑚

∑
𝑞∈𝐼
𝑛

𝑎𝑝+𝑠,𝑞+𝑡,𝑗+1,𝑘+1



]

]

.

(57)

Since 𝐵 isF[𝜆,𝜇]-regular, we have by (57) that

lim
𝑚,𝑛→∞

sup
𝑠,𝑡

∞

∑
𝑗=0

∞

∑
𝑘=0

1

𝜆𝑚𝜇𝑛



∑
𝑝∈𝐽
𝑚

∑
𝑞∈𝐼
𝑛

𝑏𝑝+𝑠,𝑞+𝑡,𝑗,𝑘



= 1. (58)

Thus 𝐵 is F[𝜆,𝜇]-uniformly positive. Further, it follows from
(56) that 𝐴 and 𝐵 areF[𝜆,𝜇]-absolutely equivalent.
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