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We study two discrete predator-prey models in patchy environment, one without dispersal corridors and one with dispersal
corridors. Dispersal corridors are passes that allow the migration of species from one patch to another and their existence may
influence the permanence of the model. We will offer sufficient conditions to guarantee the permanence of the two predator-prey
models. By comparing the two permanence criteria, we discuss the effects of dispersal corridors on the permanence of the predator-
prey model. It is found that the dispersion of the prey from one patch to another is helpful to the permanence of the prey if the
population growth of the prey is density dependent; however, this dispersion of the prey could be disadvantageous or advantageous
to the permanence of the predator. Five numerical examples are presented to confirm the theoretical results obtained and to illustrate
the effects of dispersal corridors on the permanence of the predator-prey model.

1. Introduction

The conception of permanence in ecological communities
is first discussed in [1]. This notion of permanence is also
knownunder different aliases, such as permanent coexistence
or uniform persistence. Aptly termed, permanence of a
populationmodel reflects that all the species in the ecosystem
will coexist for a relatively long time; that is, no extinction
of any species will occur in the near future—this is very
important in biological conservation. A permanent model
may attain globally asymptotically stable positive equilibrium
[2] or may have periodic solution [3, 4], and even a chaotic
model can be permanent [5]. The sufficient and/or neces-
sary conditions established to guarantee the permanence of
various population models may offer helpful suggestions for
environmental managers to take applicable measures for the
sustainability of the ecosystems [6–8].

It is common that in the real world today the habitats of
the species are separated into isolated patches due to spatial
heterogeneity or the development of mankind, such as the

construction of highways or railways [9–16]. This patchy
environment may restrict the activities of the species and
lead to adverse effects on the permanence of the ecological
communities; therefore, some dispersal corridorsmay be built
to allow movement between the patches. For example, the
construction of Qinghai-Tibet railway in China separates the
habitats of the Tibetan antelopes to pieces of small patches.
In order to reduce the impact of patchy environment on the
Tibetan antelopes, several underpasses (dispersal corridors)
along the railway are constructed for the Tibetan antelopes
to move from one side of the railway to the other side [17].
Indeed some researches [18] have verified that the Tibetan
antelopes have really made use of these underpasses to cross
the railway.

In the literature there are quite many papers that dis-
cuss the permanence of continuous time predator-prey or
competitive systems in patchy environment: for example, one
can refer to [19–23] and the many references cited therein.
Though some continuous time models have their discrete
time analogues, it is common knowledge that these discrete
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time analogues may present different dynamics, which are
possibly more complicated [24–26]. To our best knowledge,
there are few references on discrete time predator-prey or
competitive models in patchy environment; see, for instance,
[22, 27–30]. In [28, 30], the effects of dispersion on discrete
models for single species in patchy environment have been
discussed; two patches have been considered in [30] while 𝑛
patches have been tackled in [28]. In [27, 29], the effects of
dispersion on discrete competitive models in patchy environ-
ment have been analyzed; in particular discrete Leslie-Gower
type competitive model has been adopted in [27]. Motivated
by the above papers as well as the importance of permanence
in ecosystems, in this paper we will investigate the perma-
nence of discrete time predator-prey models of Ricker type
in patchy environment. To be specific, we will tackle two
discrete predator-prey models in patchy environment; the
first model has no dispersal corridors while the secondmodel
has dispersal corridors. Sufficient conditions to guarantee
permanence will be established for both models. The effects
of dispersal corridors on permanence are then analyzed by
comparing the two sets of sufficient conditions. We remark
that in the literature the numerous research papers on contin-
uous/discrete predator-prey models in patchy environment
have focused mainly on the permanence criteria and/or
the existence of periodic solutions of the models; however,
the effects of dispersal corridors on the permanence of the
models are rarely studied until the present paper.

The paper is organized as follows. In Section 2, we
construct the two discrete predator-prey models in patchy
environment with/without dispersal corridors; also in this
section we give some preliminaries such as the definition of
permanence. In Section 3, sufficient conditions for the per-
manence of the two discrete predator-prey models in patchy
environment with/without dispersal corridors are offered.
The effects of dispersal corridors on the permanence of the
models are analyzed in Section 4. In Section 5, we present
five examples where numerical simulations are performed
to confirm the theoretical results and to illustrate the effects
of dispersal corridors. Finally, we conclude in Section 6.
The mathematical proofs of the theorems in Section 3 are
presented in Appendix.

2. Models and Preliminaries

There are many types of discrete time mathematical models,
which are governed by difference equations, established to
reflect the fluctuation of the single-species population [31].
Among them, the Ricker type model, given as

𝑥 (𝑛 + 1) = 𝑥 (𝑛) exp [𝑟 − 𝑎𝑥 (𝑛)] , (1)
is first established for some kind of fishery population [32]
and subsequently used to model other kinds of single-species
population [31, 33, 34]. In model (1), 𝑥(𝑛) is the population
density of the species 𝑥 at the 𝑛th time step, 𝑟 is the intrinsic
growth rate of 𝑥, 𝑎 is the strength of intraspecific competition
of 𝑥, and 𝑟, 𝑎 are positive constants. Model (1) is logistic; that
is, the fluctuation of the population of 𝑥 is undergoing the
effect of density dependency. One can refer to [31] for more
details about (1).

In the predator-preymodel that we are considering in this
paper, the prey is 𝑥 and the predator is 𝑦, and the predator
𝑦 only feeds on the prey 𝑥. Adopting model (1) to reflect
the population growth of the prey 𝑥, we have the following
discrete predator-prey model of Lotka-Volterra type:

𝑥 (𝑛 + 1) = 𝑥 (𝑛) exp [𝑟
1
− 𝑎
11
𝑥 (𝑛) − 𝑎

12
𝑦 (𝑛)] ,

𝑦 (𝑛 + 1) = 𝑦 (𝑛) exp [−𝑟
2
+ 𝑎
21
𝑥 (𝑛) − 𝑎

22
𝑦 (𝑛)] .

(2)

In model (2), 𝑟
1
is the intrinsic growth rate of the prey 𝑥, 𝑎

11

is the intraspecific competition strength of the prey 𝑥, 𝑎
12

is
the predation strength, 𝑟

2
is the death rate of the predator 𝑦 if

there is no prey 𝑥 for 𝑦 to feed on, 𝑎
21
reflects the predation

efficiency or the rate of energy transferred from the prey 𝑥 to
the predator 𝑦 through predation, and 𝑎

22
is the intraspecific

competition strength of the predator 𝑦.The parameters 𝑟
𝑖
, 𝑎
𝑖𝑗
,

𝑖, and 𝑗 ∈ {1, 2} are all positive constants. The permanence
and the global asymptotic stability of the positive equilibrium
of model (2) have been discussed in [35, 36].

Now, suppose that the habitats of the predator-prey
system (2) are separated into two patches, patch 1 and patch
2. We denote 𝑥

𝑖
(𝑛) and 𝑦

𝑖
(𝑛) as the respective population

density of the prey 𝑥 and the predator 𝑦 in patch 𝑖 at the 𝑛th
time step, 𝑖 ∈ {1, 2}. Let 𝑟

1𝑖
be the intrinsic growth rate of the

prey 𝑥 in patch 𝑖 and let 𝑟
2𝑖
be the death rate of the predator

𝑦 in patch 𝑖, 𝑖 ∈ {1, 2}. Also, 𝑎(𝑘)
𝑖𝑗

has the same biological
meaning as 𝑎

𝑖𝑗
in model (2) except that now it is the case in

patch 𝑘, 𝑖, 𝑗, 𝑘 ∈ {1, 2}. At this moment, there are no dispersal
corridors between the two patches. Thus, we have the fol-
lowing discrete predator-prey model in patchy environment
without dispersal corridors:

𝑥
1
(𝑛 + 1) = 𝑥

1
(𝑛) exp [𝑟

11
− 𝑎
(1)

11
𝑥
1
(𝑛) − 𝑎

(1)

12
𝑦
1
(𝑛)] ,

𝑦
1
(𝑛 + 1) = 𝑦

1
(𝑛) exp [−𝑟

21
+ 𝑎
(1)

21
𝑥
1
(𝑛) − 𝑎

(1)

22
𝑦
1
(𝑛)] ,

𝑥
2
(𝑛 + 1) = 𝑥

2
(𝑛) exp [𝑟

12
− 𝑎
(2)

11
𝑥
2
(𝑛) − 𝑎

(2)

12
𝑦
2
(𝑛)] ,

𝑦
2
(𝑛 + 1) = 𝑦

2
(𝑛) exp [−𝑟

22
+ 𝑎
(2)

21
𝑥
2
(𝑛) − 𝑎

(2)

22
𝑦
2
(𝑛)] .

(3)

Next, we introduce dispersal corridors to the patchy
model (3). It is assumed that the prey 𝑥 can migrate from
one patch to another via these dispersal corridors, but the
predator 𝑦 cannot use the dispersal corridors to migrate.
We make some remarks to this assumption. Firstly, this
assumption of only prey (but not predator) dispersal is usual
in continuous/discrete time predator-prey models in patchy
environment; see, for example, [22, 23, 37, 38]. Moreover,
this assumption fits the common definition of prey refuge if
the predator is fixed in one patch, and intensive studies have
been done; refer to [39] and the references cited therein. Our
assumption here is that the prey can move among patches
while the predator is fixed in each patch—an example of such
a system can be found in [40], where the prey (mayflies) is
mobile among different patches, but the predator (charr) is
confined to its patch since the river is fenced into patches.
Indeed, systems of this type may exist naturally in swamp
fields, where the prey (such as flying insects) can migrate
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to different ponds while the predator (such as fish) is fixed
in each pond. Denote 𝑑

𝑖𝑗
as the dispersal rate of the prey

𝑥 migrating from patch 𝑖 to patch 𝑗, 𝑖, 𝑗 ∈ {1, 2}, 𝑖 ̸= 𝑗. We
have the following discrete predator-prey model in patchy
environment with dispersal corridors:

𝑥
1
(𝑛 + 1)

= 𝑥
1
(𝑛) exp [𝑟

11
− 𝑎
(1)

11
𝑥
1
(𝑛) − 𝑎

(1)

12
𝑦
1
(𝑛)

− 𝑑
12
𝑥
1
(𝑛) + 𝑑

21
𝑥
2
(𝑛)] ,

𝑦
1
(𝑛 + 1)

= 𝑦
1
(𝑛) exp [−𝑟

21
+ 𝑎
(1)

21
𝑥
1
(𝑛) − 𝑎

(1)

22
𝑦
1
(𝑛) + 𝛼𝑑

21
𝑥
2
(𝑛)] ,

𝑥
2
(𝑛 + 1)

= 𝑥
2
(𝑛) exp [𝑟

12
− 𝑎
(2)

11
𝑥
2
(𝑛) − 𝑎

(2)

12
𝑦
2
(𝑛)

+ 𝑑
12
𝑥
1
(𝑛) − 𝑑

21
𝑥
2
(𝑛)] ,

𝑦
2
(𝑛 + 1)

= 𝑦
2
(𝑛) exp [−𝑟

22
+ 𝑎
(2)

21
𝑥
2
(𝑛) − 𝑎

(2)

22
𝑦
2
(𝑛) + 𝛽𝑑

12
𝑥
1
(𝑛)] .

(4)

Here, 𝛼 and 𝛽 represent the predation rates of the predator
on the prey that migrates from another patch. Note that
model (4) is reduced to model (3) if the dispersal rates
𝑑
12

and 𝑑
21

are both zero. Model (4) may be viewed as
a discrete analogue of the continuous time predator-prey
reaction-diffusion model for patchy environment proposed
by Allen [41]. In [41] an extinction result, whereby some
sufficient conditions are established to ensure the extinction
of the species, has been developed. We remark that, from
a practical standpoint, permanence results that guarantee
species survival are more useful than extinction results; as
such, we will focus on the permanence of the discrete model.

In view of the biological background, we let the initial
values of models (3) and (4) be

𝑥
1
(0) = 𝑥

1
> 0, 𝑥

2
(0) = 𝑥

2
> 0;

𝑦
1
(0) = 𝑦

1
> 0, 𝑦

2
(0) = 𝑦

2
> 0.

(5)

Also, throughout the paper we assume the following:

(H1) 𝑟𝑖𝑗, 𝑎𝑖𝑗, 𝑎
(𝑘)

𝑖𝑗
, 𝑖, 𝑗, 𝑘 ∈ {1, 2} and 𝛼, 𝛽 are all positive

constants, and 𝑑
12
, 𝑑
21
are nonnegative constants.

It is obvious that all the solutions of either model (3)
or model (4) with initial values (5) are positive, which
correspondswell to the biologicalmeanings of𝑥

𝑖
(𝑛),𝑦
𝑖
(𝑛), 𝑖 ∈

{1, 2}, noting that population density of any species is always
nonnegative.

The permanence results of models (3) and (4) will be
presented in Section 3. To be precise, we state the definition
of permanence as follows.

Definition 1. Model (3) (or (4)) with initial values (5) is said
to be permanent if there exist positive constants 𝑚

𝑖
, 𝑚∗
𝑖
,𝑀
𝑖
,

and𝑀∗
𝑖
, 𝑖 ∈ {1, 2}, such that

𝑚
𝑖
≤ lim inf
𝑛→+∞

𝑥
𝑖
(𝑛) ≤ lim sup

𝑛→+∞

𝑥
𝑖
(𝑛) ≤ 𝑀

𝑖
, 𝑖 = 1, 2,

𝑚
∗

𝑖
≤ lim inf
𝑛→+∞

𝑦
𝑖
(𝑛) ≤ lim sup

𝑛→+∞

𝑦
𝑖
(𝑛) ≤ 𝑀

∗

𝑖
, 𝑖 = 1, 2,

(6)

hold for each solution of model (3) (or (4)) with initial values
(5).

3. Permanence of the Models

In this section, we will establish the permanence of models
(3) and (4) with initial values (5).Themathematical proofs of
Theorems 2, 4, and 5 will be presented in Appendix.

3.1. Permanence without Dispersal Corridors. We consider
model (3) togetherwith initial values (5).Notice that in (3) the
first two equations are independent of the last two equations;
therefore, we only need to consider the permanence of the
model comprising just the first two equations of (3); namely,

𝑥
1
(𝑛 + 1) = 𝑥

1
(𝑛) exp [𝑟

11
− 𝑎
(1)

11
𝑥
1
(𝑛) − 𝑎

(1)

12
𝑦
1
(𝑛)] ,

𝑦
1
(𝑛 + 1) = 𝑦

1
(𝑛) exp [−𝑟

21
+ 𝑎
(1)

21
𝑥
1
(𝑛) − 𝑎

(1)

22
𝑦
1
(𝑛)]

(7)

with initial values

𝑥
1
(0) = 𝑥

1
> 0, 𝑦

1
(0) = 𝑦

1
> 0. (8)

Theorem 2. Suppose that

𝑟
11
− 𝑎
(1)

12
𝑀
1
> 0, (9)

−𝑟
21
+ 𝑎
(1)

21
𝑚
1
> 0 (10)

are satisfied, where

𝑀
1
=

1

𝑎
(1)

22

exp (−𝑟
21
+ 𝑎
(1)

21
𝐴
1
− 1) ,

𝐴
1
=

1

𝑎
(1)

11

exp (𝑟
11
− 1) ,

𝑚
1
=

𝑟
11
− 𝑎
(1)

12
𝑀
1

𝑎
(1)

11

exp (𝑟
11
− 𝑎
(1)

12
𝑀
1
− 𝑎
(1)

11
𝐴
1
) .

(11)

Then, model (7) with initial values (8) is permanent.

Remark 3. (a) The permanence or global asymptotical sta-
bility for the positive equilibrium of model (7) has been
studied in [35, 36, 42]. In [35] it is shown that, for sufficiently
small 𝑟

11
and 𝑟
21
, model (7) has a positive equilibrium which

is globally attractive, and as a consequence model (7) is
permanent. So the conditions for the permanence of (7) are
not directly derived in [35]. On the other hand, based on
the study of a nonautonomous version of (7), it is proved
in [36] (Corollary 4) that the positive equilibrium of (7) is
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globally asymptotically stable if 𝑟
11
≤ 1 together with other

conditions. Further, in [42] it is proved that the positive
equilibrium of (7) can also be globally asymptotically stable
if 𝑟
11
> 1. It is known that a system is permanent if its positive

equilibrium is globally asymptotically stable [8]. Hence, in
[36, 42] once again permanence is a consequence but the
conditions to ensure it are indirectly obtained.

(b) Our method to obtain the permanence of (7) (or
(3)) is different from that in [35, 36, 42]. In particular, the
inequalities 𝑚

1
≤ 𝑀
1
and 𝑚

∗

1
≤ 𝑀
∗

1
in Definition 1 can

be verified here (refer to (A.17), (A.18), (A.26), and (A.27) in
Appendix). In most cases if it is proved that each solution of
a model is bounded both below and above by some positive
constants, then the model is considered to be permanent.
However, it is not easy to show the inequalities such as (A.17)
and (A.26).

Using Theorem 2, we give the following theorem on the
permanence of model (3).

Theorem 4. Suppose that conditions (9) and (10) are satisfied,
and

𝑟
12
− 𝑎
(2)

12
𝑀
2
> 0, (12)

−𝑟
22
+ 𝑎
(2)

21
𝑚
2
> 0 (13)

hold, where

𝑀
2
=

1

𝑎
(2)

22

exp (−𝑟
22
+ 𝑎
(2)

21
𝐴
2
− 1) ,

𝐴
2
=

1

𝑎
(2)

11

exp (𝑟
12
− 1) ,

𝑚
2
=

𝑟
12
− 𝑎
(2)

12
𝑀
2

𝑎
(2)

11

exp (𝑟
12
− 𝑎
(2)

12
𝑀
2
− 𝑎
(2)

11
𝐴
2
) .

(14)

Then, model (3) with initial values (5) is permanent.

3.2. Permanence with Dispersal Corridors. The following
theorem gives the sufficient conditions to guarantee the per-
manence of predator-prey model (4) in patchy environment
with dispersal corridors.

Theorem 5. Suppose that

𝑟
11
− 𝑎
(1)

12
𝑆
1
> 0, (15)

−𝑟
21
+ 𝑎
(1)

21
𝑠
1
> 0, (16)

𝑟
12
− 𝑎
(2)

12
𝑆
2
> 0, (17)

−𝑟
22
+ 𝑎
(2)

21
𝑠
2
> 0 (18)

Table 1: Sufficient conditions for the permanence of models with-
out/with dispersal corridors.

Concerned with the
permanence

Without dispersal
corridors

With dispersal
corridors

The prey 𝑥 in patch 1 (9) (15)
The predator 𝑦 in patch 1 (10) (16)
The prey 𝑥 in patch 2 (12) (17)
The predator 𝑦 in patch 2 (13) (18)

are satisfied, where

𝑆
1
=

1

𝑎
(1)

22

exp[−𝑟
21
+

𝑎
(1)

21

𝑎
(1)

11
+ 𝑑
12

exp (𝑟
11
− 1) − 1] ,

𝑠
1
=

𝑟
11
− 𝑎
(1)

12
𝑆
1

𝑎
(1)

11
+ 𝑑
12

exp [𝑟
11
− 𝑎
(1)

12
𝑆
1
− exp (𝑟

11
− 1)] ,

𝑆
2
=

1

𝑎
(2)

22

exp[−𝑟
22
+

𝑎
(2)

21

𝑎
(2)

11
+ 𝑑
21

exp (𝑟
12
− 1) − 1] ,

𝑠
2
=

𝑟
12
− 𝑎
(2)

12
𝑆
2

𝑎
(2)

11
+ 𝑑
21

exp [𝑟
12
− 𝑎
(2)

12
𝑆
2
− exp (𝑟

12
− 1)] .

(19)

Then, model (4) with initial values (5) is permanent.

Remark 6. Unlike the proof of Theorem 4, in the proof of
Theorem 5 (refer to Appendix) the inequalities 𝑚

1
≤ 𝑀
1
,

𝑚
∗

1
≤ M∗
1
,𝑚
2
≤ 𝑀
2
, and𝑚∗

2
≤ 𝑀
∗

2
in Definition 1 cannot be

verified. This also reinforces Remark 3(b) where we indicate
that such inequalities are not easy to prove in most cases.

4. Effects of Dispersal Corridors

In Section 3, sufficient conditions for the permanence of
models (3) and (4) with initial values (5) are offered in
Theorems 4 and 5, respectively. In this section, we will
analyze the effects of dispersal corridors on the permanence
of discrete predator-prey system by comparing the two sets of
sufficient conditions obtained. Recall that the sufficient con-
ditions to guarantee the permanence of predator-prey system
without dispersal corridors in patchy environment are (9)–
(13), while (15)–(18) are the sufficient conditions to guarantee
the permanence of the similar system with dispersal corri-
dors. From the proofs of Theorems 4 and 5 (see Appendix),
these conditions can be classified in Table 1.

4.1. Effects of Dispersal Corridors on the Permanence of the
Prey. We begin with conditions (9) and (15), which are
mainly concernedwith the permanence of the prey 𝑥 in patch
1 under the situation of without or with dispersal corridors.
Rewrite (9) as

𝑟
11
> 𝑎
(1)

12
𝑀
1

=

𝑎
(1)

12

𝑎
(1)

22

exp[−𝑟
21
+

𝑎
(1)

21

𝑎
(1)

11

exp (𝑟
11
− 1) − 1] ≜ 𝐵

1
.

(20)
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Also, rewrite (15) as

𝑟
11
> 𝑎
(1)

12
𝑆
1

=

𝑎
(1)

12

a(1)
22

exp[−𝑟
21
+

𝑎
(1)

21

𝑎
(1)

11
+ 𝑑
12

exp (𝑟
11
− 1) − 1] ≜ 𝐵

2
.

(21)

On the left sides of (20) and (21), 𝑟
11
is the intrinsic growth

rate of the prey𝑥 in patch 1, whichmakes positive contribution
to the population growth of the prey since it is greater than
0. The right sides of (20) and (21) can be understood as
the negative contribution, caused by the intracompetition of
species 𝑥 in patch 1, the predation by the predator 𝑦 in patch
1, and also the dispersion to patch 2 if dispersal corridors
exist, to the population growth of the prey. Thus, (𝑟

11
− 𝐵
1
)

and (𝑟
11
− 𝐵
2
) can be interpreted as the net reproduction rates

of the prey 𝑥 in patch 1 without or with dispersal corridors,
respectively. Consequently, the biological interpretation of
(20) or (21) is that the prey 𝑥 in patch 1 is permanent if its
net reproduction rate is positive.

The only difference between (20) and (21) is whether the
dispersal rate 𝑑

12
is involved or not. Recall that 𝑑

12
(> 0) is

the dispersion rate of the prey 𝑥 from patch 1 to patch 2. It is
obvious that

𝐵
1
> 𝐵
2
, (22)

or equivalently

𝑟
11
− 𝐵
1
< 𝑟
11
− 𝐵
2
. (23)

This inequality shows that the net reproduction rate of
the prey in patch 1 is larger when dispersal corridors are
introduced.Hence, the existence of dispersal corridors for the
prey 𝑥 to migrate from patch 1 to patch 2 is helpful to the
permanence of the prey in patch 1. Moreover, if 𝑟

11
− 𝐵
1
> 0,

then 𝑟
11
− 𝐵
2
> 0 always holds; but if 𝑟

11
− 𝐵
2
> 0, then we

are not certain whether 𝑟
11
− 𝐵
1
> 0. In other words, with

the intrinsic growth rate 𝑟
11
of the prey 𝑥 in patch 1 keeping

the same value regardless of the existence or nonexistence of
dispersal corridors, if the prey in patch 1 can be permanent
without dispersal corridors, then it is also permanent in
patch 1 with dispersal corridors; but if the prey in patch 1
is permanent with dispersal corridors, it may or may not
be permanent without the dispersal corridors. In fact, the
population growth of the prey in patch 1 is density dependent;
hence, an appropriate dispersion from patch 1 to patch 2 may
counterbalance the effect of density dependency. Certainly
only the dispersion rate 𝑑

12
in an appropriate range is helpful

to the permanence of the prey in patch 1. If the dispersion
rate is too large, then the residence of the prey in patch 1 will
decrease to a very small number, which will lead to a decrease
in the intrinsic growth rate 𝑟

11
and will consequently increase

the value of 𝑎(1)
22
, the intraspecific competition strength of the

predator in patch 1, due to limited food sources. Hence, in the
case of large dispersion rate 𝑑

12
, the value of 𝐵

2
will decrease.

If the decrease in 𝑟
11

is larger than the decrease in 𝐵
2
, then

the net reproduction rate of the prey in patch 1 may decrease

and (21) may not hold; that is, the permanence of the prey in
patch 1 may not be guaranteed.

In summary, an appropriate degree of dispersion of the
prey from patch 1 to patch 2, measured by the dispersion
rate 𝑑

12
, is helpful to the permanence of the prey in patch 1.

Similar conclusion can be drawn in patch 2 by comparing the
condition (12) with (17). An appropriate dispersion rate 𝑑

21
of

the prey from patch 2 to patch 1 is helpful to the permanence
of the prey in patch 2.

4.2. Effects of Dispersal Corridors on the Permanence of the
Predator. We begin with conditions (10) and (16), which are
mainly concerned with the permanence of the predator 𝑦
in patch 1 under the situation of without or with dispersal
corridors. Rewrite (10) as

𝑟
21
< 𝑎
(1)

21
𝑚
1

= 𝑎
(1)

21

𝑟
11
− 𝑎
(1)

12
𝑀
1

𝑎
(1)

11

× exp [𝑟
11
− 𝑎
(1)

12
𝑀
1
− exp (𝑟

11
− 1)] ≜ 𝐵

3
,

(24)

and rewrite (16) as

𝑟
21
< 𝑎
(1)

21
𝑠
1

= 𝑎
(1)

21

𝑟
11
− 𝑎
(1)

12
𝑆
1

𝑎
(1)

11
+ 𝑑
12

× exp [𝑟
11
− 𝑎
(1)

12
𝑆
1
− exp (𝑟

11
− 1)] ≜ 𝐵

4
.

(25)

For convenience, we also list the expressions of 𝑀
1
and 𝑆

1

(refer to Theorems 2 and 5) as follows:

𝑀
1
=

1

𝑎
(1)

22

exp[−𝑟
21
+

𝑎
(1)

21

𝑎
(1)

11

exp (𝑟
11
− 1) − 1] ,

𝑆
1
=

1

𝑎
(1)

22

exp[−𝑟
21
+

𝑎
(1)

21

𝑎
(1)

11
+ 𝑑
12

exp (𝑟
11
− 1) − 1] .

(26)

On the left sides of (24) and (25), 𝑟
21
is the death rate of

the predator 𝑦 in patch 1. The right sides of (24) and (25) can
be understood as the positive contribution to the population
growth of the predator in patch 1 due to the predation.
Hence, (𝐵

3
− 𝑟
21
) and (𝐵

4
− 𝑟
21
) can be interpreted as the net

reproduction rates of the predator 𝑦 in patch 1 without or with
dispersal corridors, respectively. Consequently, the biological
interpretation of (24) or (25) is that the predator𝑦 in patch 1 is
permanent if its net reproduction rate is positive.

There are two “places” in (25) where the dispersal rate 𝑑
12

appears; one is in the denominator of 𝐵
4
, while another is

in the term 𝑆
1
. We will discuss the biological implications of

them. First, it is clear that the𝑑
12
that is explicit in the denom-

inator of (25) has a diminishing effect on 𝐵
4
. Therefore, this

dispersal rate in the denominator is disadvantageous to the
net reproduction rate of the population growth, further the
permanence, of the predator in patch 1. In fact, the migration
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of the prey frompatch 1 to patch 2, while the predator remains
fixed to patch 1, causes the decrease in the food sources of the
predator, which in turn is disadvantageous to the permanence
of the predator in patch 1.

Next, we consider the effect of the dispersal rate 𝑑
12
in the

term 𝑆
1
. It is obvious from (26) that 𝑆

1
< 𝑀
1
; thus

𝑟
11
− 𝑎
(1)

12
𝑆
1
> 𝑟
11
− 𝑎
(1)

12
𝑀
1
, (27)

or equivalently (see (20) and (21))

𝑟
11
− 𝐵
2
> 𝑟
11
− 𝐵
1
, (28)

which is exactly (23). We have observed earlier that the
net reproduction rate of the prey in patch 1 with dispersal
corridors is larger than that without dispersal corridors. In
the following, we continue to analyze how this larger net
reproduction rate of the prey in patch 1 impacts the net
reproduction rate of the predator in patch 1.

Consider the function 𝑔(𝑥) = 𝑥 exp(𝑥 − 𝑎) where 𝑎 >

0 in the interval (0, +∞). The derivative of 𝑔(𝑥) is 𝑔󸀠(𝑥) =
(1 + 𝑥) exp(𝑥 − 𝑎) > 0, so 𝑔(𝑥) is monotonically increasing in
(0, +∞). Thus, noting (27) we have

(𝑟
11
− 𝑎
(1)

12
𝑆
1
) exp [𝑟

11
− 𝑎
(1)

12
𝑆
1
− exp (𝑟

11
− 1)]

> (𝑟
11
− 𝑎
(1)

12
𝑀
1
) exp [𝑟

11
− 𝑎
(1)

12
𝑀
1
− exp (𝑟

11
− 1)] .

(29)

Noting the definitions of𝐵
3
and𝐵

4
, inequality (29) shows that

the dispersal rate 𝑑
12

which appeared in 𝑆
1
is advantageous

to the increase of the net reproduction rate of the predator
in patch 1, which in turn is helpful to the permanence of the
predator in patch 1. In fact, from (27) (or (23)) this dispersion
rate in 𝑆

1
increases the net reproduction rate of the prey in

patch 1, which consequently increases the food supply for the
predator in patch 1. As a result, this contributes positively to
the net reproduction rate of the predator in patch 1, which
further helps to sustain the permanence of the predator in
patch 1.

In summary, the effects of the dispersion of the prey from
patch 1 to patch 2, measured by the dispersal rate 𝑑

12
, on

the permanence of the predator in patch 1 are twofold: one
is disadvantageous—contributed by the presence of 𝑑

12
in

the denominator of 𝐵
4
, while the other is advantageous—

contributed by the presence of 𝑑
12

in 𝑆
1
. Similar conclusion

can be drawn in patch 2 by comparing the condition (13)
with (18). The dispersion of the prey from patch 2 to patch 1,
measured by the dispersal rate 𝑑

21
, has multiple effects, both

advantageous anddisadvantageous, on the permanence of the
predator in patch 2.

Remark 7. From the two sets of permanence conditions in
Theorems 4 and 5, no conclusion can be drawn on the effects
of 𝑑
21

on the permanence of the prey and the predator in
patch 1; also the effects of 𝑑

12
on the permanence of the prey

and the predator in patch 2 are unknown.
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Figure 1: Permanence of model (30).The black solid (dotted) line is
the population variation of the prey in patch 1 (patch 2). The green
solid (dotted) line is the population variation of the predator in patch
1 (patch 2).

5. Numerical Simulation

In this section, we present five numerical examples to confirm
the theoretical results obtained earlier as well as to illustrate
the effects of the dispersal corridors. All the examples are
processed byMATLAB.The first example below confirms the
correctness of Theorem 4.

Example 8. Consider the following predator-prey model (3)
in patchy environment without dispersal corridors:

𝑥
1
(𝑛 + 1) = 𝑥

1
(𝑛) exp [0.3 − 0.2𝑥

1
(𝑛) − 0.1𝑦

1
(𝑛)] ,

𝑦
1
(𝑛 + 1) = 𝑦

1
(𝑛) exp [−0.06 + 0.15𝑥

1
(𝑛) − 0.3𝑦

1
(𝑛)] ,

𝑥
2
(𝑛 + 1) = 𝑥

2
(𝑛) exp [0.32 − 0.21𝑥

2
(𝑛) − 0.1𝑦

2
(𝑛)] ,

𝑦
2
(𝑛 + 1) = 𝑦

2
(𝑛) exp [−0.07 + 0.14𝑥

2
(𝑛) − 0.29𝑦

2
(𝑛)] .

(30)

Direct computation gives

𝑟
11
− 𝑎
(1)

12
𝑀
1
= 0.1324 > 0, −𝑟

21
+ 𝑎
(1)

21
𝑚
1
= 0.0090 > 0,

𝑟
12
− 𝑎
(2)

12
𝑀
2
= 0.1524 > 0, −𝑟

22
+ 𝑎
(2)

21
𝑚
2
= 0.0023 > 0.

(31)

Hence, the conditions of Theorem 4 are all satisfied. By
Theorem 4, model (30) is permanent and this is illustrated in
Figure 1.

The next example illustrates Theorem 5.
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Example 9. Consider the following predator-prey model (4)
in patchy environment with dispersal corridors:

𝑥
1
(𝑛 + 1)

= 𝑥
1
(𝑛) exp [0.3 − 0.05𝑥

1
(𝑛) − 0.1𝑦

1
(𝑛)

−0.1𝑥
1
(𝑛) + 0.15𝑥

2
(𝑛)] ,

𝑦
1
(𝑛 + 1)

= 𝑦
1
(𝑛) exp [−0.07 + 0.15𝑥

1
(𝑛) − 0.3𝑦

1
(𝑛)

+ 0.15 ∗ 0.15𝑥
2
(𝑛)] ,

𝑥
2
(𝑛 + 1)

= 𝑥
2
(𝑛) exp [0.52 − 0.35𝑥

2
(𝑛) − 0.15𝑦

2
(𝑛)

+ 0.1𝑥
1
(𝑛) − 0.15𝑥

2
(𝑛)] ,

𝑦
2
(𝑛 + 1)

= 𝑦
2
(𝑛) exp [−0.08 + 0.3𝑥

2
(𝑛) − 0.25𝑦

2
(𝑛)

+ 0.3 ∗ 0.1𝑥
1
(𝑛)] .

(32)

In model (32), the dispersal rates are 𝑑
12

= 0.1 and 𝑑
21

=

0.15. Also, we set 𝛼 = 𝑎
(1)

21
= 0.15 and 𝛽 = 𝑎

(2)

21
= 0.3;

that is, we assume that the predation rate of the predator
on the prey which migrated from another patch is the same
as the predation rate on the prey originally in the patch. By
direct computation, we have all the conditions of Theorem 5
satisfied as follows:

𝑟
11
− 𝑎
(1)

12
𝑆
1
= 0.1121 > 0, −𝑟

21
+ 𝑎
(1)

21
𝑠
1
= 0.0063 > 0,

𝑟
12
− 𝑎
(2)

12
𝑆
2
= 0.2246 > 0, −𝑟

22
+ 𝑎
(2)

21
𝑠
2
= 0.0109 > 0.

(33)

Hence, by Theorem 5 model (32) is permanent. Figure 2
illustrates the permanence of model (32).

Next, we present an example to show that dispersal
corridors may be disadvantageous to the permanence of the
ecosystem.

Example 10. Consider the following two models:

𝑥
1
(𝑛 + 1) = 𝑥

1
(𝑛) exp [0.29 − 0.2𝑥

1
(𝑛) − 0.1𝑦

1
(𝑛)] ,

𝑦
1
(𝑛 + 1) = 𝑦

1
(𝑛) exp [−0.06 + 0.15𝑥

1
(𝑛) − 0.3𝑦

1
(𝑛)] ,

𝑥
2
(𝑛 + 1) = 𝑥

2
(𝑛) exp [0.32 − 0.21𝑥

2
(𝑛) − 0.1𝑦

2
(𝑛)] ,

𝑦
2
(𝑛 + 1) = 𝑦

2
(𝑛) exp [−0.07 + 0.14𝑥

2
(𝑛) − 0.29𝑦

2
(𝑛)] ,

(34)

𝑥
1
(𝑛 + 1) = 𝑥

1
(𝑛) exp [0.29 − 0.2𝑥

1
(𝑛) − 0.1𝑦

1
(𝑛)

−0.61𝑥
1
(𝑛)] ,

𝑦
1
(𝑛 + 1) = 𝑦

1
(𝑛) exp [−0.06 + 0.15𝑥

1
(𝑛) − 0.3𝑦

1
(𝑛)] ,
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Figure 2: Permanence of model (32).The black solid (dotted) line is
the population variation of the prey in patch 1 (patch 2). The green
solid (dotted) line is the population variation of the predator in patch
1 (patch 2).

𝑥
2
(𝑛 + 1) = 𝑥

2
(𝑛) exp [0.32 − 0.21𝑥

2
(𝑛) − 0.1𝑦

2
(𝑛)

+ 0.61𝑥
1
(𝑛)] ,

𝑦
2
(𝑛 + 1) = 𝑦

2
(𝑛) exp [−0.07 + 0.14𝑥

2
(𝑛) − 0.29𝑦

2
(𝑛)

+ 0.14 ∗ 0.61𝑥
1
(𝑛)] .

(35)

Thedifference between (34) and (35) is onlywhether dispersal
corridors exist or not; all other coefficients are the same.
Model (34) is without dispersal corridors, and a direct
computation shows that all the conditions of Theorem 4 are
satisfied as follows:

𝑟
11
− 𝑎
(1)

12
𝑀
1
= 0.1230 > 0, −𝑟

21
+ 𝑎
(1)

21
𝑚
1
= 0.0038 > 0,

𝑟
12
− 𝑎
(2)

12
𝑀
2
= 0.1542 > 0, −𝑟

22
+ 𝑎
(2)

21
𝑚
2
= 0.0023 > 0.

(36)

Hence, by Theorem 4 model (34) is permanent. Figure 3(a)
illustrates the permanence of model (34).

Model (35) has dispersal corridors with 𝑑
12
= 0.61, 𝑑

21
=

0, and𝛽 = 𝑎(2)
21

= 0.14. Checking the conditions ofTheorem 5,
we find

𝑟
11
− 𝑎
(1)

12
𝑆
1
= 0.1635 > 0, −𝑟

21
+ 𝑎
(1)

21
𝑠
1
= −0.0382 < 0,

𝑟
12
− 𝑎
(2)

12
𝑆
2
= 0.1542 > 0, −𝑟

22
+ 𝑎
(2)

21
𝑠
2
= 0.0023 > 0.

(37)

Hence, not all the conditions of Theorem 5 are satisfied and
we cannot ensure the permanence of model (35). In fact, by
numerical simulation we find that the predator in patch 1 is
driven to extinction and so model (35) is nonpermanent. This
is depicted in Figure 3(b).
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Figure 3:The dynamics of models (34) and (35). (a) is the dynamics of (34). It is observed that model (34) is permanent. (b) is the dynamics
of (35). It is observed that the predator in patch 1 is driven to extinction when dispersal corridors are introduced.The black solid (dotted) line
is the population variation of the prey in patch 1 (patch 2). The green solid (dotted) line is the population variation of the predator in patch 1
(patch 2).

This example shows that the dispersion of the prey
from patch 1 to patch 2 by the dispersal corridors may be
disadvantageous to the predator in patch 1, which has been
discussed in Section 4.2. Further, it is observed from the
above calculations that the introduction of 𝑑

12
increases the

net reproduction rate (𝑟
11
−𝑎
(1)

12
𝑆
1
) of the prey in patch 1 from

0.1230 to 0.1635, which has been noted in Section 4.1.
Next, we give an example to show that dispersal corridors

may be helpful to the permanence of the ecosystem.

Example 11. Consider the following two models:

𝑥
1
(𝑛 + 1) = 𝑥

1
(𝑛) exp [0.05 − 0.5𝑥

1
(𝑛) − 0.16𝑦

1
(𝑛)] ,

𝑦
1
(𝑛 + 1) = 𝑦

1
(𝑛) exp [−0.02 + 0.2𝑥

1
(𝑛) − 0.5𝑦

1
(𝑛)] ,

𝑥
2
(𝑛 + 1) = 𝑥

2
(𝑛) exp [0.52 − 0.35𝑥

2
(𝑛) − 0.15𝑦

2
(𝑛)] ,

𝑦
2
(𝑛 + 1) = 𝑦

2
(𝑛) exp [−0.08 + 0.3𝑥

2
(𝑛) − 0.25𝑦

2
(𝑛)] ,

(38)

𝑥
1
(𝑛 + 1) = 𝑥

1
(𝑛) exp [0.05 − 0.5𝑥

1
(𝑛) − 0.16𝑦

1
(𝑛)

−𝑑
12
𝑥
1
(𝑛) + 𝑑

21
𝑥
2
(𝑛)] ,

𝑦
1
(𝑛 + 1) = 𝑦

1
(𝑛) exp [−0.02 + 0.2𝑥

1
(𝑛) − 0.5𝑦

1
(𝑛)

+0.2 ∗ 𝑑
21
𝑥
2
(𝑛)] ,

𝑥
2
(𝑛 + 1) = 𝑥

2
(𝑛) exp [0.52 − 0.35𝑥

2
(𝑛) − 0.15𝑦

2
(𝑛)

+ 𝑑
12
𝑥
1
(𝑛) − 𝑑

21
𝑥
2
(𝑛)] ,

𝑦
2
(𝑛 + 1) = 𝑦

2
(𝑛) exp [−0.08 + 0.3𝑥

2
(𝑛) − 0.25𝑦

2
(𝑛)

+ 0.3 ∗ 𝑑
12
𝑥
1
(𝑛)] .

(39)

The difference between (38) and (39) is only whether dis-
persal corridors exist or not; all other coefficients are the
same. Model (38) is without dispersal corridors, and a direct
computation yields

𝑟
11
− 𝑎
(1)

12
𝑀
1
= −0.0847 < 0, −𝑟

21
+ 𝑎
(1)

21
𝑚
1
= −0.0411 < 0,

𝑟
12
− 𝑎
(2)

12
𝑀
2
= 0.1737 > 0, −𝑟

22
+ 𝑎
(2)

21
𝑚
2
= 0.0154 > 0.

(40)

Hence, not all the conditions of Theorem 4 are satisfied and
we cannot guarantee the permanence of (38). Indeed, by
numerical simulation it is found that the predator in patch
1 will be driven to extinction. So model (38) is nonpermanent
and this is illustrated in Figure 4(a).

Model (39) has dispersal corridors with 𝑑
12
> 0, 𝑑

21
> 0,

𝛼 = 𝑎
(1)

21
= 0.2, and 𝛽 = 𝑎(2)

21
= 0.3. Suppose

𝑑
12
= 0.55, 𝑑

21
= 0.21. (41)

By numerical simulation we find that the predator in patch 1
is now permanent, and model (39), as a whole, is permanent.
This is depicted in Figure 4(b). Note, however, that model
(39) does not satisfy some of the conditions of Theorem 5, as

𝑟
11
− 𝑎
(1)

12
𝑆
1
= −0.0742 < 0, −𝑟

21
+ 𝑎
(1)

21
𝑠
1
= −0.0289 < 0,

𝑟
12
− 𝑎
(2)

12
𝑆
2
= 0.2362 > 0, −𝑟

22
+ 𝑎
(2)

21
𝑠
2
= 0.0063 > 0.

(42)

This simply reinforces the fact that the conditions in
Theorem 5 are sufficient conditions.

We observe that the introduction of dispersal corridors
leads to (i) an increase in the net reproduction rates of both
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Figure 4: The dynamics of models (38) and (39) subject to (41). (a) is the dynamics of (38). It is observed that the predator in patch 1 will go
to extinction. (b) is the dynamics of (39). It is observed that the predator in patch 1 is permanent now due to the dispersal corridors, and (39),
as a whole, is permanent. The black solid (dotted) line is the population variation of the prey in patch 1 (patch 2). The green solid (dotted)
line is the population variation of the predator in patch 1 (patch 2).

Table 2: Net reproduction rates and the permanence of model (39) under different dispersal rates.

Dispersal rates 𝑅
𝑥

1
𝑅
𝑦

1
𝑅
𝑥

2
𝑅
𝑦

2
Permanence of model (39)

𝑑
12
= 0, 𝑑

21
= 0 −0.0847 −0.0411 0.1737 0.0154 No, predator in patch 1 is extinct

𝑑
12
= 0.18, 𝑑

21
= 0 −0.0793 −0.0346 0.1737 0.0154 No, predator in patch 1 is extinct

𝑑
12
= 0.36, 𝑑

21
= 0 −0.0762 −0.0312 0.1737 0.0154 No, predator in patch 1 is extinct

𝑑
12
= 0.55, 𝑑

21
= 0 −0.0742 −0.0289 0.1737 0.0154 No, predator in patch 1 is extinct

𝑑
12
= 1, 𝑑

21
= 0 −0.0715 −0.0260 0.1737 0.0154 No, predator in patch 1 is extinct

𝑑
12
= 0.55, 𝑑

21
= 0.02 −0.0742 −0.0289 0.1835 0.0163 No, predator in patch 1 is extinct

𝑑
12
= 0.55, 𝑑

21
= 0.07 −0.0742 −0.0289 0.2030 0.0157 Yes

𝑑
12
= 0.55, 𝑑

21
= 0.14 −0.0742 −0.0289 0.2224 0.0116 Yes

𝑑
12
= 0.55, 𝑑

21
= 0.21 −0.0742 −0.0289 0.2362 0.0063 Yes

𝑑
12
= 0.55, 𝑑

21
= 0.28 −0.0742 −0.0289 0.2464 0.00086 Yes

the prey and the predator in patch 1 as well as the prey in
patch 2 and (ii) a decrease in the net reproduction rate of
the predator in patch 2.The overall effect on the permanence
of model (39) is positive. This example shows that the
introduction of dispersal corridors to a patchy ecosystemmay
be advantageous to the permanence of the ecosystem.

We will further investigate the effects of dispersal corri-
dors onmodel (39). For this, in Table 2, for different values of
𝑑
12
and 𝑑

21
we list the net reproduction rate 𝑅𝑥

𝑖
of the prey 𝑥

in patch 𝑖, the net reproduction rate 𝑅𝑦
𝑖
of the predator 𝑦 in

patch 𝑖, 𝑖 ∈ {1, 2}, and the permanence status of model (39).
Recall that, for a model with dispersal corridors,

𝑅
𝑥

1
= 𝑟
11
− 𝑎
(1)

12
𝑆
1
, 𝑅

𝑦

1
= −𝑟
21
+ 𝑎
(1)

21
𝑠
1
,

𝑅
𝑥

2
= 𝑟
12
− 𝑎
(2)

12
𝑆
2
, 𝑅

𝑦

2
= −𝑟
22
+ 𝑎
(2)

21
𝑠
2
.

(43)

From Table 2, we observe the following.
(a) The effect of dispersal corridors on the net reproduc-

tion rate of prey is positive; specifically, 𝑅𝑥
1
increases

as 𝑑
12
increases and𝑅𝑥

2
increases as 𝑑

21
increases.This

coincides with the discussion in Section 4.1.
(b) The effects of dispersal corridors on the net repro-

duction rate of predator are twofold: advantageous
and disadvantageous. For a fixed 𝑑

12
= 0.55, 𝑅𝑦

2

first increases and then decreases as the value of 𝑑
21

increases from 0 to 0.28.
(c) The entire ecosystem cannot be permanent by the

sole effect of 𝑑
12

(i.e., 𝑑
21

= 0). If the value of
𝑑
12

increases to sufficiently large, even the prey in
patch 1 will undergo extinction due to unpredicted
environmental changes, as the population density of
the prey in patch 1 will become very small. If the prey
in patch 1 becomes extinct, so will the predator in
patch 1, since there are no food sources.

(d) Noting (c) above, we further observe that the ecosys-
tem is also nonpermanent if𝑑

21
is too small; an appro-

priate value of 𝑑
21

is needed to induce a permanent
(39).
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So far equilibrium dynamics have been observed in
Examples 8–11. Since it is well known that Ricker type
model has complex dynamics, we give an example with more
complex dynamics to illustrate our results.

Example 12. Consider the following two models:

𝑥
1
(𝑛 + 1) = 𝑥

1
(𝑛) exp [2.4 − 0.2𝑥

1
(𝑛) − 0.1𝑦

1
(𝑛)] ,

𝑦
1
(𝑛 + 1) = 𝑦

1
(𝑛) exp [−0.1 + 0.15𝑥

1
(𝑛) − 0.3𝑦

1
(𝑛)] ,

𝑥
2
(𝑛 + 1) = 𝑥

2
(𝑛) exp [0.4 − 0.21𝑥

2
(𝑛) − 0.1𝑦

2
(𝑛)] ,

𝑦
2
(𝑛 + 1) = 𝑦

2
(𝑛) exp [−0.07 + 0.14𝑥

2
(𝑛) − 0.69𝑦

2
(𝑛)] ,

(44)

𝑥
1
(𝑛 + 1) = 𝑥

1
(𝑛) exp [2.4 − 0.2𝑥

1
(𝑛) − 0.1𝑦

1
(𝑛)

+ 0.6𝑥
2
(𝑛)] ,

𝑦
1
(𝑛 + 1) = 𝑦

1
(𝑛) exp [−0.1 + 0.15𝑥

1
(𝑛) − 0.3𝑦

1
(𝑛)

+ 0.15 ∗ 0.6𝑥
2
(𝑛)] ,

𝑥
2
(𝑛 + 1) = 𝑥

2
(𝑛) exp [0.4 − 0.21𝑥

2
(𝑛) − 0.1𝑦

2
(𝑛)

− 0.6𝑥
2
(𝑛)] ,

𝑦
2
(𝑛 + 1) = 𝑦

2
(𝑛) exp [−0.07 + 0.14𝑥

2
(𝑛) − 0.69𝑦

2
(𝑛)] .

(45)

The difference between (44) and (45) is only whether dis-
persal corridors exist or not; all other coefficients are the
same. Model (44) is without dispersal corridors, and a direct
computation yields

𝑟
11
− 𝑎
(1)

12
𝑀
1
= 0.0772 > 0, −𝑟

21
+ 𝑎
(1)

21
𝑚
1
= −0.0989 < 0,

𝑟
12
− 𝑎
(2)

12
𝑀
2
= 0.3283 > 0, −𝑟

22
+ 𝑎
(2)

21
𝑚
2
= 0.1056 > 0.

(46)

Though not all the conditions of Theorem 4 are satisfied,
model (44) is permanent which is illustrated in Figure 5(a). It
is observed fromFigure 5(a) that the subsystem of patch 2 has
a stable positive equilibrium while the subsystem of patch 1
does not have such stable equilibrium though it is permanent.
Further illustration of this subsystem of patch 1 is given in
Figure 5(b). Figure 5(b) is the phase diagram of (𝑥

1
, 𝑦
1
) and

it is observed that the subsystem of patch 1 of model (44)
has a periodic solution of period 3. In fact, the periodic
solution is (𝑥

1
, 𝑦
1
) = (18.7232, 1.1061), (4.3689, 11.9115),

(6.1079, 0.5824).
Model (45) has dispersal corridors with 𝑑

21
= 0.6, 𝑑

12
=

0, and 𝛼 = 𝑎
(1)

21
= 0.15. The net reproduction rates are

computed as follows:

𝑟
11
− 𝑎
(1)

12
𝑆
1
= 0.0772 > 0, −𝑟

21
+ 𝑎
(1)

21
𝑠
1
= −0.0989 < 0,

𝑟
12
− 𝑎
(2)

12
𝑆
2
= 0.3453 > 0, −𝑟

22
+ 𝑎
(2)

21
𝑠
2
= −0.0213 < 0.

(47)

The dynamics of (45) are presented in Figure 6(a). It is
observed that the predator in patch 2 will become extinct

and consequently model (45) is not permanent. Figure 6(b)
illustrates that the periodic solution observed in the sub-
system of patch 1 of model (44) now vanishes due to the
dispersion.

Comparing (46) and (47), we observe that when 𝑑
21

>

0, (i) the net reproduction rate of the prey in patch 2
increases, which has been noted in Section 4.1 and (ii) the
net reproduction rate of the predator in patch 2 decreases its
value from positive to negative; this shows that the dispersion
of the prey from patch 2 to patch 1 has an adverse effect
on the permanence of the predator in patch 2, which has
been discussed in Section 4.2. This example shows that large
dispersal rates of the prey may destroy the permanence of a
predator-prey system.

6. Conclusion

The paper is mainly involved with the effects of dispersal cor-
ridors on the permanence of discrete predator-prey models
in patchy environment. We have introduced two models of
Ricker type undergoing the effect of density dependency—
model (3) is in patchy environment without dispersal cor-
ridors and model (4) is with dispersal corridors. Two sets
of sufficient conditions to guarantee the permanence of the
two models are then obtained through theoretical studies,
respectively. In Theorem 4, conditions (9)–(13) guarantee
the permanence of model (3); this result is illustrated by
Example 8. In Theorem 5, conditions (15)–(18) ensure the
permanence of model (4); this result is also numerically
illustrated by Example 9.

Through mathematical analysis of the two sets of suffi-
cient conditions, combined with the actual biological back-
ground of models (3) and (4), we have discussed the effects of
dispersal corridors on the permanence of discrete predator-
prey model. It is found that the existence of dispersal
corridors for the prey to migrate, such as from patch 𝑖 to
patch 𝑗, while the predator remains fixed to the original patch,
is helpful to the permanence of the prey in patch 𝑖 under
density dependent circumstances due to an increased net
reproduction rate of the prey in patch 𝑖. Moreover, it is also
found that themigration of prey, such as from patch 𝑖 to patch
𝑗, is both advantageous and disadvantageous to the predator
in patch 𝑖 because the dispersal rate 𝑑

𝑖𝑗
has both positive and

negative effects on the net reproduction rate of the predator
in patch 𝑖. Examples 10–12 are presented to illustrate the
positive/negative effects of the dispersal corridors.

Appendix

In this section, we present the proofs of Theorems 2, 4, and
5. First we state a lemma which is useful in proving the
theorems; this lemma is the autonomous case of Lemma 2 in
[43].

Lemma 13. Suppose {𝑧(𝑘)} satisfies
𝑧 (𝑘 + 1) ≥ 𝑧 (𝑘) exp [𝑟 − 𝑎𝑧 (𝑘)] , (A.1)

for 𝑘 ≥ 𝐾, where 𝑎 and 𝑟 are positive constants, 𝐾 is
a positive integer, and 𝑧(𝐾) > 0. Further, assume that
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Figure 5:The dynamics of model (44). (a) is the dynamics of (44). It is observed that model (44) is permanent.The subsystem of patch 2 has
a stable positive equilibrium, while oscillating population densities for both the prey and the predator are observed in the subsystem of patch
1. (b) is the dynamics of the subsystem of patch 1 illustrated in the phase diagram (𝑥

1
, 𝑦
1
). A periodic solution of period 3 is observed.
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Figure 6: The dynamics of model (45). (a) is the dynamics of (45). It is observed that the predator in patch 2 will become extinct due to the
dispersal corridors, and (45), as a whole, is not permanent. (b) is the dynamics of the subsystem of patch 1 illustrated in the phase diagram
(𝑥
1
, 𝑦
1
). The periodic solution in Figure 5(b) vanishes due to dispersion.
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lim sup
𝑘→+∞

𝑧(𝑘) ≤ 𝐴 and 𝑎𝐴/𝑟 > 1, where A is a positive
constant. Then,

lim inf
𝑘→+∞

𝑧 (𝑘) ≥

𝑟

𝑎

exp (𝑟 − 𝑎𝐴) . (A.2)

Proof of Theorem 2. We will first establish the first inequality
in Definition 1. To begin, from the first equation of (7) we
have

𝑥
1
(𝑛 + 1) ≤ 𝑥

1
(𝑛) exp (𝑟

11
− 𝑎
(1)

11
𝑥
1
(𝑛)) . (A.3)

It is straightforward that themaximumof the function 𝑧(𝑥) =
𝑥 exp(𝑟 − 𝑎𝑥) where 𝑎 > 0 in the interval [0, +∞) is 𝑧max =
(1/𝑎) exp(𝑟 − 1). Therefore, it follows from (A.3) that

lim sup
𝑛→+∞

𝑥
1
(𝑛) ≤

1

𝑎
(1)

11

exp (𝑟
11
− 1) ≜ 𝐴

1
. (A.4)

Let 𝜖 > 0 be arbitrarily given. From (A.4), there exists a
positive integer𝑁

1
such that

𝑥
1
(𝑛) ≤ 𝐴

1
+ 𝜖, 𝑛 > 𝑁

1
. (A.5)

Using (A.5) in the second equation of (7) gives

𝑦
1
(𝑛 + 1) ≤ 𝑦

1
(𝑛) exp [−𝑟

21
+ 𝑎
(1)

21
(𝐴
1
+ 𝜖) − 𝑎

(1)

22
𝑦
1
(𝑛)] ,

𝑛 > 𝑁
1
.

(A.6)

Hence, using the maximum of 𝑧(𝑥) = 𝑥 exp(𝑟−𝑎𝑥) as earlier,
we obtain

lim sup
𝑛→+∞

𝑦
1
(𝑛) ≤

1

𝑎
(1)

22

exp [−𝑟
21
+ 𝑎
(1)

21
(𝐴
1
+ 𝜖) − 1] . (A.7)

Since 𝜖 is arbitrary, letting 𝜖 → 0 in (A.7) yields

lim sup
𝑛→+∞

𝑦
1
(𝑛) ≤

1

𝑎
(1)

22

exp [−𝑟
21
+ 𝑎
(1)

21
𝐴
1
− 1] ≜ 𝑀

1
. (A.8)

Now, in view of inequality (9), we can choose 𝜖
1
> 0 such

that

𝑟
11
− 𝑎
(1)

12
(𝑀
1
+ 𝜖
1
) > 0. (A.9)

Further, noting (A.8) we have from the first equation of (7)

𝑥
1
(𝑛 + 1) ≥ 𝑥

1
(𝑛) exp [𝑟

11
− 𝑎
(1)

11
𝑥
1
(𝑛) − 𝑎

(1)

12
(𝑀
1
+ 𝜖
1
)] ,

(A.10)

for sufficiently large 𝑛. Using the inequality exp(𝑥 − 1) ≥ 𝑥

which holds for 𝑥 > 0, together with the definition of𝐴
1
(see

(A.4)), we find

𝑎
(1)

11
𝐴
1
= exp (𝑟

11
− 1) ≥ 𝑟

11
> 𝑟
11
− 𝑎
(1)

12
(𝑀
1
+ 𝜖
1
) > 0,

(A.11)

or

𝑎
(1)

11
𝐴
1

𝑟
11
− 𝑎
(1)

12
(𝑀
1
+ 𝜖
1
)

> 1. (A.12)

Inequalities (A.4) and (A.12) imply that Lemma 13 can be
applied to (A.10). Thus, we have

lim inf
𝑛→+∞

𝑥
1
(𝑛)

≥

𝑟
11
− 𝑎
(1)

12
(𝑀
1
+ 𝜖
1
)

𝑎
(1)

11

exp [𝑟
11
− 𝑎
(1)

12
(𝑀
1
+ 𝜖
1
) − 𝑎
(1)

11
𝐴
1
] .

(A.13)

Again let 𝜖
1
→ 0 in (A.13) and it follows that

lim inf
𝑛→+∞

𝑥
1
(𝑛)

≥

𝑟
11
− 𝑎
(1)

12
𝑀
1

𝑎
(1)

11

exp [𝑟
11
− 𝑎
(1)

12
𝑀
1
− 𝑎
(1)

11
𝐴
1
] ≜ 𝑚

1
.

(A.14)

It is clear from (9) that𝑚
1
> 0.

We will further show that 𝑚
1
< 𝐴
1
. From the derivation

of (A.12), we have

𝑎
(1)

11
𝐴
1
> 𝑟
11
− 𝑎
(1)

12
𝑀
1
; (A.15)

that is, 𝑟
11
− 𝑎
(1)

12
𝑀
1
− 𝑎
(1)

11
𝐴
1
< 0, and so

exp [𝑟
11
− 𝑎
(1)

12
𝑀
1
− 𝑎
(1)

11
𝐴
1
] < 1. (A.16)

Therefore, from the definition of𝑚
1
(see (A.14)) we find

𝑚
1
=

𝑟
11
− 𝑎
(1)

12
𝑀
1

𝑎
(1)

11

exp [𝑟
11
− 𝑎
(1)

12
𝑀
1
− 𝑎
(1)

11
𝐴
1
]

<

𝑟
11
− 𝑎
(1)

12
𝑀
1

𝑎
(1)

11

<

𝑎
(1)

11
𝐴
1

𝑎
(1)

11

= 𝐴
1
.

(A.17)

In summary, combining (A.4), (A.14), and (A.17) we get

0 < 𝑚
1
≤ lim inf
𝑛→+∞

𝑥
1
(𝑛) ≤ lim sup

𝑛→+∞

𝑥
1
(𝑛) ≤ 𝐴

1
. (A.18)

In the following, we will establish the second inequality
in Definition 1. In fact, we will prove that there exists𝑚

3
> 0

such that

lim inf
𝑛→+∞

𝑦
1
(𝑛) ≥ 𝑚

3
. (A.19)

Recalling that 𝑚
1
> 0 and noting inequality (10), we can

choose 𝜖
2
> 0 sufficiently small such that 𝑚

1
− 𝜖
2
> 0 and

−𝑟
21
+𝑎
(1)

21
(𝑚
1
−𝜖
2
) > 0. From the second equation of (7) and

(A.14), we have

𝑦
1
(𝑛 + 1) ≥ 𝑦

1
(𝑛) exp [−𝑟

21
+ 𝑎
(1)

21
(𝑚
1
− 𝜖
2
) − 𝑎
(1)

22
𝑦
1
(𝑛)] ,

(A.20)

for sufficiently large 𝑛. Using the inequality exp(𝑥 − 1) ≥ 𝑥

which holds, for 𝑥 > 0, and the fact that𝑚
1
< 𝐴
1
, we find

𝑎
(1)

22
𝑀
1
= exp (−𝑟

21
+ 𝑎
(1)

21
𝐴
1
− 1)

≥ −𝑟
21
+ 𝑎
(1)

21
𝐴
1
> −𝑟
21
+ 𝑎
(1)

21
𝑚
1

> −𝑟
21
+ 𝑎
(1)

21
(𝑚
1
− 𝜖
2
) > 0.

(A.21)
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Hence,

𝑎
(1)

22
𝑀
1

−𝑟
21
+ 𝑎
(1)

21
(𝑚
1
− 𝜖
2
)

> 1, (A.22)

which, together with (A.8), indicates that we can apply
Lemma 13 to (A.20) to give

lim inf
𝑛→+∞

𝑦
1
(𝑛)

≥

−𝑟
21
+ 𝑎
(1)

21
(𝑚
1
− 𝜖
2
)

𝑎
(1)

22

× exp (−𝑟
21
+ 𝑎
(1)

21
(𝑚
1
− 𝜖
2
) − 𝑎
(1)

22
𝑀
1
) .

(A.23)

Letting 𝜖
2
→ 0, we get

lim inf
𝑛→+∞

𝑦
1
(𝑛)

≥

−𝑟
21
+ 𝑎
(1)

21
𝑚
1

𝑎
(1)

22

exp (−𝑟
21
+ 𝑎
(1)

21
𝑚
1
− 𝑎
(1)

22
𝑀
1
) ≜ 𝑚

3
.

(A.24)

It is obvious from (10) that𝑚
3
> 0.

We will further show that𝑚
3
< 𝑀
1
. From (A.21), we have

−𝑟
21
+ 𝑎
(1)

21
𝑚
1
− 𝑎
(1)

22
𝑀
1
< 0, (A.25)

and so

𝑚
3
=

−𝑟
21
+ 𝑎
(1)

21
𝑚
1

𝑎
(1)

22

exp (−𝑟
21
+ 𝑎
(1)

21
𝑚
1
− 𝑎
(1)

22
𝑀
1
)

<

−𝑟
21
+ 𝑎
(1)

21
𝑚
1

𝑎
(1)

22

<

𝑎
(1)

22
𝑀
1

𝑎
(1)

22

= 𝑀
1
.

(A.26)

Combining (A.8), (A.24), and (A.26), we get

0 < 𝑚
3
≤ lim inf
𝑛→+∞

𝑦
1
(𝑛) ≤ lim sup

𝑛→+∞

𝑦
1
(𝑛) ≤ 𝑀

1
. (A.27)

In view of (A.18) and (A.27), we have obtained both
inequalities in Definition 1 and so the permanence of model
(7) with initial values (8) is established. This completes the
proof of Theorem 2.

Proof of Theorem 4. Using a similar argument as in the proof
of Theorem 2, we see that, under the assumptions (12) and
(13), the following model

𝑥
2
(𝑛 + 1) = 𝑥

2
(𝑛) exp [𝑟

12
− 𝑎
(2)

11
𝑥
2
(𝑛) − 𝑎

(2)

12
𝑦
2
(𝑛)] ,

𝑦
2
(𝑛 + 1) = 𝑦

2
(𝑛) exp [−𝑟

22
+ 𝑎
(2)

21
𝑥
2
(𝑛) − 𝑎

(2)

22
𝑦
2
(𝑛)]

(A.28)

with initial values 𝑥
2
(0) = 𝑥

2
> 0, 𝑦

2
(0) = 𝑦

2
> 0 is

permanent. In fact, analogous to (A.18) and (A.27), we have

0 < 𝑚
2
≤ lim inf
𝑛→+∞

𝑥
2
(𝑛) ≤ lim sup

𝑛→+∞

𝑥
2
(𝑛) ≤ 𝐴

2
,

0 < 𝑚
4
≤ lim inf
𝑛→+∞

𝑦
2
(𝑛) ≤ lim sup

𝑛→+∞

𝑦
2
(𝑛) ≤ 𝑀

2
,

(A.29)

where𝑚
2
, 𝐴
2
, and𝑀

2
are given inTheorem 4 and

𝑚
4
=

−𝑟
22
+ 𝑎
(2)

21
𝑚
2

𝑎
(2)

22

exp (−𝑟
22
+ 𝑎
(2)

21
𝑚
2
− 𝑎
(2)

22
𝑀
2
) . (A.30)

Coupling with Theorem 2, the permanence of model (3)
with initial values (5) follows immediately.This completes the
proof of Theorem 4.

Proof of Theorem 5. Consider the following auxiliary system:

𝑢 (𝑛 + 1) = 𝑢 (𝑛) exp [𝑟
11
− 𝑎
(1)

11
𝑢 (𝑛) − 𝑎

(1)

12
V (𝑛) − 𝑑

12
𝑢 (𝑛)] ,

V (𝑛 + 1) = V (𝑛) exp [−𝑟
21
+ 𝑎
(1)

21
𝑢 (𝑛) − 𝑎

(1)

22
V (𝑛)]

(A.31)

with initial values 𝑢(0) = 𝑥
1
> 0, V(0) = 𝑦

1
> 0.

Comparing (7) and (A.31), it follows fromTheorem 2 that
model (A.31) is permanent under conditions (15) and (16).
Therefore, there exist positive constants 𝑚(1)

1
and 𝑚(2)

1
such

that

lim inf
𝑛→+∞

𝑢 (𝑛) ≥ 𝑚
(1)

1
, lim inf

𝑛→+∞
V (𝑛) ≥ 𝑚(2)

1
. (A.32)

From the first two equations of (4), it is clear that, for any
𝑛 ∈ N, whereN represents the set of all positive integers, we
have 𝑥

1
(𝑛) ≥ 𝑢(𝑛) and 𝑦

1
(𝑛) ≥ V(𝑛). Hence,

lim inf
𝑛→+∞

𝑥
1
(𝑛) ≥ lim inf

𝑛→+∞
𝑢 (𝑛) ≥ 𝑚

(1)

1
,

lim inf
𝑛→+∞

𝑦
1
(𝑛) ≥ lim inf

𝑛→+∞
V (𝑛) ≥ 𝑚(2)

1
.

(A.33)

Next, we consider the following auxiliary system:

𝑝 (𝑛 + 1) = 𝑝 (𝑛) exp [𝑟
12
− 𝑎
(2)

11
𝑝 (𝑛) − 𝑎

(2)

12
𝑞 (𝑛) − 𝑑

21
𝑝 (𝑛)] ,

𝑞 (𝑛 + 1) = 𝑞 (𝑛) exp [−𝑟
22
+ 𝑎
(2)

21
𝑝 (𝑛) − 𝑎

(2)

22
𝑞 (𝑛)]

(A.34)

with initial values 𝑝(0) = 𝑥
2
> 0, 𝑞(0) = 𝑦

2
> 0. By a similar

argument as above, we see that (A.34) is permanent under
conditions (17) and (18). Thus, there exist positive constants
𝑚
(1)

2
and𝑚(2)

2
such that

lim inf
𝑛→+∞

𝑝 (𝑛) ≥ 𝑚
(1)

2
, lim inf

𝑛→+∞
𝑞 (𝑛) ≥ 𝑚

(2)

2
. (A.35)

In view of the last two equations of (4), we have 𝑥
2
(𝑛) ≥ 𝑝(𝑛)

and 𝑦
2
(𝑛) ≥ 𝑞(𝑛), for any 𝑛 ∈ N. It follows that

lim inf
𝑛→+∞

𝑥
2
(𝑛) ≥ lim inf

𝑛→+∞
𝑝 (𝑛) ≥ 𝑚

(1)

2
,

lim inf
𝑛→+∞

𝑦
2
(𝑛) ≥ lim inf

𝑛→+∞
𝑞 (𝑛) ≥ 𝑚

(2)

2
.

(A.36)

To complete the proof, in the following we will prove that
there exist positive constants𝑀(𝑗)

𝑖
, 𝑖, 𝑗 ∈ {1, 2}, such that

lim sup
𝑛→+∞

𝑥
1
(𝑛) ≤ 𝑀

(1)

1
, lim sup

𝑛→+∞

𝑦
1
(𝑛) ≤ 𝑀

(2)

1
,

lim sup
𝑛→+∞

𝑥
2
(𝑛) ≤ 𝑀

(1)

2
, lim sup

𝑛→+∞

𝑦
2
(𝑛) ≤ 𝑀

(2)

2
.

(A.37)
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Suppose the contrary; there exists no such 𝑀(1)
1

> 0 to
satisfy lim sup

𝑛→+∞
𝑥
1
(𝑛) ≤ 𝑀

(1)

1
, and then we can select a

subsequence {𝑥
1
(𝑛
𝑘
)}
∞

𝑘=1
such that

lim
𝑘→+∞

𝑥
1
(𝑛
𝑘
) = +∞. (A.38)

Multiplying the first equation with the third equation of (4),
we get

𝑥
1
(𝑛 + 1) 𝑥

2
(𝑛 + 1)

= 𝑥
1
(𝑛) 𝑥
2
(𝑛) exp [𝑟

11
+ 𝑟
12
− 𝑎
(1)

11
𝑥
1
(𝑛) − 𝑎

(1)

12
𝑦
1
(𝑛)

−𝑎
(2)

11
𝑥
2
(𝑛) − 𝑎

(2)

12
𝑦
2
(𝑛)]

≤ 𝑥
1
(𝑛) 𝑥
2
(𝑛) exp [𝑟

11
+ 𝑟
12
− 𝑎
(1)

11
𝑥
1
(𝑛) − 𝑎

(2)

11
𝑥
2
(𝑛)] .

(A.39)

Note that the two-variable function𝑓(𝑥, 𝑦) = 𝑥𝑦 exp(𝑎−𝑏𝑥−
𝑐𝑦) is a bounded function in the first quadrant {(𝑥, 𝑦) | 𝑥 >

0, 𝑦 > 0} provided that 𝑎, 𝑏, 𝑐 > 0. Hence, it follows from
(A.39) that lim sup

𝑛→+∞
𝑥
1
(𝑛)𝑥
2
(𝑛) is finite. Noting (A.38),

this implies lim
𝑘→+∞

𝑥
2
(𝑛
𝑘
) = 0, which is a contradiction to

(A.36). This shows that lim sup
𝑛→+∞

𝑥
1
(𝑛) ≤ 𝑀

(1)

1
. Similarly,

we can prove that lim sup
𝑛→+∞

𝑥
2
(𝑛) ≤ 𝑀

(1)

2
. Summarizing,

we have established the following inequalities:

lim sup
𝑛→+∞

𝑥
1
(𝑛) ≤ 𝑀

(1)

1
, lim sup

𝑛→+∞

𝑥
2
(𝑛) ≤ 𝑀

(1)

2
. (A.40)

Now, from the second equation of (4) and (A.40), we
have, for sufficiently small 𝜖

3
> 0,

𝑦
1
(𝑛 + 1)

≤ 𝑦
1
(𝑛) exp [−𝑟

21
+ 𝑎
(1)

21
(𝑀
(1)

1
+ 𝜖
3
) − 𝑎
(1)

22
𝑦
1
(𝑛)

+𝛼𝑑
21
(𝑀
(1)

2
+ 𝜖
3
)] ,

(A.41)

for sufficiently large 𝑛. Noting that the maximum of the
function 𝑧(𝑥) = 𝑥 exp(𝑟 − 𝑎𝑥) where 𝑎 > 0 in the interval
[0, +∞) is 𝑧max = (1/𝑎) exp(𝑟 − 1), it follows from (A.41) that

lim sup
𝑛→+∞

𝑦
1
(𝑛)

≤

1

𝑎
(1)

22

exp [−𝑟
21
+ 𝑎
(1)

21
(𝑀
(1)

1
+ 𝜖
3
) + 𝛼𝑑

21
(𝑀
(1)

2
+ 𝜖
3
) − 1] .

(A.42)

Letting 𝜖
3
→ 0 in the above inequality, we obtain

lim sup
𝑛→+∞

𝑦
1
(𝑛)

≤

1

𝑎
(1)

22

exp [−𝑟
21
+ 𝑎
(1)

21
𝑀
(1)

1
+ 𝛼𝑑
21
𝑀
(1)

2
− 1] ≜ 𝑀

(2)

1
.

(A.43)

Likewise, a similar deduction as above gives

lim sup
𝑛→+∞

𝑦
2
(𝑛)

≤

1

𝑎
(2)

22

exp [−𝑟
22
+ 𝑎
(2)

21
𝑀
(1)

2
+ 𝛽𝑑
12
𝑀
(1)

1
− 1] ≜ 𝑀

(2)

2
.

(A.44)

Combining (A.40), (A.43), and (A.44), we have shown
that (A.37) holds. The permanence of model (4) with initial
values (5) now follows from (A.33), (A.36), and (A.37). This
completes the proof of Theorem 5.
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