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We give a consistent discretization of a continuous model of HIV infection, with distributed time delays to express the lag between
the times when the virus enters a cell and when the cell becomes infected. The global stability of the steady states of the model is
determined and numerical simulations are presented to illustrate our theoretical results.

1. Introduction

Nowadays, human immunodeficiency virus (HIV) that
causes acquired immunodeficiency syndrome (AIDS) is a
major health problem worldwide. From the World Health
Organization (WHO), more than 35 million people are living
with HIV/AIDS, and 1.6 million people died of this disease
in 2012 [1]. Recent studies have been developed to know
the dynamics of HIV infection, such as [2–9]. All these
studies are based on continuous mathematical models. In
reality, the statistical data are collected in discrete time, and
the numerical simulations of continuous-time models are
obtained by discretizing the models.

In this paper, we consider the model presented in [9] and
we ignore the effect of the adaptive immune response. This
model becomes as follows:

𝑥̇ (𝑡) = 𝜆 − 𝑑𝑥 (𝑡) − 𝛽𝑥 (𝑡) V (𝑡) ,

̇𝑦 (𝑡) = 𝛽∫

𝜃

0

𝑓 (𝜏) 𝑒

−𝑚𝜏
𝑥 (𝑡 − 𝜏) V (𝑡 − 𝜏) 𝑑𝜏 − 𝑎𝑦 (𝑡) ,

V̇ (𝑡) = 𝑘𝑦 (𝑡) − 𝜇V (𝑡) ,

(1)

where 𝑥(𝑡), 𝑦(𝑡), and V(𝑡) denote the concentration of unin-
fected cells, infected cells, and free virus particles at time 𝑡,
respectively. The uninfected cells are produced at a constant
𝜆, die at a rate 𝑑𝑥, and become infected by free virus at

a rate 𝛽𝑥V. Infected cells are lost at a rate 𝑎𝑦. Free viruses
are produced by infected cells at a rate 𝑘𝑦 and cleared at a
rate 𝜇V. The authors [9] assumed that the uninfected cells are
contacted by the virus particles at time 𝑡 − 𝜏 and become
infected cells at time 𝑡, where 𝜏 is a random variable with
a probability distribution 𝑓(𝜏) over the interval [0, 𝜃] and 𝜃

is limit superior of this delay. This probability distribution
is assumed, for simplicity, to be a positive and integrable
function on [0, 𝜃], satisfying ∫

𝜃

0
𝑓(𝜏)𝑑𝜏 = 1. The term 𝑒

−𝑚𝜏

is the probability of surviving from time 𝑡−𝜏 to time 𝑡, where
𝑚 is the death rate of infected but not yet virus-producing
cells.

Using the result presented in [9], it is not hard to see that
the basic reproduction number of system (1) is given by 𝑅

∗

0
=

(𝜆𝑘𝛽/𝑎𝑑𝜇) ∫

𝜃

0
𝑓(𝜏)𝑒

−𝑚𝜏
𝑑𝜏.

We recall that the number 𝑅

∗

0
is defined as the average

number of secondary infections produced by one infected cell
over its average life time, when all cells are uninfected.

In addition, the system (1) always has a disease-free
equilibrium 𝐸0(𝜆/𝑑, 0, 0) which is globally asymptotically
stable if 𝑅

∗

0
≤ 1 and a unique endemic equilibrium

𝐸

∗
((𝜆/𝑑)(1/𝑅

∗

0
), (𝜇𝑑/𝑘𝛽)(𝑅

∗

0
− 1), (𝑑/𝛽)(𝑅

∗

0
− 1)) is globally

asymptotically stable when 𝑅

∗

0
> 1.

Motivated by the works [10–15] and that the statistical
data are collected in discrete time, we propose the following
discrete model obtained from (1) by using the rectangle
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method to approximate the integral and by applying the
backward Euler discretization:

𝑥𝑛+1 − 𝑥𝑛

ℎ

= 𝜆 − 𝑑𝑥𝑛+1 − 𝛽𝑥𝑛+1V𝑛+1,

𝑦𝑛+1 − 𝑦𝑛

ℎ

= 𝛽

𝑁

∑

𝑖=0

𝑓 (𝑖) 𝑒

−𝑚𝑖
𝑥 (𝑛 − 𝑖) V (𝑛 − 𝑖) − 𝑎𝑦𝑛+1,

V𝑛+1 − V𝑛
ℎ

= 𝑘𝑦𝑛+1 − 𝜇V𝑛+1,

(2)

where 𝑁 = 𝜃 − 1 if 𝜃 is an integer, and if not, 𝑁 is
the integer part of 𝜃 (𝑁 = [𝜃]). The sequences 𝑥𝑛, 𝑦𝑛,
and V𝑛 denote the concentration of uninfected cells, infected
cells, and free virus particles at time 𝑛, respectively. The
parameters in the system (2) are the same as those in (1). For
simplicity, we may assume that ∑𝑁

𝑖=0
𝑓(𝑖) = 1. Similar to the

continuous system (1), system (2) always has a disease-free
equilibrium 𝐸0(𝜆/𝑑, 0, 0) and an endemic equilibrium point
𝐸

∗
((𝜆/𝑑)(1/𝑅0), (𝜇𝑑/𝑘𝛽)(𝑅0 − 1), (𝑑/𝛽)(𝑅0 − 1)), where 𝑅0 is

the basic reproduction number of (2) which is defined by

𝑅0 =

𝜆𝑘𝛽

𝑎𝑑𝜇

𝑁

∑

𝑖=0

𝑓 (𝑖) 𝑒

−𝑚𝑖
. (3)

The aim of this work is to show that the discretization
scheme used in system (2) preserves the positivity and
boundedness of solutions and the global stability of both
equilibria for the continuous model (1). Therefore, this
discretization is dynamically consistent which means that all
of the critical, qualitative properties of the solutions to the
system of differential equations should also be satisfied by the
solutions of the discrete scheme.

The paper is organized as follows. Section 2 deals with
positivity and boundedness of solutions. In Section 3, we
discuss the global stability of the equilibria. The numerical
simulations are presented in Section 4 and the paper ends
with a conclusion in Section 5.

2. Positivity and Boundedness of Solutions

Model (2) describes the evolution of a cell population that the
cell number is nonnegative and bounded. For these biological
reasons, we assume that the initial data for system (2) satisfy

𝑥 (𝑠) ≥ 0, 𝑦 (𝑠) ≥ 0, V (𝑠) ≥ 0

∀𝑠 = −𝑁, − (𝑁 − 1) , . . . , 0.

(4)

Proposition 1. All solution of system (2) subject to condition
(4) remains nonnegative and bounded.

Proof. From (2), we have

𝑥𝑛+1 =

𝜆ℎ + 𝑥𝑛

1 + 𝑑ℎ + 𝛽ℎV𝑛+1

𝑦𝑛+1 =

𝑦𝑛 + ℎ𝛽∑

𝑁

𝑖=0
𝑓 (𝑖) 𝑒

−𝑚𝑖
𝑥 (𝑛 − 𝑖) V (𝑛 − 𝑖)

1 + 𝑎ℎ

V𝑛+1 =
V𝑛 + ℎ𝑘𝑦𝑛+1

1 + ℎ𝜇

.

(5)

Hence, by recurrence and (4), we have 𝑦𝑛 nonnegative and,
thereafter, V𝑛 and 𝑥𝑛 are nonnegative.

For the boundedness, we put 𝑇𝑛 = 𝑒

𝑚
𝑥𝑛 + 𝑦𝑛 +

ℎ𝛽∑

𝑁

𝑖=0
𝑓(𝑖)∑

𝑛

𝑗=𝑛−𝑖 𝑒
−𝑚(𝑛−𝑗)

𝑥(𝑗)V(𝑗).
We have

𝑇𝑛+1 − 𝑇𝑛 = ℎ𝑒

𝑚
[𝜆 − 𝑑𝑥𝑛+1 − 𝛽𝑥𝑛+1V𝑛+1]

+ ℎ [𝛽

𝑁

∑

𝑖=0

𝑓 (𝑖) 𝑒

−𝑚𝑖
𝑥 (𝑛 − 𝑖) V (𝑛 − 𝑖) − 𝑎𝑦𝑛+1]

+ ℎ𝛽

𝑁

∑

𝑖=0

𝑓 (𝑖)

𝑛+1

∑

𝑗=𝑛+1−𝑖

𝑒

−𝑚(𝑛+1−𝑗)
𝑥 (𝑗) V (𝑗)

− ℎ𝛽

𝑁

∑

𝑖=0

𝑓 (𝑖)

𝑛

∑

𝑗=𝑛−𝑖

𝑒

−𝑚(𝑛−𝑗)
𝑥 (𝑗) V (𝑗)

= ℎ [𝑒

𝑚
𝜆 − 𝑒

𝑚
𝑑𝑥𝑛+1 − 𝑎𝑦𝑛+1]

+ ℎ [1 − 𝑒

𝑚
] 𝛽

𝑁

∑

𝑖=0

𝑓 (𝑖)

𝑛+1

∑

𝑗=𝑛+1−𝑖

𝑒

−𝑚(𝑛+1−𝑗)
𝑥 (𝑗) V (𝑗)

≤ ℎ [𝜆𝑒

𝑚
− 𝛿𝑇𝑛+1] ,

(6)

with 𝛿 = inf{𝑑, 𝑎, (𝑒𝑚 − 1)/ℎ}. Then,

𝑇𝑛+1 ≤ (

1

1 + ℎ𝛿

)

(𝑛+1)

𝑇0 +

𝜆𝑒

𝑚

𝛿

(1 − (

1

1 + ℎ𝛿

)

(𝑛+1)

)

≤ 𝑇0 +

𝜆𝑒

𝑚

𝛿

.

(7)

Then, 𝑥𝑛 and 𝑦𝑛 are bounded.
By the third equation of (2), we have V𝑛+1 = (1/(1 +

ℎ𝜇))V𝑛 + (ℎ𝑘/(1 + ℎ𝜇))𝑦𝑛+1. Since 𝑦𝑛 is bounded, then there
is 𝑀 such that 𝑦𝑛 ≤ 𝑀, for all 𝑛 ∈ N. Then, V𝑛+1 ≤ (1/(1 +

ℎ𝜇))V𝑛 + (ℎ𝑘/(1 + ℎ𝜇))𝑀; hence, V𝑛+1 ≤ (1/(1 + ℎ𝜇))

𝑛+1V0 +
(𝑘𝑀/𝜇)[1 − (1/(1 + ℎ𝜇))

𝑛+1
] ≤ V0 + (𝑘𝑀/𝜇), and then V𝑛 is

bounded.

3. Global Stability

In this section, we will give the following main result that
characterizes the global behavior of our model.

Theorem 2.

(i) If 𝑅0 ≤ 1, then 𝐸0 is globally asymptotically stable.
(ii) 𝑅0 > 1; then 𝐸

∗ is globally asymptotically stable.

Proof. For (i), we consider the following sequence {𝑈𝑛}
+∞

𝑛=0

defined by

𝑈𝑛 = 𝐴𝑥

∗
𝑔(

𝑥𝑛

𝑥

∗
) + 𝑦𝑛

+ ℎ𝛽

𝑁

∑

𝑖=0

𝑓 (𝑖) 𝑒

−𝑚𝑖
[

[

𝑖

∑

𝑗=0

𝑥 (𝑛 − 𝑗) V (𝑛 − 𝑗)

]

]

+

𝑎

𝑘

V𝑛,
(8)

with 𝐴 = ∑

𝑁

𝑖=0
𝑓(𝑖)𝑒

−𝑚𝑖, 𝑥∗ = 𝜆/𝑑, and 𝑔(𝑠) = 𝑠 − 1 − ln(𝑠).
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It is clear that 𝑔(𝑠) ≥ 0 for any 𝑠 > 0 and 𝑔 has the global
minimum 𝑔(1) = 0.

Consider

𝑈𝑛+1 − 𝑈𝑛 = 𝐴𝑥

∗
[

𝑥𝑛+1

𝑥

∗
−

𝑥𝑛

𝑥

∗
+ ln(

𝑥𝑛

𝑥𝑛+1

)] + 𝑦𝑛+1 − 𝑦𝑛

+ ℎ𝛽

𝑁

∑

𝑖=0

𝑓 (𝑖) 𝑒

−𝑚𝑖
[𝑥 (𝑛 + 1) V (𝑛 + 1)

−𝑥 (𝑛 − 𝑖) V (𝑛 − 𝑖)]

+

𝑎

𝑘

[V𝑛+1 − V𝑛]

≤ 𝐴[(𝑥𝑛+1 − 𝑥𝑛) (1 −

𝑥

∗

𝑥𝑛+1

)] + 𝑦𝑛+1 − 𝑦𝑛

+ ℎ𝛽

𝑁

∑

𝑖=0

𝑓 (𝑖) 𝑒

−𝑚𝑖
[𝑥 (𝑛 + 1) V (𝑛 + 1)

−𝑥 (𝑛 − 𝑖) V (𝑛 − 𝑖)]

+

𝑎

𝑘

[V𝑛+1 − V𝑛]

≤ ℎ𝐴(1 −

𝑥

∗

𝑥𝑛+1

) [𝜆 − 𝑑𝑥𝑛+1 − 𝛽𝑥𝑛+1V𝑛+1]

+ ℎ𝛽

𝑁

∑

𝑖=0

𝑓 (𝑖) 𝑒

−𝑚𝑖
𝑥 (𝑛 − 𝑖) V (𝑛 − 𝑖) − ℎ𝑎𝑦𝑛+1

+ ℎ𝛽

𝑁

∑

𝑖=0

𝑓 (𝑖) 𝑒

−𝑚𝑖
[𝑥 (𝑛 + 1) V (𝑛 + 1)

−𝑥 (𝑛 − 𝑖) V (𝑛 − 𝑖)]

+ ℎ

𝑎

𝑘

[𝑘𝑦𝑛+1 − 𝜇V𝑛+1] .

(9)

Since 𝑥∗ = 𝜆/𝑑, we have that
𝑈𝑛+1 − 𝑈𝑛

≤ ℎ[ −

𝐴

𝑥𝑛+1

(𝑥𝑛+1 − 𝑥

∗
)

2

− 𝐴𝛽𝑥𝑛+1V𝑛+1 + 𝐴𝛽𝑥

∗V𝑛+1

+ 𝛽

𝑁

∑

𝑖=0

𝑓 (𝑖) 𝑒

−𝑚𝑖
𝑥 (𝑛 − 𝑖) V (𝑛 − 𝑖)

−

𝑎𝜇

𝑘

V𝑛+1 + (𝛽

𝑁

∑

𝑖=0

𝑓 (𝑖) 𝑒

−𝑚𝑖
)𝑥 (𝑛 + 1) V (𝑛 + 1)

− 𝛽

𝑁

∑

𝑖=0

𝑓 (𝑖) 𝑒

−𝑚𝑖
[𝑥 (𝑛 − 𝑖) V (𝑛 − 𝑖)]]

≤ ℎ [−

𝐴

𝑥𝑛+1

(𝑥𝑛+1 − 𝑥

∗
)

2
− (1 − 𝑅0)

𝑎𝜇

𝑘

V𝑛+1] ≤ 0.

(10)

We consider the set 𝑆 = {(𝑥𝑛, 𝑦𝑛, V𝑛) ∈ R3
+
/𝑈𝑛+1 − 𝑈𝑛 = 0}.

We have (𝑥𝑛, 𝑦𝑛, V𝑛) ∈ 𝑆 ⇒ 𝑥𝑛 = 𝑥

∗ and, by (2), we
have 𝑦𝑛 = V𝑛 = 0. By LaSalle’s invariance principle (see [16,
Theorem 4.24]), we have 𝐸0 that is globally asymptotically
stable.

For (ii), we consider the following sequence {𝑤𝑛}
+∞

𝑛=0

defined by

𝑤𝑛 = 𝑥

∗
𝑔(

𝑥𝑛

𝑥

∗
) +

1

𝐴

𝑦

∗
𝑔(

𝑦𝑛

𝑦

∗
) +

𝛽𝑥

∗V∗

𝐴

× ℎ

𝑁

∑

𝑖=0

𝑓 (𝑖) 𝑒

−𝑚𝑖

𝑖

∑

𝑗=0

𝑔(

𝑥 (𝑛 − 𝑗) V (𝑛 − 𝑗)

𝑥

∗V∗
)

+

𝑎

𝑘𝐴

V∗𝑔(

V𝑛
V∗

) ,

(11)

with 𝑥

∗
= 𝜆/𝑑𝑅0, 𝑦

∗
= 𝜇𝑑/𝑘𝛽(𝑅0 −1), and V∗ = 𝑑/𝛽(𝑅0 −1).

Consider
𝑤𝑛+1 − 𝑤𝑛

= 𝑥

∗
[

𝑥𝑛+1 − 𝑥𝑛

𝑥

∗
+ ln(

𝑥𝑛

𝑥𝑛+1

)]

+

𝑦

∗

𝐴

[

𝑦𝑛+1 − 𝑦𝑛

𝑦

∗
+ ln(

𝑦𝑛

𝑦𝑛+1

)]

+

𝛽𝑥

∗V∗

𝐴

ℎ

𝑁

∑

𝑖=0

𝑓 (𝑖) 𝑒

−𝑚𝑖

×

𝑖

∑

𝑗=0

(

𝑥 (𝑛 + 1 − 𝑗) V (𝑛 + 1 − 𝑗) − 𝑥 (𝑛 − 𝑗) V (𝑛 − 𝑗)

𝑥

∗V∗
)

+

𝛽𝑥

∗V∗

𝐴

ℎ

×

𝑁

∑

𝑖=0

𝑓 (𝑖) 𝑒

−𝑚𝑖

𝑖

∑

𝑗=0

(ln(

𝑥 (𝑛 − 𝑗) V (𝑛 − 𝑗)

𝑥 (𝑛 + 1 − 𝑗) V (𝑛 + 1 − 𝑗)

))

+

𝑎V∗

𝑘𝐴

[

V𝑛+1 − V𝑛
V∗

+ ln(

V𝑛
V𝑛+1

)]

≤ [(𝑥𝑛+1 − 𝑥𝑛) (1 −

𝑥

∗

𝑥𝑛+1

)]

+

1

𝐴

[(𝑦𝑛+1 − 𝑦𝑛) (1 −

𝑦

∗

𝑦𝑛+1

)]

+

𝛽𝑥

∗V∗

𝐴

ℎ

×

𝑁

∑

𝑖=0

𝑓 (𝑖) 𝑒

−𝑚𝑖
(

𝑥 (𝑛 + 1) V (𝑛 + 1) − 𝑥 (𝑛 − 𝑖) V (𝑛 − 𝑖)

𝑥

∗V∗
)

+

𝛽𝑥

∗V∗

𝐴

ℎ

×

𝑁

∑

𝑖=0

𝑓 (𝑖) 𝑒

−𝑚𝑖

𝑖

∑

𝑗=0

(ln(

𝑥 (𝑛 − 𝑗) V (𝑛 − 𝑗)

𝑥 (𝑛 + 1 − 𝑗) V (𝑛 + 1 − 𝑗)

))
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Figure 1: Demonstration of the stability of 𝐸0.

+

𝑎

𝑘𝐴

[(V𝑛+1 − V𝑛) (1 −

V∗

V𝑛+1
)]

≤ ℎ[ [(𝜆 − 𝑑𝑥𝑛+1 − 𝛽𝑥𝑛+1V𝑛+1) (1 −

𝑥

∗

𝑥𝑛+1

)]

+

1

𝐴

[(𝛽

𝑁

∑

𝑖=0

𝑓 (𝑖) 𝑒

−𝑚𝑖
𝑥 (𝑛 − 𝑖) V (𝑛 − 𝑖) − 𝑎𝑦𝑛+1)

× (1 −

𝑦

∗

𝑦𝑛+1

)]

+ 𝛽𝑥𝑛+1V𝑛+1 −
𝛽𝑥

∗V∗

𝐴

×

𝑁

∑

𝑖=0

𝑓 (𝑖) 𝑒

−𝑚𝑖
(

𝑥 (𝑛 − 𝑖) V (𝑛 − 𝑖)

𝑥

∗V∗
)

+

𝛽𝑥

∗V∗

𝐴

𝑁

∑

𝑖=0

𝑓 (𝑖) 𝑒

−𝑚𝑖
(ln(

𝑥 (𝑛 − 𝑖) V (𝑛 − 𝑖)

𝑥 (𝑛 + 1) V (𝑛 + 1)

))

+

𝑎

𝑘𝐴

[(𝑘𝑦𝑛+1 − 𝜇V𝑛+1) (1 −

V∗

V𝑛+1
)]] .

(12)

Using the fact that 𝜆 = 𝑑𝑥

∗
+ 𝛽𝑥

∗V∗, we have

𝑤𝑛+1 − 𝑤𝑛

≤ ℎ [

−𝑑

𝑥𝑛+1

(𝑥𝑛+1 − 𝑥

∗
)

2
+ 𝛽𝑥

∗V∗ − 𝛽𝑥

∗V∗
𝑥

∗

𝑥𝑛+1

−

𝛽𝑦

∗

𝐴𝑦𝑛+1

𝑁

∑

𝑖=0

𝑓 (𝑖) 𝑒

−𝑚𝑖
𝑥 (𝑛 − 𝑖) V (𝑛 − 𝑖) +

𝑎

𝐴

𝑦

∗
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Figure 2: Demonstration of the stability of 𝐸∗.

+

𝛽𝑥

∗V∗

𝐴

𝑁

∑

𝑖=0

𝑓 (𝑖) 𝑒

−𝑚𝑖
(ln(

𝑥 (𝑛 − 𝑖) V (𝑛 − 𝑖)

𝑥 (𝑛 + 1) V (𝑛 + 1)

))

+

𝑎

𝑘𝐴

[

−𝑘V∗𝑦𝑛+1
V𝑛+1

+ 𝜇V∗]] .

(13)

Using the relations ln(𝑥(𝑛 − 𝑖)V(𝑛 − 𝑖)/𝑥(𝑛 + 1)V(𝑛 + 1)) =

ln(𝑥(𝑛−𝑖)V(𝑛−𝑖)𝑦∗/𝑥∗V∗𝑦(𝑛+1))+ln(𝑥∗/𝑥(𝑛+1))+ln(V∗𝑦(𝑛+
1)/V(𝑛 + 1)𝑦

∗
), 𝛽𝐴𝑥

∗V∗ = 𝑎𝑦

∗, and 𝑘𝑦

∗
= 𝜇V∗, we obtain

𝑤𝑛+1 − 𝑤𝑛

≤ ℎ [

−𝑑

𝑥𝑛+1

(𝑥𝑛+1 − 𝑥

∗
)

2
− 𝛽𝑥

∗V∗

× [

𝑥

∗

𝑥𝑛+1

− 1 − ln(

𝑥

∗

𝑥𝑛+1

)]

−

𝛽𝑥

∗V∗

𝐴

×

𝑁

∑

𝑖=0

𝑓 (𝑖) 𝑒

−𝑚𝑖
[

𝑥 (𝑛 − 𝑖) V (𝑛 − 𝑖) 𝑦

∗

𝑥

∗V∗𝑦𝑛+1

−1 − ln(

𝑥 (𝑛 − 𝑖) V (𝑛 − 𝑖) 𝑦

∗

𝑥

∗V∗𝑦𝑛+1
)]

−𝛽𝑥

∗V∗ [
V∗

𝑦

∗

𝑦𝑛+1

V𝑛+1
− 1 − 𝑙𝑛 (

V∗

𝑦

∗

𝑦𝑛+1

V𝑛+1
)]]

≤ ℎ[

−𝑑

V𝑛+1
(𝑥𝑛+1 − 𝑥

∗
)

2
− 𝛽𝑥

∗V∗𝑔(

𝑥

∗

𝑥𝑛+1

)

−

𝛽𝑥

∗V∗

𝐴

𝑁

∑

𝑖=0

𝑓 (𝑖) 𝑒

−𝑚𝑖
𝑔(

𝑥 (𝑛 − 𝑖) V (𝑛 − 𝑖) 𝑦

∗

𝑥

∗V∗𝑦𝑛+1
)

−𝛽𝑥

∗V∗𝑔(

V∗

𝑦

∗

𝑦𝑛+1

V𝑛+1
)]

(14)

since 𝑔(𝑠) ≥ 0 for any 𝑠 > 0; then 𝑤𝑛+1 − 𝑤𝑛 ≤ 0.
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Figure 3: Plot of the basic reproduction number 𝑅0 as a function of
the delay𝑁. Here, 𝜆 = 10, 𝑑 = 0.02, 𝛽 = 0.000024,𝑚 = 0.5, 𝑎 = 0.5,
𝑘 = 600, 𝜇 = 3, and ℎ = 0.1.

We consider the set𝑇 = {(𝑥𝑛, 𝑦𝑛, V𝑛) ∈ R3
+
/𝑤𝑛+1−𝑤𝑛 = 0}.

We have (𝑥𝑛, 𝑦𝑛, V𝑛) ∈ 𝑇 ⇒ 𝑥𝑛 = 𝑥

∗ and, by (2), we have
𝑦𝑛 = 𝑦

∗ and V𝑛 = V∗. From LaSalle’s invariance principle, we
deduce that 𝐸∗ is globally asymptotically stable.

4. Numerical Simulations

In this section, we present the numerical simulations to
illustrate our theoretical results. In this section, we choose
𝑓(𝑥) = 2𝑥/𝑁(𝑁 + 1). First, we use the following data
set: 𝜆 = 10, 𝑑 = 0.02, 𝛽 = 0.000024, 𝑚 = 0.5,
𝑎 = 0.5, 𝑘 = 600, 𝜇 = 3, 𝑁 = 5, and ℎ = 0.1.
In this case, the basic infection reproduction number 𝑅0 is
0.9483. By usingTheorem 2 (i), we deduce that 𝐸0 is globally
asymptotically stable. Numerical simulation illustrates our
result (see Figure 1).

In Figure 2, we choose 𝛽 = 0.00024 and do not change
the other parameter values. By calculation, we have 𝑅0 =

9.4830which satisfies the condition (ii) ofTheorem 2. Hence,
𝐸

∗ is globally asymptotically stable. Numerical simulation
illustrates our result (see Figure 2).

In Figure 3, the parameter values are the same as those in
Figure 1. Figure 3 gives 𝑅0 in function of 𝑁 and shows that
the growth of 𝑁 decreases the value of 𝑅0 below 1, making
the disease-free equilibrium globally asymptotically stable.

5. Conclusion

In this work, we have proposed a discrete mathematical
model of HIV infection by applying the backward Euler
discretization, with distributed time delay. We have proved
that, when 𝑅0 ≤ 1, the disease-free equilibrium 𝐸0 is
globally asymptotically stable. When 𝑅0 > 1, the endemic
equilibrium 𝐸

∗ is globally asymptotically stable. More pre-
cisely, it is proved that this discretization guarantees the
correct dynamic behavior regardless of the size of the time
step.
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