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We consider amodification of the𝐾(2, 2) equation 𝑢
𝑡
= 2𝑢𝑢

𝑥𝑥𝑥
+2𝑘𝑢

𝑥
𝑢
𝑥𝑥
+2𝑢𝑢

𝑥
using the bifurcationmethod of dynamical systems

and the method of phase portraits analysis. From dynamic point of view, some peakons, solitary, and smooth periodic waves are
found and their exact parametric representations are presented. Also, the coexistence of peakon and solitary wave solutions is
investigated.

1. Introduction

To study the role of nonlinear dispersion in the formation of
patterns in the liquid drop, Rosenau and Hyman [1] showed
that, in a particular generalization of the KdV equation,

𝑢
𝑡
+ (𝑢
𝑚
)
𝑥
+ (𝑢
𝑛
)
𝑥𝑥𝑥
= 0, 𝑚 > 0, 1 < 𝑛 ≤ 3, (1)

which is called 𝐾(𝑚, 𝑛) equation. They obtained solitary
wave solutions with compact support in it, which they called
compactons. For the case 𝑚 = 𝑛 (𝑚 is an integer), these
compactons had the property that the widthwas independent
of the amplitude. Rosenau [2] also studied the 𝐾(𝑚, 𝑛)
equation:

𝑢
𝑡
+ 𝑎(𝑢
𝑚
)
𝑥
+ (𝑢
𝑛
)
𝑥𝑥𝑥
= 0, (2)

where 𝑎 is a constant. He investigated nonlinear dispersion
and compact structures [3], nonanalytic solitary waves [2],
and a class of nonlinear dispersive-dissipative interactions
[4]. In [5, 6], general solutions to the 𝐾(𝑛, 𝑛) equation were
studied. In [7], the nonlinear equation 𝐾(𝑚, 𝑛) was studied
for all possible values of 𝑚 and 𝑛. Tian and Yin investigated
shock-peakon and shock-compacton solutions for 𝐾(𝑚, 𝑛)
equation by variational iteration method in [8]. The 𝐾(𝑚, 𝑛)
equation with generalized evolution and time-dependent
damping and dispersion was investigated and the 1-soliton

solution was obtained in [9]. Biswas considered the following
𝐾(𝑚, 𝑛) equation with generalized evolution term:

(𝑢
𝑙
)
𝑡
+ 𝑎𝑢
𝑚
𝑢
𝑥
+ 𝑏(𝑢
𝑛
)
𝑥𝑥𝑥
= 0, (3)

and presented a solitary wave ansatz and obtained a 1-soliton
solution [10]. Some soliton solutions of (3) were obtained
in [11, 12]. In 2010, Ambrose and Wright [13] considered the
following equation:

𝑢
𝑡
= 2𝑢𝑢

𝑥𝑥𝑥
− 𝑢
𝑥
𝑢
𝑥𝑥
+ 2𝑘𝑢𝑢

𝑥
, (4)

which is called a modification of the 𝐾(2, 2) equation:

𝑢
𝑡
= 2𝑢𝑢

𝑥𝑥𝑥
+ 6𝑢
𝑥
𝑢
𝑥𝑥
+ 2𝑘𝑢𝑢

𝑥
, (5)

where 𝑘 ̸= 0 is a constant. They demonstrated that, for this
equation, there are compactly supported traveling wave
solutions and the Cauchy problem possesses a weak solution
which exists locally in time.

In this paper, we consider the following modification of
the 𝐾(2, 2) equation using the bifurcation theory and the
method of phase portraits analysis [14–17]:

𝑢
𝑡
= 2𝑢𝑢

𝑥𝑥𝑥
+ 2𝑘𝑢

𝑥
𝑢
𝑥𝑥
+ 2𝑢𝑢

𝑥
, (6)

where 𝑘 is an integer. The bifurcations of different traveling
waves in parameter space and the phase diagrams will be
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given. Some exact peakon, solitary, and smooth periodicwave
solutions will be presented.

Let 𝜉 = 𝑥 − 𝑐𝑡 where 𝑐 ̸= 0 is the wave speed. By using the
travelling wave transformation 𝑢(𝑥, 𝑡) = 𝜙(𝜉) we reduce (6)
to the following ordinary differential equations:

−𝑐𝜙
󸀠
= 2𝜙𝜙

󸀠󸀠󸀠
+ 2𝑘𝜙

󸀠
𝜙
󸀠󸀠
+ 2𝜙𝜙

󸀠
. (7)

Integrating (7) once with respect to 𝜉, we have

𝑔 − 𝑐𝜙 = 2𝜙𝜙
󸀠󸀠
+ (𝑘 − 1) (𝜙

󸀠
)
2

+ 𝜙
2
, (8)

where 𝑔 is the integral constant.
Letting 𝑦 = 𝑑𝜙/𝑑𝜉, we get the following planar system:

𝑑𝜙

𝑑𝜉
= 𝑦,

𝑑𝑦

𝑑𝜉
=
𝑔 − 𝑐𝜙 − 𝜙

2
− (𝑘 − 1) 𝑦

2

2𝜙
. (9)

System (9) is a three-parameter planar dynamical system
depending on the parameter set (𝑘, 𝑐, 𝑔). Since the phase
orbits defined by the vector field of system (9) determine all
travelling wave solutions of (6), we should investigate the
bifurcation sets and phase portraits of system (9) in (𝜙, 𝑦)-
phase plane as the parameters 𝑘, 𝑐, and 𝑔 are changed.

We know that a peakon solution of (6) corresponds to a
heteroclinic orbit of system (9) and a solitary wave solution of
(6) corresponds to a homoclinic orbit of system (9). Similarly,
a periodic orbit of system (9) corresponds to a periodic
wave solution of (6). Thus, to investigate peakons, solitary,
and periodic waves of (6), we should find all heteroclinic
orbits, homoclinic orbits, and periodic annuli of system (9)
depending on the parameter space of this system.

The rest of this paper is organized as follows. In Section 2,
we discuss the bifurcation sets and phase portraits of system
(9), where explicit parametric conditions will be derived. In
Section 3, we give some exact peakon, solitary, and smooth
periodic wave solutions of (6). A short conclusion will be
given in Section 4.

2. Bifurcation Sets and Phase
Portraits of System (9)

Using the transformation 𝑑𝜉 = 2𝜙𝑑𝜏, it carries (9) into the
Hamiltonian system:

𝑑𝜙

𝑑𝜏
= 2𝜙𝑦,

𝑑𝑦

𝑑𝜏
= 𝑔 − 𝑐𝜙 − 𝜙

2
− (𝑘 − 1) 𝑦

2
. (10)

Since both systems (9) and (10) have the same following first
integrals:

when 𝑘 ̸= − 1, 𝑘 ̸= 0, and 𝑘 ̸= 1,

𝜙
𝑘−1
(𝑦
2
−
𝑔

𝑘 − 1
+
𝑐𝜙

𝑘
+
𝜙
2

𝑘 + 1
) = ℎ, (11)

when 𝑘 = −1,

𝜙
−2
𝑦
2
+
𝑔

2𝜙2
−
𝑐

𝜙
+ ln (𝜙) = ℎ, (12)

when 𝑘 = 0,

𝜙
−1
𝑦
2
+
𝑔

𝜙
+ 𝜙 + 𝑐 ln (𝜙) = ℎ (13)

and when 𝑘 = 1,

𝑦
2
+
1

2
𝜙
2
+ 𝑐𝜙 − 𝑔 ln (𝜙) = ℎ, (14)

then the two systems above have the same topological phase
portraits except the line 𝜙 = 0. Obviously, 𝜙 = 0 is an
invariant straight-line solution of system (9).

Next, we focus on the cases 𝑘 ̸= − 1, 𝑘 ̸= 0, and 𝑘 ̸= 1 in (6)
without mentioning it further.

Write Δ
1
= 𝑐
2
+ 4𝑔, Δ

2
= 𝑔/(𝑘 − 1). Clearly, when Δ

1
>

0, system (10) has two equilibrium points at 𝐴
1,2
(𝜙
1,2
, 0) in

𝜙-axis, where 𝜙
1,2
= (−𝑐±√Δ

1
)/2. WhenΔ

1
= 0, system (10)

has only one equilibrium point at 𝐴
0
(𝜙
0
, 0) in 𝜙-axis, where

𝜙
0
= −(1/2)𝑐. When Δ

1
< 0, system (10) has not equilibrium

point in 𝜙-axis. When Δ
2
> 0, there exist two equilibrium

points of system (10) in line 𝜙 = 0 at 𝑆
±
(0, 𝑌
±
), 𝑌
±
= ±√Δ

2
.

When Δ
2
< 0, there is no equilibrium point of system (10) in

line 𝜙 = 0.
Let 𝑀(𝜙

𝑒
, 𝑦
𝑒
) be the coefficient matrix of the linearized

system of the system (10) at an equilibrium point (𝜙
𝑒
, 𝑦
𝑒
).

Then we have

𝑀(𝜙
𝑒
, 𝑦
𝑒
) = (

2𝑦
𝑒

2𝜙
𝑒

−2𝜙
𝑒
− 𝑐 −2 (𝑘 − 1) 𝑦

𝑒

) , (15)

and at this equilibrium point, we have

Trace (𝑀 (𝜙
𝑒
, 𝑦
𝑒
)) = −2 (𝑘 − 2) 𝑦

𝑒
,

𝐽 (𝜙
𝑒
, 𝑦
𝑒
) = det𝑀(𝜙

𝑒
, 𝑦
𝑒
) = −4 (𝑘 − 1) 𝑦

2

𝑒
+ 2𝜙
𝑒
(2𝜙
2

𝑒
+ 𝑐) .

(16)

By the theory of planar dynamical systems, we know that,
for an equilibriumpoint (𝜙

𝑒
, 𝑦
𝑒
) of a planar integrable system,

if 𝐽(𝜙
𝑒
, 𝑦
𝑒
) < 0, then the equilibrium point is a saddle point.

If 𝐽(𝜙
𝑒
, 𝑦
𝑒
) > 0 and Trace(𝑀(𝜙

𝑒
, 𝑦
𝑒
)) = 0, then it is a

center point. If 𝐽(𝜙
𝑒
, 𝑦
𝑒
) = 0 and the Poincaré index of the

equilibrium point is zero, then it is a cusp.
For a fixed ℎ, the level curve 𝐻(𝜙, 𝑦) = ℎ defined by

(11) determines a set of invariant curves of system (10) which
contains different branches of curves. As ℎ is varied, it defines
different families of orbits of (10) with different dynamical
behaviors.

Using the property of equilibrium points and bifurcation
theory, we obtain the following results.

When 𝑘 > 1, there are two bifurcation curves as
follows:

𝐿
1
: 𝑔 = −

1

4
𝑐
2
, 𝐿

2
: 𝑔 = 0, (17)

which divide the (𝑐, 𝑔)-parameter plane into 10 subregions:
𝐴
1
= {(𝑐, 𝑔) | 𝑐 < 0, 𝑔 < −(1/4)𝑐

2
}, 𝐴
2
= {(𝑐, 𝑔) | 𝑐 <

0, 𝑔 = −(1/4)𝑐2}, 𝐴
3
= {(𝑐, 𝑔)𝑐 < 0, −(1/4)𝑐

2
< 𝑔 < 0},
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𝐴
4
= {(𝑐, 𝑔)𝑐 < 0, 𝑔 = 0}, 𝐴

5
= {(𝑐, 𝑔)𝑐 < 0, 𝑔 > 0}, 𝐴

6
=

{(𝑐, 𝑔)𝑐 > 0, 𝑔 > 0}, 𝐴
7
= {(𝑐, 𝑔)𝑐 > 0, 𝑔 = 0}, 𝐴

8
= {(𝑐, 𝑔)𝑐 >

0, −(1/4)𝑐
2
< 𝑔 < 0}, 𝐴

9
= {(𝑐, 𝑔)𝑐 > 0, 𝑔 = −(1/4)𝑐

2
}, and

𝐴
10
= {(𝑐, 𝑔) | 𝑐 > 0, 𝑔 < −(1/4)𝑐

2
}.

When 𝑘 < −1, there are three bifurcation curves as
follows:

𝐿
1
: 𝑔 = −

1

4
𝑐
2
, 𝐿
2
: 𝑔 = −

𝑘
2
− 1

4𝑘2
𝑐
2
, 𝐿
3
: 𝑔 = 0, (18)

which divide the (𝑐, 𝑔)-parameter plane into 14 subregions:
𝐵
1
= {(𝑐, 𝑔) | 𝑐 < 0, 𝑔 < −(1/4)𝑐

2
}, 𝐵
2
= {(𝑐, 𝑔) | 𝑐 <

0, 𝑔 = −(1/4)𝑐
2
},𝐵
3
= {(𝑐, 𝑔) | 𝑐 < 0, −(1/4)𝑐

2
< 𝑔 < −((𝑘

2
−

1)/4𝑘
2
)𝑐
2
}, 𝐵
4
= {(𝑐, 𝑔) | 𝑐 < 0, 𝑔 = −((𝑘

2
− 1)/4𝑘

2
)𝑐
2
},

𝐵
5
= {(𝑐, 𝑔) | 𝑐 < 0, −((𝑘

2
− 1)/4𝑘

2
)𝑐
2
< 𝑔 < 0}, 𝐵

6
= {(𝑐, 𝑔) |

𝑐 < 0, 𝑔 = 0}, 𝐵
7
= {(𝑐, 𝑔) | 𝑐 < 0, 𝑔 > 0}, 𝐵

8
= {(𝑐, 𝑔) |

𝑐 > 0, 𝑔 > 0}, 𝐵
9
= {(𝑐, 𝑔) | 𝑐 > 0, 𝑔 = 0}, 𝐵

10
= {(𝑐, 𝑔) |

𝑐 > 0, −((𝑘
2
− 1)/4𝑘

2
)𝑐
2
< 𝑔 < 0}, 𝐵

11
= {(𝑐, 𝑔) | 𝑐 > 0, 𝑔 =

−((𝑘
2
− 1)/4𝑘

2
)𝑐
2
}, 𝐵
12
= {(𝑐, 𝑔) | 𝑐 > 0, −(1/4)𝑐

2
< 𝑔 <

−((𝑘
2
− 1)/4𝑘

2
)𝑐
2
}, 𝐵
13
= {(𝑐, 𝑔) | 𝑐 > 0, 𝑔 = −(1/4)𝑐

2
}, and

𝐵
14
= {(𝑐, 𝑔) | 𝑐 > 0, 𝑔 < −(1/4)𝑐

2
}.

The bifurcation sets and phase portraits of system (10) are
shown in Figures 1 and 2.

3. Exact Peakon, Solitary, and Smooth
Periodic Wave Solutions of (6)

In this section, we present some exact peakon, solitary, and
smooth periodic wave solutions of (6) through some special
phase orbits. Next, we always suppose that

ℎ
1
=
1

24
(𝑐 − √Δ

1
)(𝑐
2
− 𝑐√Δ

1
+ 8𝑔) ,

ℎ
2
=
1

24
(𝑐 + √Δ

1
)(𝑐
2
+ 𝑐√Δ

1
+ 8𝑔) ,

ℎ
3
=

2 (3𝑐
2
− 3𝑐√Δ

1
+ 8𝑔)

3(𝑐 − √Δ
1
)
3

, ℎ
4
=

2 (3𝑐
2
+ 3𝑐√Δ

1
+ 8𝑔)

3(𝑐 + √Δ
1
)
3

.

(19)

3.1. Peakon Solutions

(i) For given 𝑘 = −2 and ℎ = 2/3𝑐 in Figure 2(b), the level
curve is shown in Figure 3(e). From Figure 3(e), we see that
there are two heteroclinic orbits connecting with complex
equilibriumpoints (0, ±(√3/6)𝑐) and a cusp (𝜙

0
, 0) of systems

(9) and (10) when (𝑐, 𝑔) ∈ 𝐵
2
, where 𝜙

0
= −(1/2)𝑐. Their

expressions are

𝑦 = ±√−
2

3𝑐
(𝜙
0
− 𝜙)√𝜙

0
− 𝜙, 0 ≤ 𝜙 < 𝜙

0
. (20)

Substituting (20) into 𝑑𝜙/𝑑𝜉 = 𝑦 and integrating it along
the heteroclinic orbits yield the equation

∫

𝜙

0

𝑑𝑠

(𝜙
0
− 𝑠)√𝜙

0
− 𝑠
= √−

2

3𝑐

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 . (21)

Completing the above integral and solving the equation
for 𝜙, it follows that

𝜙 (𝜉) = 𝜙
0
−

1

(𝜔
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 + 1/

√𝜙
0
)
2
, (22)

where 𝜔 = (1/2)√−2/3𝑐.
Noting that 𝑢(𝑥, 𝑡) = 𝜙(𝜉) and 𝜉 = 𝑥− 𝑐𝑡, we get a peakon

solution as follows:

𝑢 (𝑥, 𝑡) = 𝜙
0
−

1

(𝜔 |𝑥 − 𝑐𝑡| + 1/√𝜙
0
)
2
. (23)

The profile of (23) is shown in Figure 4(a).
(ii) For given 𝑘 < −1 and ℎ = 0 in Figure 2(d), the level

curve is shown in Figure 3(h). From Figure 3(h), we see that
there are two heteroclinic orbits connecting with complex
equilibrium points (0, ±(𝑐/2𝑘)√−(𝑘 + 1)) and a saddle point
(𝜙
2
, 0) of systems (9) and (10) when (𝑐, 𝑔) ∈ 𝐵

4
, where 𝜙

2
=

−((𝑘 + 1)/2𝑘)𝑐. Their expressions are

𝑦 = ±√−
1

𝑘 + 1
(𝜙
2
− 𝜙) , 0 ≤ 𝜙 < 𝜙

2
. (24)

Substituting (24) into the 𝑑𝜙/𝑑𝜉 = 𝑦 and integrating it
along the heteroclinic orbits yield the equation

∫

𝜙

0

𝑑𝑠

𝜙
2
− 𝑠
= √−

1

𝑘 + 1

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 .

(25)

Completing the above integral, we can get a peakon
solution as follows:

𝑢 (𝑥, 𝑡) = 𝜙
2
(1 − 𝑒

−𝜔|𝑥−𝑐𝑡|
) , (26)

where 𝜔 = √−1/(𝑘 + 1). The profile of (26) is shown in
Figure 4(b).

(iii) For given 𝑘 < −1 and ℎ = 0 in Figure 2(k), the level
curve is shown in Figure 3(m). From Figure 3(m), we see that
there are two heteroclinic orbits connecting with complex
equilibrium points (0, ±(𝑐/2𝑘)√−(𝑘 + 1)) and a saddle point
(𝜙
1
, 0) of systems (9) and (10) when (𝑐, 𝑔) ∈ 𝐵

11
, where

𝜙
1
= −((𝑘 + 1)/2𝑘)𝑐. Their expressions are

𝑦 = ±√−
1

𝑘 + 1
(𝜙 − 𝜙

1
) , 𝜙

1
< 𝜙 ≤ 0. (27)

Substituting (27) into 𝑑𝜙/𝑑𝜉 = 𝑦 and integrating it along
the heteroclinic orbits yield the equation

∫

0

𝜙

𝑑𝑠

𝑠 − 𝜙
1

= √−
1

𝑘 + 1

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 .

(28)

Completing the above integral, we can get a peakon
solution as follows:

𝑢 (𝑥, 𝑡) = 𝜙
1
+ (1 − 𝑒

−𝜔|𝑥−𝑐𝑡|
) , (29)

where 𝜔 = √−1/(𝑘 + 1). The profile of (29) is shown in
Figure 4(c).
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y

𝜙

(a) (𝑐, 𝑔) ∈ 𝐴
1

y

𝜙

(b) (𝑐, 𝑔) ∈ 𝐴
2

y

𝜙

(c) (𝑐, 𝑔) ∈ 𝐴
3

y

𝜙

2

−2

0

(d) (𝑐, 𝑔) ∈ 𝐴
4

y

𝜙
2

(e) (𝑐, 𝑔) ∈ 𝐴
5

y

𝜙
−2

(f) (𝑐, 𝑔) ∈ 𝐴
6

y

𝜙

2

−2

0

(g) (𝑐, 𝑔) ∈ 𝐴
7

y

𝜙

(h) (𝑐, 𝑔) ∈ 𝐴
8

y

𝜙

(i) (𝑐, 𝑔) ∈ 𝐴
9

y

𝜙

(j) (𝑐, 𝑔) ∈ 𝐴
10

Figure 1: The bifurcation sets and phase portraits of system (10) for 𝑘 > 1.



Journal of Applied Mathematics 5

y

𝜙

2−2 0

(a) (𝑐, 𝑔) ∈ 𝐵
1

y

𝜙

(b) (𝑐, 𝑔) ∈ 𝐵
2

y

𝜙

(c) (𝑐, 𝑔) ∈ 𝐵
3

y

𝜙

(d) (𝑐, 𝑔) ∈ 𝐵
4

y

𝜙

2

−2
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Figure 2: The bifurcation sets and phase portrait of system (10) as for 𝑘 < −1.
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Figure 3: The level curves of system (10) defined by ℎ = ℎ
∗
.

(iv) For given 𝑘 = −2 and ℎ = 2/3𝑐 in Figure 2(m),
the level curve is shown in Figure 3(o). From Figure 3(o),
we see that there are two heteroclinic orbits connecting with
complex equilibrium points (0, ±(√3/6)𝑐) and a cusp (𝜙

0
, 0)

of systems (9) and (10) when (𝑐, 𝑔) ∈ 𝐵
13
, where𝜙

0
= −(1/2)𝑐.

Their expressions are

𝑦 = ±√
2

3𝑐
(𝜙 − 𝜙

0
)√𝜙 − 𝜙

0
, 𝜙
0
< 𝜙 ≤ 0. (30)
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Figure 4: Continued.
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Figure 4: Peakons, solitary, and smooth periodic waves of (6) for 𝑥 = 1.

Substituting (30) into 𝑑𝜙/𝑑𝜉 = 𝑦 and integrating it along
the heteroclinic orbits yield the equation

∫

0

𝜙

𝑑𝑠

(𝑠 − 𝜙
0
)√𝑠 − 𝜙

0

= √
2

3𝑐

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 . (31)

Completing the above integral, we can get a peakon
solution as follows:

𝑢 (𝑥, 𝑡) = 𝜙
0
+

1

(𝜔 |𝑥 − 𝑐𝑡| + 1/√−𝜙
0
)
2
, (32)

where 𝜔 = (1/2)√2/3𝑐. The profile of (32) is shown in
Figure 4(d).

3.2. Solitary Wave Solutions

(i) For given 𝑘 = 2 and ℎ = ℎ
2
in Figure 1(c), the level curve

is shown in Figure 3(a). From Figure 3(a), we see that there is
a homoclinic orbit connecting with a saddle point (𝜙

2
, 0) of

systems (9) and (10) and passing point (𝜙
𝑀
, 0) when (𝑐, 𝑔) ∈

𝐴
3
, where 𝜙

2
= −(𝑐 − √Δ

1
)/2 and 𝜙

𝑀
= −(1/2)𝑐 + √Δ

1
. Its

expression is

𝑦 = ±
𝜙 − 𝜙
2

√3𝜙

√𝜙 (𝜙
𝑀
− 𝜙), 𝜙

2
< 𝜙 ≤ 𝜙

𝑀
. (33)

Substituting (33) into 𝑑𝜙/𝑑𝜉 = 𝑦 and integrating it along
the homoclinic orbit yield the equation

∫

𝜙𝑀

𝜙

𝑠𝑑𝑠

(𝑠 − 𝜙
2
)√𝑠 (𝜙

𝑀
− 𝑠)

=
√3

3

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 . (34)

Completing the above integral, we can get a solitary wave
solution as follows:

𝑢 (𝑥, 𝑡) =
𝜙
2
𝜙
𝑀
cosh2 (𝜔𝜏)

𝜙
2
+ 𝜙
𝑀
sinh2 (𝜔𝜏)

,

𝑥 (𝜏) = √3(𝜏 + 2tan−1(√
𝜙
𝑀
− 𝜙
2

𝜙
2

tanh (𝜔𝜏))) + 𝑐𝑡,

(35)

where 𝜔 = (1/2)√(𝜙
𝑀
− 𝜙
2
)/𝜙
2
and 𝜏 is a new parametric

variable. The profile of (35) is shown in Figure 4(e).
(ii) For given 𝑘 = 2 and ℎ = ℎ

1
in Figure 1(h), the level

curve is shown in Figure 3(b). From Figure 3(b), we see that
there is a homoclinic orbit connecting with a saddle point
(𝜙
1
, 0) of systems (9) and (10) and passing point (𝜙

𝑚
, 0)when

(𝑐, 𝑔) ∈ 𝐴
8
, where 𝜙

1
= (−𝑐 + √Δ

1
)/2 and 𝜙

𝑚
= −(1/2)𝑐 −

√Δ
1
. Its expression is

𝑦 = ±
𝜙
1
− 𝜙

√3𝜙

√𝜙 (𝜙
𝑚
− 𝜙), 𝜙

𝑚
≤ 𝜙 < 𝜙

1
. (36)
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Substituting (36) into 𝑑𝜙/𝑑𝜉 = 𝑦 and integrating it along
the homoclinic orbit yield the equation

∫

𝜙

𝜙𝑚

𝑠𝑑𝑠

(𝜙
1
− 𝑠)√𝑠 (𝜙

𝑚
− 𝑠)

= −
√3

3

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 . (37)

Completing the above integral, we can get a solitary wave
solution as follows:

𝑢 (𝑥, 𝑡) =
𝜙
1
𝜙
𝑚
cosh2 (𝜔𝜏)

𝜙
1
+ 𝜙
𝑚
sinh2 (𝜔𝜏)

,

𝑥 (𝜏) = √3(𝜏 + 2tan−1(√
𝜙
𝑚
− 𝜙
1

𝜙
1

tanh (𝜔𝜏))) + 𝑐𝑡,

(38)

where 𝜔 = (1/2)√(𝜙
𝑚
− 𝜙
1
)/𝜙
1
and 𝜏 is a new parametric

variable. The profile of (38) is shown in Figure 4(f).
(iii) For given 𝑘 = −3 and ℎ = −1/3𝑐2 in Figure 2(b),

the level curve is shown in Figure 3(f). From Figure 3(f), we
see that there is a homoclinic orbit connecting with complex
equilibrium points (0, ±(1/4)𝑐) and a cusp (𝜙

0
, 0) of systems

(9) and (10) and passing point (𝜙
𝑚
, 0)when (𝑐, 𝑔) ∈ 𝐵

2
, where

𝜙
0
= −(1/2)𝑐 and 𝜙

𝑚
= (3/2)𝑐. Its expression is

𝑦 = ±
1

√3𝑐

(𝜙
0
− 𝜙)√(𝜙 − 𝜙

𝑚
) (𝜙
0
− 𝜙), 𝜙

𝑚
≤ 𝜙 < 𝜙

0
.

(39)

Substituting (39) into 𝑑𝜙/𝑑𝜉 = 𝑦 and integrating it along
the homoclinic orbit yield the equation

∫

𝜙

𝜙𝑚

𝑑𝑠

(𝜙
0
− 𝑠)√(𝑠 − 𝜙

𝑚
) (𝜙
0
− 𝑠)

= −
1

√3𝑐

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 . (40)

Completing the above integral, we can get a solitary wave
solution as follows:

𝑢 (𝑥, 𝑡) =
𝜙
𝑚
+ 𝜙
0
(𝜔 (𝑥 − 𝑐𝑡))

2

1 + (𝜔 (𝑥 − 𝑐𝑡))
2
, (41)

where 𝜔 = (𝜙
𝑚
− 𝜙
0
)/2𝑐√3. The profile of (41) is shown in

Figure 4(g).
(iv) For given 𝑘 = −2 and ℎ = ℎ

4
in Figure 2(e), the

level curve is shown in Figure 3(i). From Figure 3(i), we see
that there is a homoclinic orbit connecting with complex
equilibrium points (0, ±√−3𝑔/3) and a saddle point (𝜙

2
, 0) of

systems (9) and (10) and passing point (𝜙
𝑚
, 0) when (𝑐, 𝑔) ∈

𝐵
5
, where 𝜙

2
= −(𝑐 − √Δ

1
)/2 and 𝜙

𝑚
= 2𝑔(𝑐 + √Δ

1
)/(3𝑐
2
+

3𝑐√Δ
1
+ 8𝑔). Its expression is

𝑦 = ±√Ω (𝜙
2
− 𝜙)√𝜙 − 𝜙

𝑚
, 𝜙
𝑚
≤ 𝜙 < 𝜙

2
, (42)

whereΩ = 2(3𝑐2 + 3𝑐√Δ
1
+ 8𝑔)/3(𝑐 + √Δ

1
)
3.

Substituting (42) into 𝑑𝜙/𝑑𝜉 = 𝑦 and integrating it along
the homoclinic orbit yield the equation

∫

𝜙

𝜙𝑚

𝑑𝑠

(𝜙
2
− 𝑠)√𝑠 − 𝜙

𝑚

= √Ω
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 . (43)

Completing the above integral, we can get a solitary wave
solution as follows:

𝑢 (𝑥, 𝑡) = 𝜙
𝑚
+ (𝜙
2
− 𝜙
𝑚
) tanh2 (𝜔 (𝑥 − 𝑐𝑡)) , (44)

where𝜔 = (1/2)√Ω(𝜙
2
− 𝜙
𝑚
).The profile of (44) is shown in

Figure 4(h).
(v) For given 𝑘 = −2 and ℎ = ℎ

3
in Figure 2(j), the

level curve is shown in Figure 3(l). From Figure 3(l), we see
that there is a homoclinic orbit connecting with complex
equilibrium points (0, ±√−3𝑔/3) and a saddle point (𝜙

1
, 0) of

systems (9) and (10) and passing point (𝜙
𝑀
, 0) when (𝑐, 𝑔) ∈

𝐵
10
, where 𝜙

1
= −(𝑐 +√Δ

1
)/2 and 𝜙

𝑀
= 2𝑔(𝑐 −√Δ

1
)/(3𝑐
2
−

3𝑐√Δ
1
+ 8𝑔). Its expression is

𝑦 = ±√Ω (𝜙 − 𝜙
1
)√𝜙
𝑀
− 𝜙, 𝜙

1
< 𝜙 ≤ 𝜙

𝑀
, (45)

whereΩ = 2(3𝑐2 − 3𝑐√Δ
1
+ 8𝑔)/3(−𝑐 + √Δ

1
)
3.

Substituting (45) into 𝑑𝜙/𝑑𝜉 = 𝑦 and integrating it along
the homoclinic orbit yield the equation

∫

𝜙𝑀

𝜙

𝑑𝑠

(𝑠 − 𝜙
1
)√𝜙
𝑀
− 𝑠
= √Ω

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 . (46)

Completing the above integral, we can get a solitary wave
solution as follows:

𝑢 (𝑥, 𝑡) = 𝜙
𝑀
+ (𝜙
1
− 𝜙
𝑀
) tanh2 (𝜔 (𝑥 − 𝑐𝑡)) , (47)

where 𝜔 = (1/2)√Ω(𝜙
𝑀
− 𝜙
1
). The profile of (47) is shown

in Figure 4(i).
(vi) For given 𝑘 = −3 and ℎ = −1/3𝑐2 in Figure 2(m),

the level curve is shown in Figure 3(p). From Figure 3(p), we
see that there is a homoclinic orbit connecting with complex
equilibrium points (0, ±(1/4)𝑐) and a cusp (𝜙

0
, 0) of systems

(9) and (10) and passing point (𝜙
𝑀
, 0) when (𝑐, 𝑔) ∈ 𝐵

13
,

where 𝜙
0
= −(1/2)𝑐 and 𝜙

𝑀
= (3/2)𝑐. Its expression is

𝑦 = ±
1

√3𝑐

(𝜙 − 𝜙
0
)√(𝜙 − 𝜙

0
) (𝜙
𝑀
− 𝜙), 𝜙

0
< 𝜙 ≤ 𝜙

𝑀
.

(48)

Substituting (48) into 𝑑𝜙/𝑑𝜉 = 𝑦 and integrating it along
the homoclinic orbit yield the equation

∫

𝜙𝑀

𝜙

𝑑𝑠

(𝑠 − 𝜙
0
)√(𝑠 − 𝜙

0
) (𝜙
𝑀
− 𝑠)

=
1

√3𝑐

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 . (49)

Completing the above integral, we can get a solitary wave
solution as follows:

𝑢 (𝑥, 𝑡) =
𝜙
𝑀
+ 𝜙
0
(𝜔 (𝑥 − 𝑐𝑡))

2

1 + (𝜔 (𝑥 − 𝑐𝑡))
2
, (50)

where 𝜔 = (𝜙
𝑀
− 𝜙
0
)/2𝑐√3. The profile of (50) is shown in

Figure 4(j).
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3.3. Coexistence of Peakon and SolitaryWave Solutions. From
Figures 2(c) and 2(l), we easily see the coexistence of peakon
and solitary wave for (6) when 𝑘 < −1 and (𝑐, 𝑔) ∈ 𝐵

3
(or

when 𝑘 < −1 and (𝑐, 𝑔) ∈ 𝐵
12
). Here, we give only several

exact parametric representations of these waves.
(i) For given 𝑘 = −2 and ℎ = ℎ

4
in Figure 2(c), the level

curve is shown in Figure 3(g). From Figure 3(g), we see that
there are two heteroclinic orbits connecting with complex
equilibrium points (0, ±√−3𝑔/3) and a saddle point (𝜙

2
, 0)

of systems (9) and (10), and at the same time, there is a
homoclinic orbit connecting with the saddle point (𝜙

2
, 0) and

passing point (𝜙
𝑀
, 0) when (𝑐, 𝑔) ∈ 𝐵

3
, where 𝜙

2
= −(𝑐 −

√Δ
1
)/2 and 𝜙

𝑀
= 2𝑔(𝑐 + √Δ

1
)/(3𝑐
2
+ 3𝑐√Δ

1
+ 8𝑔). Their

expressions are, respectively,

𝑦 = ±√Ω (𝜙
2
− 𝜙)√𝜙

𝑀
− 𝜙, 0 ≤ 𝜙 < 𝜙

2
, (51)

𝑦 = ±√Ω (𝜙 − 𝜙
2
)√𝜙
𝑀
− 𝜙, 𝜙

2
< 𝜙 ≤ 𝜙

𝑀
, (52)

whereΩ = −2(3𝑐2 + 3𝑐√Δ
1
+ 8𝑔)/3(𝑐 + √Δ

1
)
3.

Substituting (51) into (𝑑𝜙/𝑑𝜉) = 𝑦 and integrating it along
the heteroclinic orbits yield the equation

∫

𝜙

0

𝑑𝑠

(𝜙
2
− 𝑠)√𝜙

𝑀
− 𝑠
= √Ω

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 . (53)

Completing the above integral, we can get a peakon
solution as follows:

𝑢 (𝑥, 𝑡)

=

𝜙
2
− 𝜙
𝑀
sech2 (𝜔 |𝑥 − 𝑐𝑡| + tanh−1√(𝜙

𝑀
− 𝜙
2
) /𝜙
𝑀
)

tanh2 (𝜔 |𝑥 − 𝑐𝑡| + tanh−1√(𝜙
𝑀
− 𝜙
2
) /𝜙
𝑀
)

,

(54)

where 𝜔 = (1/2)√Ω(𝜙
𝑀
− 𝜙
2
). The profile of (54) is shown

in Figure 4(k).
Substituting (52) into 𝑑𝜙/𝑑𝜉 = 𝑦 and integrating it along

the homoclinic orbit yield the equation

∫

𝜙𝑀

𝜙

𝑑𝑠

(𝑠 − 𝜙
2
)√𝜙
𝑀
− 𝑠
= √Ω

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 . (55)

Completing the above integral, we can get a solitary wave
solution as follows:

𝑢 (𝑥, 𝑡) = 𝜙
𝑀
− (𝜙
𝑀
− 𝜙
2
) tanh2 (𝜔 (𝑥 − 𝑐𝑡)) , (56)

where 𝜔 = (1/2)√Ω(𝜙
𝑀
− 𝜙
2
). The profile of (56) is shown

in Figure 4(l).
(ii) For given 𝑘 = −2 and ℎ = ℎ

3
in Figure 2(l),

the level curve is shown in Figure 3(n). From Figure 3(n),
we see that there are two heteroclinic orbits connecting
with complex equilibrium points (0, ±√−3𝑔/3) and a saddle
point (𝜙

1
, 0) of systems (9) and (10) and, at the same time,

there is a homoclinic orbit connecting with the saddle
point (𝜙

1
, 0) and passing point (𝜙

𝑚
, 0) when (𝑐, 𝑔) ∈ 𝐵

12
,

where 𝜙
1
= −(𝑐 + √Δ

1
)/2 and 𝜙

𝑚
= 2𝑔(𝑐 − √Δ

1
)/(3𝑐
2
−

3𝑐√Δ
1
+ 8𝑔). Their expressions are, respectively,

𝑦 = ±√Ω (𝜙 − 𝜙
1
)√𝜙 − 𝜙

𝑚
, 𝜙
1
< 𝜙 ≤ 0, (57)

𝑦 = ±√Ω (𝜙
1
− 𝜙)√𝜙 − 𝜙

𝑚
, 𝜙
𝑚
≤ 𝜙 < 𝜙

1
, (58)

whereΩ = 2(3𝑐2 − 3𝑐√Δ
1
+ 8𝑔)/3(𝑐 − √Δ

1
)
3.

Substituting (57) into 𝑑𝜙/𝑑𝜉 = 𝑦 and integrating it along
the heteroclinic orbits yield the equation

∫

0

𝜙

𝑑𝑠

(𝑠 − 𝜙
1
)√𝑠 − 𝜙

𝑚

= √Ω
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 . (59)

Completing the above integral, we can get a peakon
solution as follows:

𝑢 (𝑥, 𝑡)

=

𝜙
1
− 𝜙
𝑚
sech2 (𝜔 |𝑥 − 𝑐𝑡| + tanh−1√(𝜙

𝑚
− 𝜙
1
) /𝜙
𝑚
)

tanh2 (𝜔 |𝑥 − 𝑐𝑡| + tanh−1√(𝜙
𝑚
− 𝜙
1
) /𝜙
𝑚
)

,

(60)

where 𝜔 = (1/2)√Ω(𝜙
1
− 𝜙
𝑚
).The profile of (60) is shown in

Figure 4(m).
Substituting (58) into 𝑑𝜙/𝑑𝜉 = 𝑦 and integrating it along

the homoclinic orbit yield the equation

∫

𝜙

𝜙𝑚

𝑑𝑠

(𝜙
1
− 𝑠)√𝑠 − 𝜙

𝑚

= √Ω
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 . (61)

Completing the above integral, we can get a solitary wave
solution as follows:

𝑢 (𝑥, 𝑡) = 𝜙
𝑚
− (𝜙
1
− 𝜙
𝑚
) tanh2 (𝜔 (𝑥 − 𝑐𝑡)) , (62)

where 𝜔 = (1/2)√Ω(𝜙
1
− 𝜙
𝑚
). The profile of (62) is shown in

Figure 4(n).

3.4. Smooth Periodic Wave Solutions

(i) For given 𝑘 > 1 and ℎ = 0 in Figure 1(d), the level
curve is shown in Figure 3(c). From Figure 3(c), we see that
there is one periodic orbit enclosing the center point (𝜙

1
, 0) of

systems (9) and (10) and passing points (0, 0), (𝜙
𝑀
, 0) when

(𝑐, 𝑔) ∈ 𝐴
4
, where 𝜙

1
= −𝑐 and 𝜙

𝑀
= −((𝑘 + 1)/𝑘)𝑐. Its

expression is

𝑦 = ±
√𝑘 + 1

𝑘 + 1
√𝜙 (𝜙

𝑀
− 𝜙), 0 ≤ 𝜙 ≤ 𝜙

𝑀
. (63)

Substituting (63) into 𝑑𝜙/𝑑𝜉 = 𝑦 and integrating it along
the periodic orbit yield the equation

∫

𝜙𝑀

𝜙

𝑑𝑠

√𝑠 (𝜙
𝑀
− 𝑠)

=
√𝑘 + 1

𝑘 + 1

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 . (64)
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Completing the above integral, we can get a smooth
periodic wave solution as follows:

𝑢 (𝑥, 𝑡) = 𝜙
𝑀
cos2 (𝜔 (𝑥 − 𝑐𝑡)) , (65)

where 𝜔 = √𝑘 + 1/2(𝑘 + 1). The profile of (65) is shown in
Figure 4(o).

(ii) For given 𝑘 > 1 and ℎ = 0 in Figure 1(g), the level
curve is shown in Figure 3(d). From Figure 3(d), we see that
there is one periodic orbit enclosing the center point (𝜙

2
, 0)

of systems (9) and (10) and passing points (0, 0), (𝜙
𝑚
, 0)when

(𝑐, 𝑔) ∈ 𝐴
7
, where 𝜙

2
= −𝑐 and 𝜙

𝑚
= −((𝑘 + 1)/𝑘)𝑐. Its

expression is

𝑦 = ±
√𝑘 + 1

𝑘 + 1
√−𝜙 (𝜙 − 𝜙

𝑚
), 𝜙

𝑚
≤ 𝜙 ≤ 0. (66)

Substituting (66) into 𝑑𝜙/𝑑𝜉 = 𝑦 and integrating it along
the periodic orbit yield the equation

∫

𝜙

𝜙𝑚

𝑑𝑠

√𝑠 (𝜙
𝑚
− 𝑠)

=
√𝑘 + 1

𝑘 + 1

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 . (67)

Completing the above integral, we can get a smooth
periodic wave solution as follows:

𝑢 (𝑥, 𝑡) = 𝜙
𝑚
cos2 (𝜔 (𝑥 − 𝑐𝑡)) , (68)

where 𝜔 = √𝑘 + 1/2(𝑘 + 1). The profile of (68) is shown in
Figure 4(p).

(iii) For given 𝑘 = −2 and ℎ > 0 in Figure 2(f), the level
curve is shown in Figure 3(j). From Figure 3(j), we see that
there is one periodic orbit passing points (0, 0), (𝜙

𝑚
, 0) when

(𝑐, 𝑔) ∈ 𝐵
6
, where 𝜙

𝑚
= −(1 − √1 − 2ℎ𝑐)/2ℎ. Its expression is

𝑦 = ±√ℎ√(𝜙
𝑀
− 𝜙) (0 − 𝜙) (𝜙 − 𝜙

𝑚
), 𝜙

𝑚
≤ 𝜙 ≤ 0, (69)

where 𝜙
𝑀
= (−1 + √1 − 2ℎ𝑐)/2ℎ.

Substituting (69) into 𝑑𝜙/𝑑𝜉 = 𝑦 and integrating it along
the periodic orbit yield the equation

∫

𝜙

𝜙𝑚

𝑑𝑠

√(𝜙
𝑀
− 𝑠) (0 − 𝑠) (𝑠 − 𝜙

𝑚
)

= √ℎ
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 . (70)

Completing the above integral, we can get a smooth
periodic wave solution as follows:

𝑢 (𝑥, 𝑡) = 𝜙
𝑚
𝑐𝑛
2
(𝜔 (𝑥 − 𝑐𝑡) , 𝑘) , (71)

where 𝜔 = (1/2)√ℎ(𝜙
𝑀
− 𝜙
𝑚
) and 𝑘 = √𝜙

𝑚
/(𝜙
𝑚
− 𝜙
𝑀
). The

profile of (71) is shown in Figure 4(q).
(iv) For given 𝑘 = −2 and ℎ < 0 in Figure 2(i), the level

curve is shown in Figure 3(k). From Figure 3(k), we see that
there is one periodic orbit passing points (0, 0), (𝜙

𝑀
, 0) when

(𝑐, 𝑔) ∈ 𝐵
9
, where 𝜙

𝑀
= −(1 −√1 − 2ℎ𝑐)/2ℎ. Its expression is

𝑦 = ±√−ℎ√(𝜙
𝑀
− 𝜙) (𝜙 − 0) (𝜙 − 𝜙

𝑚
), 0 ≤ 𝜙 ≤ 𝜙

𝑀
,

(72)

where 𝜙
𝑚
= −(1 + √1 − 2ℎ𝑐)/2ℎ.

Substituting (72) into 𝑑𝜙/𝑑𝜉 = 𝑦 and integrating it along
the periodic orbit yield the equation

∫

𝜙𝑀

𝜙

𝑑𝑠

√(𝜙
𝑀
− 𝑠) (𝑠 − 0) (𝑠 − 𝜙

𝑚
)

= √−ℎ
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 . (73)

Completing the above integral, we can get a smooth
periodic wave solution as follows:

𝑢 (𝑥, 𝑡) = 𝜙
𝑀
𝑐𝑛
2
(𝜔 (𝑥 − 𝑐𝑡) , 𝑘) , (74)

where 𝜔 = (1/2)√ℎ(𝜙
𝑚
− 𝜙
𝑀
) and 𝑘 = √𝜙

𝑚
/(𝜙
𝑚
− 𝜙
𝑀
). The

profile of (74) is shown in Figure 4(r).

4. Conclusion

In this paper, using the bifurcation theory and the method
of phase portraits analysis, we investigated a modification of
the 𝐾(2, 2) equation (6) and obtained some peakon, solitary,
and smooth periodic wave solutions.We also show that when
(𝑐, 𝑔) ∈ 𝐵

3
and (𝑐, 𝑔) ∈ 𝐵

12
, the peakon and the solitary wave

coexist in (6). We can say that we obtained some new results
of (6) in this paper.
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