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Developing effective, fairness-preserving optimization algorithms is of considerable importance in systemswhich servemany users.
In this paper we show the results of the threshold accepting procedure applied to extremely difficult problem of fair resource
allocation inwirelessmeshnetworks (WMN).The fairness ismodeled by allowing preferenceswith regard to distribution of Internet
traffic between network participants. As aggregation operator we utilize weighted ordered weighted averaging (WOWA). In the
underlaying optimization problem, the physical medium properties cause strong interference among simultaneously operating
node devices, leading to nonlinearities in the mixed-integer pricing subproblem. That is where the threshold accepting procedure
is applied. We show that, the threshold accepting heuristic performs much better than the widely utilized simulated annealing
algorithm.

1. Introduction

Wireless mesh network (WMN) is an organized cooperating
group of network devices communicating with each other
by means of wireless media. The nodes are organized in a
mesh topology, where each wireless device not only sends
and receives its own data but also serves as a relay for other
nodes. Some of the nodes can be connected to cable network
or mobile network and serve as Internet gateways. This way
the whole mesh network constitutes a decentralized way of
providing Internet access between attending participants.

This network type poses numerous advantages including
setup cost, independence of the hardwired infrastructure,
and flexibility. However, providing fair and efficient network
management, including routing and scheduling, is not a
straightforward task. The main source of difficulty lies in
physical medium properties that cause strong interference
among simultaneously operating devices. Additionally the
link quality is a function of the distance and can be affected by
obstacles present between the nodes. As a result the efficient
network operation requires transmission scheduling, channel
assignment, and transmission power determination.

Common objective of the optimization is maximization
of the total throughput while retaining fairness in its distri-
bution between participants.

In network optimization problems fairness is often
accomplished using the lexicographic max-min (LMM) opti-
mization. In the case of convex attainable set, this corre-
sponds to the max-min fairness concept [1] which states that
in the optimal solution it is impossible to increase any of the
outcomes without the decreasing of some smaller (worse)
ones [1–3]. In nonconvex case such strictly defined MMF
solution may not exist while the LMM always exists and it
covers the former if it exists (see [4] for wider discussion).
However, LMM is a stiff approach that usually does not allow
any other criteria, the overall efficiency (total throughput)
in particular. Moreover, it requires sequential repeated opti-
mization of the original problem. A recent survey on fairness
oriented WMN optimization can be found in [5].

In the paper a more flexible approach based on the
weighted ordered weighted averaging (WOWA) outcomes
aggregation is proposed. It provides the consistent, reason-
able, and fairness-preserving methodology of modeling var-
ious preferences (from the extreme pessimistic through
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neutral to extreme optimistic) with regard to distribution of
Internet throughput between network participants. It is based
on the OWA (ordered weighted aggregation) [6, 7] in which
the preference weights are assigned to the ordered values (i.e.,
to the largest value, the second largest, and so on) rather than
to the specific criteria. The WOWA extension allows using
additional weights (called importance weights) assigned to
the specific outcomes.

The OWA operator provides a parameterized family of
aggregation operators, which include many of the well-
known operators such as the maximum, the minimum,
the 𝑘-order statistics, conditional minimax [8] known as
conditional value at risk (CVaR) in the field of financial
risk measurement, the median, and the arithmetic mean.
The OWA satisfies the properties of strict monotonicity,
impartiality, and, in the case ofmonotonic increasingweights,
the property of equitability (satisfies the principle of transfers:
equitable transfer of an arbitrary small amount from the
larger outcome to a smaller outcome results in a more
preferred achievement vector). Thus the OWA-based opti-
mization generates the so-called equitably efficient solutions
(cf. [9] for the formal axiomatic definition). According to
[9, 10], equitable efficiency expresses the concept of fairness,
in which all system entities have to be treated equally and in
the stochastic problems equitability corresponds to the risk
aversion [11]. Since its introduction, theOWAaggregation has
been successfully applied to many fields of decision making
[7, 12, 13]. When applying the OWA aggregation to multi-
criteria optimization, the weighting of the ordered outcome
values causes the fact that the OWA optimization problem
is nonlinear even for linear programming formulation of
the original constraints and criteria. Yager has shown that
the nature of the nonlinearity introduced by the ordering
operation allows one to convert the OWA optimization into
a mixed integer programming problem. It was shown [14]
that the OWA optimization with monotonic weights can be
formed as a standard linear program of higher dimension. Its
significant extension introduced by Torra [15] incorporates
importance weighting into the OWA operator forming the
weighted OWA (WOWA) aggregation as a particular case
of Choquet integral using a distorted probability as the
measure. The WOWA averaging is defined by two weighting
vectors: the preferential weights and the importance weights.
It covers both the weighted means (with equal preferential
weights) and the OWA averages (with equal importance
weights) as special cases. Some of the example applications
of importance weights (applied to specific outcomes) include
definition of the size or importance of processes in a mul-
tiagent environment, setting scenario probability (if uni-
form objectives represent various possible values of the same
uncertain outcome under several scenarios), or job priorities
in scheduling problems. It was shown [16] that in the case
of monotonic preferential weights WOWA aggregation can
also be modeled by a mere linear extension of the original
problem.

This paper extends and refines our initial work on the
subject presented in [17]. The list- based threshold accepting
heuristic applied to the pricing problem is described. The
results are compared to the exact MIP formulation.

This paper is organized as follows. In the next section,
we present the wireless mesh network optimization problem
together with the outline of the solution approach. Next the
WOWA aggregation operator is introduced. In the fourth
section we deal with the pricing problem and show two
alternative approximate solution algorithms. The last section
presents the setup and the results of the computational
experiments.

2. Flow Optimization in WMN

The WMN networking technology has been drawing an
increased attention over the last years (see literature overview
in [18, 19] and references therein). Due to complexity of the
problem usually some sorts of simplifications are assumed.
The problem considered in this paper can be stated as
follows. There is given a WMN network with a number of
nodes, routers and gateways. The nodes are interconnected
wirelessly in compliance with all the physical constraints and
requirements, including signal loss with increasing distance
and interference occurring during simultaneous operation.
Each node can be either sending or receiving data, but not
both at the same time.There are a number of modulation and
coding schemes (MCSs) used for communication between
the nodes with different properties with regard to speed,
maximum allowable interference, and the distance. Each
MCS has its signal to interference plus noise ratio (SINR)
requirement that must be fulfilled in order to successfully
transmit data. Only one fixed transmitting power and single
channel are assumed, but MCS can be dynamically allocated.
The network model consists only of links for which at least
one MCS can be applied, and this requirement reduces to the
maximum allowable distance between the nodes.

Only downstream communication direction from gate-
ways to routers is considered. For each router there is a single
predefined path leading to a chosen gateway.The routers have
elastic traffic demand, which means they can consume all the
possible network capacity.The demands compete for network
resources to get as much throughput as possible.

The objective is to maximize total throughput preserving
fairness among competing demands.

The solution approach is based on the concept of com-
patible sets introduced in [20]. Compatible set consists of
links that can operate at the same time within given inter-
ference model. The basic solution concept consists in linear
approximation of the model and consecutive generation of
the compatible sets improving current solution within the
column generation schema. The approximation is needed if
the time horizon is divided into fixed-length time slots; if not
the solution is optimal.

Although we consider only a specific problem, the solu-
tion concepts involving application of WOWA operators
can be utilized for many other variants of WMN problems
including different capacity reservation models (see [19]).

2.1. Notation. Wirelessmesh network topology is represented
by a directed graphN = (V,E), whereV = G∪R is the set
of nodes from which we distinguish the set of gateways and
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set of mesh routers denoted, respectively, byG andR, andE
is the set of (radio) links.

The (potential) link between two nodes V, 𝑤 ∈ V is
modeled by a directed arc 𝑒 = (V, 𝑤) ∈ E, where 𝑎(𝑒) = V
is the originating node that can transmit a signal of a given
power 𝑃V𝑤 to its terminating node 𝑏(𝑒) = 𝑤. Additionally, we
assume that if arc 𝑒 = (V, 𝑤) ∈ E exists, then an opposite arc
𝑒


= (𝑤, V) ∈ E also exists. Furthermore, the sets of outgoing
and incoming arcs from/to node V ∈ V are denoted,
respectively, by 𝛿+(V) and 𝛿−(V), while 𝛿(V) = 𝛿

+

(V) ∪ 𝛿−(V) is
the set of all arcs incident to node V.

Nodes are transmitting using one of the available modu-
lation and coding schemes (MCSs) denoted by𝑚 ∈ M, where
M is the set of all MCSs (to simplify the considerations, we
assume that the set of available MCSs is M(𝑒) = M, 𝑒 ∈ E).
The (raw) data rate of transmission using MCS 𝑚 is denoted
by 𝐵𝑚.

The (radio) link 𝑒 = (V, 𝑤) can successfully transmit if
the signal to noise ratio (SNR) for the arc 𝑒 is greater than a
certain threshold value denoted by 𝛾𝑚 for at least one MCS
𝑚 ∈ M:

Γ


𝑒
=
𝑃V𝑤

𝑁
≥ 𝛾
𝑚

, (1)

where𝑁 = 10
−10.1 mW is the ambient noise power.

At any arbitrary time instance the transmission of other
nodes can interfere with transmission on 𝑒. The correspond-
ing signal to interference plus noise ratio (SINR) condition
for successful transmission on 𝑒 using MCS 𝑚 reads as
follows:

Γ
𝑒
=

𝑃V𝑤

𝑁 + ∑
𝑎∈A\{V} 𝑃𝑎𝑤

≥ 𝛾
𝑚

, (2)

whereA ⊆ V is the set of active nodeswhich are transmitting
at the same time.

Moreover, we assume that a node can either transmit or
receive or be inactive; that is,

A ∩ {𝑏 (𝛿
+

(V))} ̸= 0 ⇒ A ∩ {𝑎 (𝛿
−

(V))} = 0 V ∈ V,

A ∩ {𝑎 (𝛿
−

(V))} ̸= 0 ⇒ A ∩ {𝑏 (𝛿
+

(V))} = 0 V ∈ V.

(3)

Each router 𝑟 ∈ R is connected with a selected gateway
𝑔 ∈ G by a directed path 𝑝

𝑑
(i.e., a subset of links, 𝑝

𝑑
⊆ E)

that is supposed to carry the entire downstream flow 𝑓
𝑑
from

gateway 𝑔 to router 𝑟 (to simplify the formulations, we do
not consider the upstream direction). The set of routers is
considered as demands and denoted by 𝑑 ∈ D, where D =

V\G. LetP = {𝑝
1
, . . . , 𝑝

𝐷
} be the given set of paths between

routers and gateways, where 𝐷 = |D|. For each link 𝑒 ∈ E,
the set of all indices of paths in P that contain this link will
be denoted by Q

𝑒
= {𝑑 : 𝑒 ∈ 𝑝

𝑑
, 1 ≤ 𝑑 ≤ 𝐷}.

2.2. Compatible Sets. A compatible set (CS) is defined as a
subset E

𝑖
of links E

𝑖
⊆ E together with a particular MCS

𝑚
𝑒
, 𝑒 ∈ E

𝑖
that each link is using so that each link can

be active simultaneously (i.e., transmit without generating
too much interfering with other links). In other words, a

compatible set is defined by E
𝑖
= {(𝑒, 𝑚) ∈ E ×M : 𝑦

𝑚

𝑒
= 1},

where variables𝑦𝑚
𝑒
form a feasible solution that satisfy (2) and

(3).

2.2.1. Master Problem. Using the family of compatible sets
denoted by I, the formulation of the max-min flow opti-
mization problem reads as follows:

max𝑓, (4)

𝑓 ≤ 𝑓
𝑑

𝑑 ∈ D, (5)

∑

𝑑∈Q
𝑒

𝑓
𝑑
≤ 𝑐
𝑒

𝑒 ∈ E, (6)

𝑐
𝑒
= ∑

𝑖∈I

𝐵
𝑒𝑖
𝑧
𝑖

𝑒 ∈ E, (7)

∑

𝑖∈I

𝑧
𝑖
= 𝑇, (8)

𝑧 ≥ 0. (9)

In the presented formulation, 𝑇 is the time of network
operation, 𝐵

𝑒𝑖
is the (raw) data rate of a transmission using

MCS𝑚 ∈ M allocated to link 𝑒 ∈ E in compatible set 𝑖 ∈ I,
that is, either 𝐵𝑚 or 0, depending on whether link 𝑒 is active
or not in the compatible set 𝑖, and 𝑐

𝑒
is total amount of data

that can be transmitted over link 𝑒 ∈ E in a time interval 𝑇.
This formulation is a noncompact, continuous approxi-

mation of the MIP problem involving time slots (see [19]);
continuous variables 𝑧

𝑖
define the number of time slots

assigned to a compatible set within the time 𝑇.
Since |I| grows exponentially in the network size, the

solution is to use the column generation technique [3, 21],
where not all the columns of the constraintsmatrix are stored.
Instead, only a subset of the variables (columns) that can be
seen as an approximation (restriction) of the original problem
is kept.The column generation algorithm iteratively modifies
the subset of variables by introducing new variables in a way
that improves the current optimal solution. At the end, the set
contains all the variables necessary to construct the overall
optimal solution which can use all possible columns. New
columns are generated in the pricing problem.

2.2.2. Pricing Problem. The pricing problem we consider
corresponds to a WMN system in which there are multiple
MCSs available and each node can use different MCS in
different compatible set.The following formulation is referred
to as dynamic allocation of MCSs to nodes:

max∑
𝑒∈E

𝜋
∗

𝑒
𝐵
𝑒
, (10)

𝑋V = ∑

𝑚∈M

𝑥
𝑚

V V ∈ V, (11)

𝑌
𝑒
= ∑

𝑚∈M

𝑦
𝑚

𝑒
𝑒 ∈ E, (12)
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∑

𝑒∈𝛿(V)
𝑌
𝑒
≤ 1 V ∈ V, (13)

∑

𝑒∈𝛿
+
(V)
𝑦
𝑚

𝑒
= 𝑥
𝑚

V V ∈ V, 𝑚 ∈ M, (14)

𝑢
𝑚

𝑒V ≥ 𝑦
𝑚

𝑒
+ 𝑋V − 1 V ∈ V, 𝑒 ∈ E, 𝑚 ∈ M, (15)

𝑢
𝑚

𝑒V ≤ 𝑦
𝑚

𝑒
, 𝑢
𝑚

𝑒V ≤ 𝑋V V ∈ V, 𝑒 ∈ E, 𝑚 ∈ M, (16)

𝑁𝑦
𝑚

𝑒
+ ∑

V∈V\{𝑎(𝑒)}
𝑃V𝑏(𝑒)𝑢

𝑚

𝑒V ≤
1

𝛾𝑚
𝑃
𝑎(𝑒)𝑏(𝑒)

𝑦
𝑚

𝑒

𝑒 ∈ E, 𝑚 ∈ M,

(17)

𝐵
𝑒
= ∑

𝑚∈M

𝐵
𝑚

𝑦
𝑚

𝑒
𝑒 ∈ E, (18)

𝑦
𝑚

𝑒
∈ {0, 1} . (19)

In this formulation, 𝜋
𝑒
, 𝑒 ∈ E, are the current optimal

dual variables associated with constraints (6). At each itera-
tion we are interested in generating CS for which the reduced
price 𝜋 ⋅𝐵 has the biggest and positive value, as we can expect
this will improve the current optimal solution as much as
possible.The 𝑥𝑚V is a binary variable indicating whether node
V transmits using MCS 𝑚, 𝑋V is a binary variable indicating
whether node V transmits, 𝑦𝑚

𝑒
is a binary variable indicating

whether link 𝑒 is scheduled to be active with the MCS 𝑚, 𝑌
𝑒

is a binary variable indicating whether link 𝑒 is active, and
𝐵
𝑒
is the (raw) data rate of a transmission allocated to link

𝑒. Notice that, in this formulation, 𝑋V and 𝑌
𝑒
are auxiliary

variables and thus either they can be eliminated or their
binarity can be skipped. Moreover, observe that applying (2)
directly to our model would result in a bilinear constraint.
Hence, we have introduced additional (continuous) variables
𝑢
𝑚

𝑒V to make the constraint (17) linear. This is achieved by
adding the constraints (15)-(16); that is, 𝑢𝑚

𝑒V = 1 if both 𝑦
𝑚

𝑒

and𝑋V are equal to 1, and 0, otherwise.
Each node V ∈ V and each link 𝑒 ∈ E can use at most

one MCS 𝑚 ∈ M in the compatible set (11)-(12). At most
one link 𝑒 ∈ 𝛿(V) incident to node V can be active (13) and
exactly one link 𝑒 ∈ 𝛿+(V) outgoing from node V is active and
uses MCS 𝑚 (14), provided the node is active and uses this
MCS in the compatible set. The constraints (15)–(17) assure
admissible SINR for link 𝑒 using MCS 𝑚 in the compatible
set. The (raw) data rate 𝐵

𝑒
of link 𝑒 in the compatible set is

found by (18).

3. Fair Aggregation Operators

As stated before the basic operator used to preserve fairness
among outcomes is lexicographic max-min (LMM) which
is equivalent to MMF for the linear problems. In such a
case it is possible to carry out the MMF procedure based on
simple algorithm that in each step uses the dual information
to determine the outcomes that are blocked at their highest
values possible. In the following steps, only the outcomes are
optimized that have not been blocked before (for details see
[19]).

On the other hand, in the WOWA aggregation, the origi-
nal problem is extended by auxiliary constraints and solved
in a single step. Let us first introduce the formalization of
the OWA operator. In the OWA aggregation of outcomes
y = (𝑦

1
, . . . , 𝑦

𝑛
) preferential weights w = (𝑤

1
, 𝑤
2
, . . . , 𝑤

𝑛
)

are assigned to the ordered values rather than to the specific
criteria:

𝐴
𝑤
=

𝑛

∑

𝑖=1

𝑤
𝑖
𝜃
𝑖
(y) , (20)

where (𝜃
1
(y), 𝜃
2
(y), . . . , 𝜃

𝑛
(y)) = Θ(y) is the ordering map

𝑅
𝑛

→ 𝑅
𝑛 with 𝜃

1
(y) ≤ 𝜃

2
(y) ≤ ⋅ ⋅ ⋅ ≤ 𝜃

𝑛
(y) and there exists a

permutation 𝜏 of set 𝐼 such that 𝜃
𝑖
(y) = 𝑦

𝜏(𝑖)
for 𝑖 = 1, 2, . . . , 𝑛.

If the weights aremonotonic,𝑤
1
> 𝑤
2
> ⋅ ⋅ ⋅ > 𝑤

𝑛−1
> 𝑤
𝑛
,

the OWA aggregation has the property of equitability [14],
which guarantees that an equitable transfer of an arbitrarily
small amount from the larger outcome to a smaller outcome
results in more preferred achievement vector. Every solution
maximizing the OWA function is then an equitably efficient
solution to the original multiple criteria problem. Moreover,
for linear multiple criteria problems every equitably efficient
solution can be found as an optimal solution to the OWA
aggregation with appropriate weights.

For the maximization problem the OWA objective aggre-
gation can be formulated as linear extension of the original
problem, as follows. Let us apply linear cumulative map to
the ordered achievement vectors Θ(y):

𝜃
𝑘
(y) =

𝑘

∑

𝑖=1

𝜃
𝑖
(y) 𝑘 = 1, 2, . . . 𝑛. (21)

As stated in [14], for any given vector y ∈ 𝑅
𝑛, the cumulated

ordered coefficient 𝜃
𝑘
(y) can be found as the optimal value of

the following LP problem:

𝜃
𝑘
(y) = max 𝑘𝑡

𝑘
−

𝑛

∑

𝑖=1

ℎ
𝑘𝑖
,

s.t. 𝑡
𝑘
− 𝑦
𝑖
≤ ℎ
𝑘𝑖
, ℎ
𝑘𝑖
≥ 0

𝑖 = 1, 2, . . . , 𝑛.

(22)

The ordered outcomes can be expressed as differences 𝜃
𝑖
(y) =

𝜃
𝑖
(y) − 𝜃

𝑖−1
(y) for 𝑖 = 2, . . . , 𝑛 and 𝜃

1
(y) = 𝜃

1
(y). Hence, the

maximization of the OWA operator (20) with weights 𝑤
𝑖
can

be expressed in the form

max{
𝑛

∑

𝑖=1

𝑤


𝑖
𝜃
𝑖
(y) : y ∈ 𝑌} , (23)

where coefficients 𝑤
𝑖
are defined as 𝑤

𝑛
= 𝑤
𝑛
and 𝑤

𝑖
= 𝑤
𝑖
−

𝑤
𝑖+1

for 𝑖 = 1, 2, . . . , 𝑛 − 1 and 𝑌 is the feasible set of outcome
vectors y. If the original weights 𝑤

𝑖
are strictly decreasing,

then 𝑤
𝑖
> 0 for 𝑖 = 1, 2, . . . , 𝑛.

For the WMN flow optimization problem (4)–(9)
the final OWA aggregation of the outcomes 𝑓

𝑑
for all

demands/routers can be stated as the following LP model:

max
𝐷

∑

𝑘=1

𝑘𝑤


𝑘
𝑡
𝑘
−

𝐷

∑

𝑘=1

𝐷

∑

𝑑=1

𝑤


𝑘
ℎ
𝑑𝑘
, (24)



Journal of Applied Mathematics 5

subject to

ℎ
𝑑𝑘
≥ 𝑡
𝑘
− 𝑓
𝑑
, ℎ
𝑑𝑘
≥ 0 𝑑, 𝑘 = 1, 2, . . . , 𝐷

f ∈ 𝐹,
(25)

where f = [𝑓
𝑑
]
𝑑∈D and𝐹 is a feasible set of flows/throughputs

defined by (6)–(9).
The OWA aggregation (20) allows modelling various

aggregation functions from the minimum (𝑤
1
= 1, 𝑤

𝑖
= 0

for 2, . . . , 𝑛), through the arithmetic mean (𝑤
𝑖
= 1/𝑛 for 𝑖 =

1, . . . , 𝑛), to themaximum (𝑤
𝑛
= 1,𝑤

𝑖
= 0 for 𝑖 = 1, . . . , 𝑛−1).

However, it is not possible to express the weightedmean. Due
to the property of impartiality and neutrality with respect to
the individual attributes the OWA aggregation does not allow
representing any importance weights allocated to the specific
attributes.

The WOWA aggregation is a generalization of the OWA
that allows assigning importance weights to specific criteria
[22]. In the case of WMN, the importance weights could
express the number of end-users hidden behind each router.
For example, the importance weight of the router with 5
directly connected users should be 5 times greater than the
importance weight of the router with only a single directly
connected user.

Let p = (𝑝
1
, . . . , 𝑝

𝑛
) be an 𝑛-dimensional vector of

importance weights such that 𝑝
𝑖
≥ 0 for 𝑖 = 1, . . . , 𝑛 and

∑
𝑛

𝑖=1
𝑝
𝑖
= 1. The corresponding weighted OWA aggregation

of vector y is defined [15] as follows:

𝐴
𝑤,𝑝

=

𝑛

∑

𝑖=1

𝜔
𝑖
𝜃
𝑖
(y) , (26)

with

𝜔
𝑖
= 𝑤
∗

(∑

𝑘≤𝑖

𝑝
𝜏(𝑘)

) − 𝑤
∗

(∑

𝑘<𝑖

𝑝
𝜏(𝑘)

) , (27)

where 𝑤
∗ is increasing function interpolating points

(𝑖/𝑛, ∑
𝑘≤𝑖

𝑤
𝑘
) togetherwith the point (0, 0) and 𝜏 representing

the ordering permutation for y (i.e., 𝑦
𝜏(𝑖)

= 𝜃(y)). Moreover,
function 𝑤∗ is required to be a straight line when the points
can be interpolated in this way. Due to this requirement,
the WOWA aggregation covers the standard weighted mean
with weights 𝑝

𝑖
as a special case of equal preference weights

(𝑤
𝑖
= 1/𝑛 for 𝑖 = 1, . . . , 𝑛). Actually, the WOWA operator is

a particular case of the Choquet integral using a distorted
probability as the measure [23].

Note that such WOWA definition allows us for a clear
interpretation of importance weights as the agent (demand)
repetitions [24]. Splitting an agent into two agents does not
cause any change of the final distribution of outcomes. For
theoretical considerations one may assume that the problem
can be transformed (disaggregated) to the unweighted one
(that means all the agent importance weights are equal to 1);
see [22, 25] and examples therein. Thus, the WOWA aggre-
gation with increasing preferential weights is equitable since
equally important unit of a smaller outcome is considered
with a larger weight.

As shown in [22], maximization of an equitable WOWA
aggregation with decreasing preferential weights 𝑤

1
> 𝑤
2
>

⋅ ⋅ ⋅ > 𝑤
𝑛
may also be implemented as the LP expansion of the

original problem. In the case of the WMN flow optimization
problem (6)–(9), this can be stated as follows:

max
𝐷

∑

𝑘=1

𝑤


𝑘
[
𝑘

𝑛
𝑡
𝑘
−

𝐷

∑

𝑑=1

𝑝
𝑑
ℎ
𝑑𝑘
] , (28)

subject to

ℎ
𝑑𝑘
≥ 𝑡
𝑘
− 𝑓
𝑑
, ℎ
𝑑𝑘
≥ 0 𝑑, 𝑘 = 1, 2, . . . , 𝐷, (29)

f ∈ 𝐹. (30)

If the importance weights are equal to 𝑝
𝑑
= 1/𝐷, the model

reduces to the OWA aggregation.
A special case of the generalized WOWA aggregation is

defined for single breakpoint and corresponds to optimiza-
tion of the predefined quantile of the worst outcomes and in
finance is known as the CVaR (conditional value at risk). It
can be computed as a standard linear extension of the original
problem [22]:

max 𝑡 − 1

𝛽

𝐷

∑

𝑑=1

𝑝
𝑑
ℎ
𝑑

(31)

subject to

ℎ
𝑑
≥ 𝑡 − 𝑓

𝑑
, ℎ
𝑑
≥ 0 𝑑 = 1, . . . , 𝐷 (32)

f ∈ 𝐹. (33)

4. Algorithms

4.1. List-Based Threshold Accepting. List-based threshold
accepting algorithm (LBTA) is an extension of threshold
accepting metaheuristic, which belongs to the randomized
search class of algorithms.This rather unknown heuristic has
been successfully applied to many difficult problems [26–30].
Since the problem of fair resource allocation in wireless mesh
networks is extremely challenging, we have decided to try this
underappreciated algorithm.

The search trajectory of LBTA crosses the solution space
by moving from one solution to a random neighbor of that
solution and so on. Unlike the greedy local search methods
which consist of choosing a better solution from the neigh-
borhood of the current solution until such can be found (hill
climbing), the threshold accepting allows choosing a worse
candidate solution based on a threshold value. In the general
concept of the threshold accepting algorithm it is assumed
that a set of decreasing threshold values is given before the
computation or an initial threshold value and a decrease
schedule are specified. The rate at which the values decrease
controls the trade-offbetweendiversification (associatedwith
large threshold values) and intensification (small threshold
values) of the search. It is immensely difficult to predict
how the algorithm will behave when a certain decrease rate
is applied for a given problem without running the actual
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Require: Initial solution 𝑠
1
, list size 𝑆, set of move operators𝑚 ∈ 𝑀

(1) 𝑖 ← 0

(2) while 𝑖 < 𝑁 do
(3) 𝑚 ← random(𝑀)

(4) 𝑠
2
← 𝑚(𝑠

1
)

(5) if 𝐶(𝑠
1
) ≤ 𝐶(𝑠

2
) then

(6) Δ ← (𝐶(𝑠
2
) − 𝐶(𝑠

1
))/𝐶(𝑠

1
)

(7) list ← list ∪ {Δ}
(8) 𝑖 ← 𝑖 + 1

(9) else
(10) 𝑠

1
← 𝑠
2

(11) end if
(12) end while
(13) return list

Algorithm 1: Creating the list of threshold values.

computation. It is also very common that the algorithm with
the same parameters works better for some problem instances
and significantly worse for others.These reflections led to the
list-based threshold accepting branch of threshold accepting
metaheuristic.

In the list-based threshold accepting approach, instead of
a predefined set of values, a list is dynamically created during
a presolve phase of the algorithm. The list, which in a way
contains knowledge about the search space of the underlying
problem, is then used to solve it.

4.1.1. Creating the List of Threshold Values. The first phase
of the algorithm consists of gathering information about the
search space of the problem that is to be solved. From an
initial solution a neighbor solution is created using a move
function (perturbation operator) chosen at random from
a predefined set of functions. If the candidate solution is
better than the current one, it is accepted and becomes the
current solution. Otherwise, a threshold value is calculated
as a relative change between the two solutions,

Δ =
𝐶 (𝑠
2
) − 𝐶 (𝑠

1
)

𝐶 (𝑠
1
)

, (34)

and added to the list, where 𝐶(𝑠
𝑖
) is the objective function

value of the solution 𝑠
𝑖
∈ 𝑆 and 𝑆 is a set of all feasible

solutions. For this formula to work, it is silently assumed that
𝐶 : 𝑆 → R

+
∪ {0}. This procedure is repeated until the speci-

fied size of the list is reached. For the algorithm overview see
Algorithm 1.

4.1.2. Optimization Procedure. The second phase of the algo-
rithm is the main optimization routine, in which a solution
to the problem is found.The algorithm itself is very similar to
that of the previous phase. We start from an initial solution,
create new solution from the neighborhood of current one
using one of themove functions, and compare both solutions.
If the candidate solution is better, it becomes the current
one. Otherwise, a relative change is calculated. To this point
algorithms in both phases are identical. The difference in

the optimization procedure is that we compare the threshold
value with the largest value from the list. If the new threshold
value is larger, then the new solution is discarded. Otherwise,
the new threshold value replaces the value from the list,
and the candidate solution is accepted for the next iteration.
The best solution found during the optimization process is
considered final.

The list-based threshold accepting algorithm also incor-
porates early termination mechanism: after a (specified)
number of candidate solutions are subsequently discarded,
the optimization is stopped and the best solution found so
far is returned.

The optimization procedure of the list-based threshold
accepting algorithm is shown in Algorithm 2.

4.2. Simulated Annealing. Simulated annealing (SA) was first
introduced byKirkpatrick et al. [31], while Černý [32] pointed
out the analogy between the annealing process of solids
and solving combinatorial problems. Applications of the SA
algorithm to optimization problems in various fields have
been studied [33–36] and to the WMN problem, as well [17].

The optimization process of the simulated annealing
algorithm can be described in the following steps. At the start,
an initial solution is required. Then, repeatedly, a candidate
solution is randomly chosen from the neighborhood of the
current solution. If the candidate solution is the same or
better than the current one, it is accepted and replaces the
current solution. Even if the generated solution is worse than
the current one, it still has a chance to be accepted with the
so-called acceptance probability.This probability is a function
of difference between objective value of the current and the
candidate solution and depends on a control parameter taken
from the thermodynamics, called temperature (𝜏). After a
number of iterations, the temperature is decreased by a
reduce factor (𝛼), and the process continues as described
above. The optimization is stopped either after a maximum
number of iterations or when a minimum temperature is
reached. The best solution found during the annealing pro-
cess is considered final.
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Require: Initial solution 𝑠
1
, thresholds list 𝐿, set of move operators𝑚 ∈ 𝑀

(1) 𝑖 ← 0

(2) 𝑠
∗

← 𝑠
1

(3) while 𝑖 ≤ 𝑁 do
(4) 𝑚 ← random(𝑀)

(5) 𝑠
2
← 𝑚(𝑠

1
)

(6) 𝑖 ← 𝑖 + 1

(7) if 𝐶(𝑠
2
) ≤ 𝐶(𝑠

1
) then

(8) if 𝐶(𝑠
2
) ≤ 𝐶(𝑠

∗

) then
(9) 𝑠

∗

← 𝑠
2

(10) end if
(11) 𝑠

1
← 𝑠
2

(12) 𝑖 = 0

(13) else
(14) Δ new ← (𝐶(𝑠

2
) − 𝐶(𝑠

1
))/𝐶(𝑠

1
)

(15) if Δ new < max(list) then
(16) list ← list \ {max (list)}
(17) list ← list ∪ {Δ new}

(18) 𝑠
1
← 𝑠
2

(19) 𝑖 = 0

(20) end if
(21) end if
(22) end while
(23) return 𝑠

∗

Algorithm 2: LBTA optimization procedure.

Table 1: Simulated annealing parameters.

Parameter Description Value

𝛼 Reduce factor 1 −
7

𝑁

𝜏
0 Initial temperature 0.99
𝛿
0 Minimal difference between solutions 0.01
𝑝
0 Initial acceptance probability 1

𝑁 Number of SA iterations 300000
𝑁const Number of iterations at constant temperature 10

For the algorithm overview see Algorithm 3, and for the
overview of the SA parameters see Table 1.

4.3. Neighborhood Function. The most problem-specific
mechanism of both the SA and the LBTA algorithm that
always needs a different approach and implementation is the
procedure of generating a candidate solution from the neigh-
borhood of the current one, which is called a perturbation
scheme, transition operation/operator, or a move function.
Although there are many ways to accomplish this task, we
have examined the following operators.

(1) Deactivate a node at random.
(2) Activate a random node and select the MCS with the

smallest raw rate.
(3) Switch MCS to one with higher raw rate.
(4) Switch MCS to one with lower raw rate.
(5) Switch MCS to a random one.

Require: Initial solution 𝑠
1

(1) 𝑠
∗

← 𝑠
1

(2) for 𝑖 = 1 to 𝑁 do
(3) for 𝑡 = 1 to 𝑁const do
(4) 𝑠

2
← 𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑒(𝑠

1
)

(5) 𝛿 ← 𝐶(𝑠
2
) − 𝐶(𝑠

1
)

(6) if 𝛿 ≤ 0 or 𝑒−𝛿/𝑘𝜏 > random(0, 1) then
(7) 𝑠

1
← 𝑠
2

(8) end if
(9) if 𝐶(𝑠

2
) < 𝐶(𝑠

∗

) then
(10) 𝑠

∗

← 𝑠
2

(11) end if
(12) end for
(13) 𝜏 ← 𝜏 ∗ 𝛼

(14) end for
(15) return 𝑠

∗

Algorithm 3: Simulated annealing.

In order to generate a new solution, the LBTA algo-
rithm applies one of the aforementioned operators chosen
at random to the current solution. SA on the other hand
uses during the whole optimization procedure only one,
compound operator, a combination of operators 1, 2, and 5 so
that a transition from initial to any feasible solution is possible
(see Algorithm 4).

4.4. Implementation Details

4.4.1. Zero Elements. In the first phase of the list-based
threshold accepting algorithm the list is populated with
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Require: Current solution compatible set CS
Ensure: CS = neighbor(CS)
(1) Choose at random V ∈ V and 𝑒 ∈ 𝛿+(V) that satisfy (11)–(14).
(2) if V ∈ A then
(3) if random(0, 1) < 1/ |M(𝑒)| then
(4) A ← A \ {V} [deactivate node]
(5) else
(6) 𝑚 ← random(M(𝑒) \ {𝑚}) [switch MCS]
(7) end if
(8) else
(9) A ← A ∪ {V} [activate node]
(10) 𝑚 ← random(M(𝑒)) [select MCS]
(11) end if

Algorithm 4: SA compatible set perturbation scheme.

values of relative change between two solutions Δ ≥ 0. After
careful consideration, we believe that including zeros in the
list is a misconception. In the actual optimization procedure,
that is, the second phase, the threshold value is computed
only if the new solution is worse than the current one, which
means that the calculated relative change will always have
a positive value (Δ new > 0). The new threshold value is
compared with the largest value from the list (𝑇

ℎmax). Thus,
we can distinguish three cases.

(1) 𝑇
ℎmax = 0: since thresholds are nonnegative from

definition, in this case, the list contains all zero
elements and it will not change throughout the whole
procedure (𝑇

ℎmax is constant). Comparing a positive
threshold value Δ new against zero yields in discarding
the candidate solution.The conclusions are as follows:

(a) it does notmatter howmany zeros are in the list;
the effective size of the list is equal to one;

(b) the algorithm is reduced to hill climbing algo-
rithm that accepts candidate solutionswhich are
at least as good as the current one.

(2) 𝑇
ℎmax > 0 and Δ new < 𝑇

ℎmax: the largest (positive)
threshold value from the list 𝑇

ℎmax is replaced by a
smaller (positive) threshold value Δ new. The number
of zero elements in the list remains the same through-
out the whole procedure and therefore is completely
irrelevant to the optimization process. The effective
list size is equal to the number of positive elements.

(3) 𝑇
ℎmax > 0 and Δ new ≥ 𝑇

ℎmax: the new solution is
discarded and the list remains unchanged.

The main idea behind the list is to control the diversifi-
cation and intensification of the search process. In the early
stage of the search, the algorithm should allow covering as
much solution space as possible, whichmeans that the thresh-
olds in the list are expected to be large enough to make that
happen. In themiddle stage, the algorithm should slowly stop
fostering the diversification and begin to foster the intensi-
fication of the search. In the end stage, the intensification
should be the strongest; that is, the list is supposed to contain

smaller and smaller threshold values, which induces the
discarding of worse solution candidates. As a consequence of
that, the algorithm is converging to a local or possibly even a
global optimum.

4.4.2. Stopping Criterion. Even though equipped with an
early termination mechanism, the LBTA algorithm does not
have a solution space independent stopping criterion. If the
number of subsequently discarded worse solutions is set too
high, the algorithm will run for an unacceptable long time
(it has been observed during preliminary tests). Hence, we
propose using a global counter of iterations so that when a
limit is reached, the algorithm terminates gracefully.

5. Numerical Experiments

The problem defined by the constraints (6)–(9) with the
network flows 𝑓

𝑑
as the optimization criteria was optimized

with different aggregation operators: max-min, lexicographic
max-min (LMM), CVaR (31)-(32), andWOWA (28)-(29). For
the pricing problem (10)–(18) we applied the two approx-
imate methods: the list-based threshold accepting (LBTA)
algorithm and the simulated annealing (SA) algorithm and
compared them to the exact MIP approach solved using the
CPLEX 12.1 optimization package.

The numerical experiments were performed on a number
of randomly generated problem instances of different sizes.

The algorithm of generating network topology instances
can be described as follows. A grid of length 25m of 30 × 30
points is created. Each of the grid points can be chosen to be
a mesh router or a mesh gateway. First, the location of each
gateway 𝑔 ∈ G is chosen at random. Then, for each router
𝑟 ∈ R, a location is chosen at random that satisfies condition
(1) for at least one link 𝑒 = (𝑔, 𝑟), 𝑔 ∈ G, and MCS 𝑚 ∈ M.
This condition is equivalent to 𝑑

𝑔𝑟
≤ 𝑑
𝑚, where 𝑑

𝑔𝑟
is the

distance between gateway 𝑔 and router 𝑟 and 𝑑
𝑚 is the

maximum distance for selected MCS𝑚. Finally, paths rooted
in the gateways are established by iteratively connecting the
neighboring routers that are reachable with the highest link
rate and, if possible, with the lowest hop count. The specific
data for different MCSs are presented in Table 2.
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Table 2: IEEE 802.11a MCS, FER 61%, and 1500-byte payload.

MCS𝑚 Raw rate 𝐵𝑚
(Mbps)

SINR threshold
𝛾
𝑚 (dB)

Maximum link
length 𝑑𝑚 (m)

BPSK 1/2 6 3.5 273.5
BPSK 3/4 9 6.5 230.0
QPSK 1/2 12 6.6 228.0
QPSK 3/4 18 9.5 193.7
16-QAM 1/2 24 12.8 160.2
16-QAM 3/4 36 16.2 131.7
64-QAM 2/3 48 20.3 103.8
64-QAM 3/4 54 22.1 93.5

Although preferential weights determination is an impor-
tant issue in the theory of ordered weighted averaging [37–
39], for the performance check simple generation methodol-
ogy has been chosen. All the weights, except two, are strictly
decreasing numbers with the step 0.1, while the two selected
weights (𝑘 = ⌊𝑛/3⌋ and 𝑘 = ⌊2𝑛/3⌋) differ from the previous
ones by 0.5. The importance weights were generated as
random values uniformly distributed in the range [1, 2] and
then normalized.

For the LBTA algorithm we used the list size of 50000
elements. This value was chosen based on our preliminary
tests for selected problem sizes.

To better compare relative performance of the LBTA
and SA algorithms, the only stopping criterion for single
run was reaching exactly 300000 iterations, the same for all
computations and problem sizes.This way we could compare
the speed and the convergence per iteration.

All the experiments were performed on the Intel Core
i7 3.4GHz microprocessor using CPLEX 12.1 optimization
library for the linear master problem. The results are the
average of 10 randomly generated problems of a given size.
Computing times are presented in Table 3, optimal objective
value in Table 4, and the total number of the columns (com-
patible sets) generated (with either LBTA or SA) in Table 5.
In all tables the test cases for which the timeout of 600 s
occurred were marked with a “—” sign.

A note is required on the LMM optimal problem values
(Table 4). Here the objective value of the last step of the LMM
algorithm is given. That means that if in the previous steps
only suboptimal values were reached, in the last step a better
(greater) value than in the exact algorithm is possible. That
is why the optimal objective values for the LMM should be
treated only as a hint to the performance of the algorithm and
not as an algorithm absolute quality measure.

The most noticeable advantage of LBTA algorithm over
the SA algorithm when applied to the WMN problem is the
computing time; in many cases the LBTA is faster than SA by
an order of magnitude. The reason for such a good behavior
lays not only in the computing speed of LBTA but also in
the quality of the results because this affects the number of
the generated columns (compatible sets). One can also notice

Table 3: Computing times (s).

Problem size Algorithm Aggregation operator
|D|, |E| |G| Max-Min LMM CVaR WOWA
50 8

SA

160.8 214.6 116.2 85.2
10 2 9.0 10.1 8.1 5.7
10 4 8.9 10.6 7.9 4.7
10 8 8.4 11.6 7.4 4.3
20 2 34.0 39.0 27.0 22.8
20 4 31.4 40.5 24.8 20.0
20 8 29.8 41.0 27.1 16.4
50 2 205.5 235.8 162.3 145.8
50 4 157.0 188.6 127.3 109.2
10 2

TA

1.0 1.3 1.0 0.9
10 4 1.0 1.3 0.9 0.7
10 8 0.9 1.5 0.9 0.7
20 2 4.4 5.1 3.5 3.9
20 4 4.0 6.3 3.7 3.2
20 8 3.9 6.2 4.0 2.6
50 2 17.1 22.2 16.4 23.1
50 4 11.8 21.3 12.6 16.0
50 8 15.2 21.2 13.3 16.0
10 2

MIP

1.5 1.8 1.5 1.3
10 4 1.2 1.8 0.9 0.7
10 8 1.1 2.0 0.9 0.9
20 2 66.9 86.4 63.0 82.7
20 4 48.2 79.7 42.0 61.7
20 8 63.8 87.7 62.4 64.5
50 2 — — — —
50 4 — — — —
50 8 — — — —

generally better quality of the results, particularly for bigger
problems, also compared to the exact MIP model.

We can also observe that the computation time increases
with the number of routers. This is obvious and can easily
be explained; as the network grows, the number of variables
increases; hence, more compatible sets need to be computed.
More interesting thing is that, for the same number of routers,
the computation time is the highest for the smallest number
of gateways. This can be explained by the fact that when the
number of gateways is small, many paths between routers and
gateways share the same link, which makes finding (feasible)
compatible sets more difficult. This property has especially
significant impact on the WOWA aggregation operator, for
which the computation time is equal to or decreases with the
number of gateways as long as the number of routers is fixed.

6. Conclusion

Effective, general purpose techniques are of considerable
importance in many optimization areas. We have shown
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Table 4: Optimal problem values (maximization).

Problem size Algorithm Aggregation operator
|D|, |E| |G| Max-Min LMM CVaR WOWA
10 2

SA

2.7 3.2 2.7 29.7
10 4 3.2 8.4 3.2 41.5
10 8 3.6 8.4 3.6 54.0
20 2 1.3 3.4 1.3 39.1
20 4 1.7 9.1 1.7 60.6
20 8 2.2 7.7 2.5 96.0
50 2 0.6 2.6 0.6 90.6
50 4 0.8 3.0 0.8 136.6
50 8 1.2 7.1 1.2 213.9
10 2

TA

2.7 3.2 2.7 29.7
10 4 3.2 8.0 3.2 41.4
10 8 3.6 10.2 3.6 54.0
20 2 1.3 4.2 1.3 38.9
20 4 1.7 14.1 1.7 60.0
20 8 2.0 10.2 2.4 95.0
50 2 0.6 4.5 0.6 93.2
50 4 0.6 6.0 0.7 139.4
50 8 1.2 7.0 1.2 215.9
10 2

MIP

2.8 3.3 2.8 30.2
10 4 3.3 7.9 3.3 42.6
10 8 3.8 7.9 3.8 54.8
20 2 1.4 3.2 1.4 41.2
20 4 1.8 11.2 1.8 63.0
20 8 2.6 5.5 2.7 99.4
50 2 — — — —
50 4 — — — —
50 8 — — — —

that one of the most promising algorithms is the list-based
threshold accepting metaheuristic. When applied to the
pricing problem ofWMN optimization it gives a tremendous
advantage over the classic and widely utilized simulated
annealing algorithm. We have also shown that OWA-based
advanced aggregation operators applied to the flow optimiza-
tion inwirelessmeshnetworks can be effectivelymodeled and
solved when compared to the traditional lexicographic max-
min operators.
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Table 5: Number of compatible sets generated.

Problem size Algorithm Aggregation operator
|D|, |E| |G| Max-Min LMM CVaR WOWA
10 2

SA

15.5 17.6 14.3 10.6
10 4 16.5 19.9 15.6 10.4
10 8 16.1 22.8 14.8 9.5
20 2 39.2 47.9 35.8 32.2
20 4 40.9 56.7 35.5 32.5
20 8 43.9 63.3 42.0 28.9
50 2 132.9 161.6 124.6 118.9
50 4 119.0 151.3 109.4 100.8
50 8 136.8 198.8 112.8 90.1
10 2

TA

15.5 18.0 14.6 10.8
10 4 16.2 19.3 14.5 10.3
10 8 14.4 21.5 13.9 9.6
20 2 39.5 44.9 32.5 32.4
20 4 39.6 60.0 36.5 28.8
20 8 35.3 56.0 37.5 27.1
50 2 102.5 133.5 99.5 99.1
50 4 77.5 135.5 80.6 82.0
50 8 104.1 137.2 90.2 83.2
10 2

MIP

19.1 21.0 16.5 12.0
10 4 21.1 24.2 17.0 10.7
10 8 20.1 25.4 16.5 9.9
20 2 52.0 58.2 41.1 37.8
20 4 53.1 64.6 40.3 34.3
20 8 60.3 69.5 49.6 30.6
50 2 — — — —
50 4 — — — —
50 8 — — — —

capacity assignment, transmission scheduling, and routing in
fair multicommodity flow networks.”
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[32] V. Černý, “Thermodynamical approach to the traveling sales-
man problem: an efficient simulation algorithm,” Journal of
Optimization Theory and Applications, vol. 45, no. 1, pp. 41–51,
1985.

[33] C. Koulamas, “A survey of simulated annealing applications to
operations research problems,” Omega, vol. 22, no. 1, pp. 41–56,
1994.

[34] P. Tian, J. Ma, and D.-M. Zhang, “Application of the simulated
annealing algorithm to the combinatorial optimization problem
with permutation property: an investigation of generation
mechanism,” European Journal of Operational Research, vol. 118,
no. 1, pp. 81–94, 1999.

[35] J. Hurkała and A. Hurkała, “Effective Design of the Simulated
Annealing Algorithm for the Flowshop Problem with Mini-
mum Makespan Criterion,” in Journal of Telecommunications
and Information Technology, vol. 2, pp. 92–98, 2012.

[36] J. Hurkała and A. Hurkała, “Fair optimization with advanced
aggregation operators in amulticriteria facility layout problem,”
in Proceedings of the IEEE Federated Conference on Computer
Science and Information Systems, pp. 355–362, 2013.

[37] Y. M. Wang and C. Parkan, “A minimax disparity approach
for obtaining OWAoperator weights,” Information Sciences, vol.
175, no. 1-2, pp. 20–29, 2005.

[38] B. S. Ahn, “Preference relation approach for obtaining OWA
operators weights,” International Journal of Approximate Rea-
soning, vol. 47, no. 2, pp. 166–178, 2008.

[39] G. R. Amin, “Notes on properties of the OWAweights determi-
nation model,” Computers and Industrial Engineering, vol. 52,
no. 4, pp. 533–538, 2007.


