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A Lotka-Volterra competition model with nonlinear boundary conditions is considered. First, by using upper and lower solutions
method for nonlinear boundary problems, we investigate the existence of positive solutions in weak competition case. Next, we
prove that−𝑑

1
Δ𝑢 = 𝑢(𝑎

1
−𝑏

1
𝑢−𝑐

1
V), 𝑥 ∈ Ω; −𝑑

2
ΔV = V(𝑎

2
−𝑏

2
𝑢−𝑐

2
V), 𝑥 ∈ Ω; 𝜕𝑢/𝜕]+𝑓(𝑢) = 0, 𝑥 ∈ 𝜕Ω; 𝜕V/𝜕]+𝑔(V) = 0, 𝑥 ∈ 𝜕Ω,

has no positive solution when one of the diffusion coefficients is sufficiently large.

1. Introduction

In this paper, we study the existence of positive solutions to
the following problem with nonlinear boundary conditions:

−𝑑

1
Δ𝑢 = 𝑢 (𝑎

1
− 𝑏

1
𝑢 − 𝑐

1
V) , 𝑥 ∈ Ω,

−𝑑

2
ΔV = V (𝑎

2
− 𝑏

2
𝑢 − 𝑐

2
V) , 𝑥 ∈ Ω,

𝜕𝑢

𝜕]
+ 𝑓 (𝑢) = 0, 𝑥 ∈ 𝜕Ω,

𝜕V
𝜕]

+ 𝑔 (V) = 0, 𝑥 ∈ 𝜕Ω.

(1)

Here,

(H1) Ω ⊂ R𝑁 (𝑁 ≥ 1) is an open bounded domain, and
] is the outward unit normal vector of the boundary
𝜕Ω;

(H2) for 𝑖 = 1, 2, 𝑎
𝑖
, 𝑏
𝑖
, 𝑐
𝑖
, and 𝑑

𝑖
are positive constants;

(H3) 𝑓 and 𝑔 are strictly increasing 𝐶

2 functions in R and
𝑓(0) = 𝑔(0) = 𝑓

󸀠
(0) = 𝑔

󸀠
(0) = 0;

(H4) 𝑏
1
/𝑏

2
> 𝑎

1
/𝑎

2
> 𝑐

1
/𝑐

2
.

In the usual interpretation of the competitionmodel, 𝑢(𝑥)
and V(𝑥) are population variables; it is natural to consider only
nonnegative solutions of (1). There is clearly a trivial solution
𝑢 = V = 0 for all values of the parameters. In addition,

for some values of parameters, there exist two semitrivial
solutions (𝑢, V) = (𝑢, 0) and (0, V).More interesting are the so-
called positive solutions or coexistence solutions, where both
𝑢(𝑥) and V(𝑥) are positive for all 𝑥 ∈ Ω.

By using the positive operator theory, Ahn and Li [1]
proved the existence of positive solutions to the following
elliptic system:

−𝑑

1
Δ𝑢 = 𝑢𝑓 (𝑢, V) , 𝑥 ∈ Ω,

−𝑑

2
ΔV = V𝑔 (𝑢, V) , 𝑥 ∈ Ω,

𝜕𝑢

𝜕]
+ 𝛼 (𝑢) = 0, 𝑥 ∈ 𝜕Ω,

𝜕V
𝜕]

+ 𝛽 (V) = 0, 𝑥 ∈ 𝜕Ω,

(2)

where 𝑓(𝑢, V), 𝑔(𝑢, V) are 𝐶

1 functions in 𝑢 and V, 𝑓
𝑢

≤ 0,
𝑓V ≥ 0, 𝑔

𝑢
≤ 0, and 𝑔V ≥ 0 for (𝑢, V) ∈ R+ × R+; 𝛼 and 𝛽 are

increasing functions in R and 𝛼(0) = 𝛽(0) = 0.
The main project of our paper is to investigate the

existence of positive solutions to the problem (1). In Section 2
we state some known results, which are useful throughout
this paper. Section 3 is devoted to proving the existence of
positive solutions by using the upper and lower solutions
method.When the diffusion coefficient 𝑑

1
or 𝑑
2
is sufficiently

large, we will prove that problem (1) has no positive solution.
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2 Abstract and Applied Analysis

For the homogeneous Neumann boundary conditions,
that is, 𝑓(𝑢) ≡ 0 and 𝑔(V) ≡ 0, problem (1) has been studied
intensively by many authors. For the related results, please
refer to, for instance, [2–8], [9, Section 4.3], and the references
cited therein.

2. Preliminaries

In this section, wewill introduce some notations and lemmas,
which serve as the basic tools for the arguments to prove our
results.

Throughout this paper, we will consider the solutions
𝑢, V ∈ 𝐶(Ω). For a given continuous function 𝑞 : Ω →

𝑅, let 𝜎

1
(𝑞, 𝑑) be the principal eigenvalue of the following

eigenvalue problem:

−𝑑Δ𝑢 + 𝑞 (𝑥) 𝑢 = 𝜆𝑢, 𝑥 ∈ Ω,

𝜕𝑢

𝜕]
= 0, 𝑥 ∈ 𝜕Ω.

(3)

When the diffusion coefficient 𝑑 = 1, we denote the first
eigenvalue for (3) by 𝜎

1
(𝑞).

The variational characterization of 𝜎
1
(𝑑, 𝑞) is

𝜎

1
(𝑑, 𝑞)

= inf {∫
Ω

(𝑑

󵄨

󵄨

󵄨

󵄨

∇𝜓

󵄨

󵄨

󵄨

󵄨

2

+ 𝑞 (𝑥) 𝜓

2
) 𝑑𝑥

: ∫

Ω

𝜓

2
𝑑𝑥 = 1, 𝜓 ∈ 𝐻

1
(Ω)} .

(4)

We are concerned with the relation between the sign of
𝜎

1
(𝑑, 𝑞) and the function 𝑞.

Lemma 1 (see [9]). The first eigenvalue 𝜎
1
(𝑑, 𝑞) of (3) has the

following properties:

∫

Ω

𝑞 (𝑥) 𝑑𝑥 ≤ 0 󳨐⇒ 𝜎

1
(𝑑, 𝑞) < 0, ∀𝑑 > 0. (5)

Lemma 2 (see [10]). Suppose that 𝑞(𝑥) ∈ 𝐶(Ω) and 𝑀 is a
positive constant satisfying 𝑀 − 𝑞(𝑥) > 0. Then the following
hold:

(i) 𝜎
1
(𝑞) < 0 ⇒ 𝑟[(𝑀 − Δ)

−1
(𝑀 − 𝑞(𝑥))] > 1;

(ii) 𝜎
1
(𝑞) > 0 ⇒ 𝑟[(𝑀 − Δ)

−1
(𝑀 − 𝑞(𝑥))] < 1;

(iii) 𝜎
1
(𝑞) = 0 ⇒ 𝑟[(𝑀 − Δ)

−1
(𝑀 − 𝑞(𝑥))] = 1.

Next, we consider the nonlinear elliptic problem:

−Δ𝑢 = 𝐸 (𝑥, 𝑢) , 𝑥 ∈ Ω,

𝜕𝑢

𝜕]
+ 𝑓 (𝑢) = 0, 𝑥 ∈ 𝜕Ω,

(6)

where 𝑓 ∈ 𝐶

2
(R) is strictly increasing with 𝑓(0) = 0.

Definition 3. Let 𝐸(𝑥, 𝜉) ∈ 𝐶(Ω × R) be global Lip-
schitz continuous in 𝜉 for all 𝑥 ∈ Ω. The functions

𝑢, 𝑢 ∈ 𝐶

2
(Ω) ∩ 𝐶

1
(Ω) are called the upper and lower solu-

tions of (6), if 𝑢 and 𝑢 satisfy

−Δ𝑢 ≥ 𝐸 (𝑥, 𝑢) , 𝑥 ∈ Ω,

𝜕𝑢

𝜕]
+ 𝑓 (𝑢) ≥ 0, 𝑥 ∈ 𝜕Ω,

−Δ𝑢 ≤ 𝐸 (𝑥, 𝑢) , 𝑥 ∈ Ω,

𝜕𝑢

𝜕]
+ 𝑓 (𝑢) ≤ 0, 𝑥 ∈ 𝜕Ω.

(7)

By using the upper and lower solutions method, the
following result was obtained by Ahn and Li [1].

Lemma 4. Suppose that 𝑢 ≥ 𝑢 ≥ 0 are upper and lower
solutions of (6); then there exists a maximal solution 𝑢̃ of (6)
such that 𝑢 ≥ 𝑢̃ ≥ 𝑢.

Lemma 5 (see [1]). Let 𝑃, 𝑑 be positive constants and ℎ ∈

𝐶(Ω). Consider

−𝑑Δ𝑢 + 𝑃𝑢 = ℎ, 𝑥 ∈ Ω,

𝜕𝑢

𝜕]
+ 𝑓 (𝑢) = 0, 𝑥 ∈ 𝜕Ω,

(8)

where 𝑓 ∈ 𝐶

2
(R), 𝑓(0) = 0, and 𝑓 is strictly increasing. Then

the following hold:

(i) problem (8) has a solution 𝑢 ∈ 𝑊

2,𝑚
(Ω) ∩ 𝐶

1,𝛼
(Ω) for

some 𝛼 ∈ (0, 1), and

‖𝑢‖𝑊
2,𝑚 ≤ 𝐶

0‖
ℎ‖∞

, (9)

where 𝐶
0
is dependent on 𝑃;

(ii) if 0 ̸≡ ℎ ≥ 0, then (8) has a unique positive solution.

Nowwe consider the following nonlinear boundary value
problem:

−Δ𝑢 = 𝑢𝐹 (𝑥, 𝑢) , 𝑥 ∈ Ω,

𝜕𝑢

𝜕]
+ 𝑓 (𝑢) = 0, 𝑥 ∈ 𝜕Ω.

(10)

Lemma 6. Let 𝑓 ∈ 𝐶

2
(R) be an increasing and convex

function in R+, and satisfy with 𝑓(0) = 𝑓

󸀠
(0) = 0. Assume

that the function 𝐹 satisfies the following:

(i) 𝐹 ∈ 𝐶(Ω × R+), 𝐹(𝑥, 𝑢) is Lipschitz-continuous in 𝑢,
and the Lipschitz constant 𝐶 is independent of (𝑥, 𝑢) ∈
Ω ×R+;

(ii) 𝐹(𝑥, 𝑢) is decreasing in 𝑢;
(iii) 𝐹(𝑥, 0) > 0 for 𝑥 ∈ Ω, 𝐹(𝑥, 𝑢) < 0 in Ω × (𝑐

0
,∞) for

some constant 𝑐
0
> 0.

If 𝜎
1
(−𝐹(𝑥, 0)) < 0, then (10) has a unique positive solu-

tion. If 𝜎
1
(−𝐹(𝑥, 0)) ≥ 0, then 𝑢 = 0 is the only nonnegative

solution of (10).
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Proof. Let 𝜓 > 0 be the eigenfunction corresponding to
the eigenvalue 𝜎

1
(0) = 0 of problem (3); we can obtain

𝐹(𝑥, 𝜉) < 𝜎

1
when 𝜉 > 𝑐

0
, due to the hypothesis (iii). With the

assumptions on the function𝑓 in mind, for a large𝑀 > 0, we
have

−Δ𝑀𝜓 − 𝑀𝜓𝐹 (𝑥,𝑀𝜓) ≥ 0, 𝑥 ∈ Ω,

𝜕𝑀𝜓

𝜕]
+ 𝑓 (𝑀𝜓) ≥ 0, 𝑥 ∈ 𝜕Ω.

(11)

Therefore 𝑇(𝑀𝜓) ≤ 𝑀𝜓, where the operator 𝑇𝑢 := (−Δ ⋅

+𝑃⋅)(𝐹(𝑥, 𝑢)𝑢 + 𝑃𝑢) is defined by the problem (8). 𝑇 is
compact in the positive cone 𝐾 ⊂ 𝐶(Ω) by Lemma 5. The
function 𝐹(𝑥, ⋅) ⋅ +𝑃⋅ is monotone increasing on [0, ‖𝑀𝜓‖

∞
]

for sufficiently large 𝑃 > 0. Therefore 𝑇 is increasing on the
order interval (0,𝑀𝜓) with 𝑇(0) = 0. Taking advantage of [1,
Lemma 2.13], we know 𝑇

󸀠
(0) = (−Δ + 𝑃)[𝐹(𝑥, 0) + 𝑃]. The

spectral radius 𝑟(𝑇󸀠(0)) > 1 by Lemma 2. Then, the result of
[11, Theorem 7.6] ensures our conclusion.

Next we show the uniqueness. Suppose 𝑢

1
is a positive

solution of (10). Let 𝑢̃ be amaximal solution of (10).We claim
that 𝑢̃ = 𝑢

1
.

Suppose 𝑢̃ ≥ 𝑢

1
̸≡ 𝑢̃. Then

0 < ∫

𝜕Ω

[𝑢

1
𝑓 (𝑢̃) − 𝑢̃𝑓 (𝑢

1
)] 𝑑𝑆

= ∫

Ω

(−𝑢

1
Δ𝑢̃ + 𝑢̃Δ𝑢

1
) 𝑑𝑥

= ∫

Ω

𝑢̃𝑢

1
[𝐹 (𝑥, 𝑢̃) − 𝐹 (𝑥, 𝑢

1
)] 𝑑𝑥 ≤ 0.

(12)

The first integral is positive, as 𝑓 is convex and 𝑓(0) = 0. The
last integral is nonpositive, since 𝐹(𝑥, 𝑢) is decreasing in 𝑢.
This contradiction demonstrates 𝑢̃ ≡ 𝑢

1
. If 𝜆
1
(−𝐹(𝑥, 0)) ≥ 0,

the proof is similar to [1, Lemma 2.17], and we omit it. This
completes the proof.

By Lemma 5, we are able to conclude the following result.

Proposition 7. Suppose that 𝑓, 𝑔 are convex functions in R+.
Then (1) has two semitrivial solutions (𝜃

1
, 0) and (0, 𝜃

2
), for

some 0 < 𝛼 < 1, where 𝜃

1
∈ 𝐶

1,𝛼
(Ω) is the unique positive

solution of

−𝑑

1
Δ𝑢 = 𝑢 (𝑎

1
− 𝑏

1
𝑢) , 𝑥 ∈ Ω,

𝜕𝑢

𝜕]
+ 𝑓 (𝑢) = 0, 𝑥 ∈ 𝜕Ω,

(13)

and 𝜃

2
∈ 𝐶

1,𝛼
(Ω) is the unique positive solution of

−𝑑

2
ΔV = V (𝑎

2
− 𝑐

2
V) , 𝑥 ∈ Ω,

𝜕V
𝜕]

+ 𝑔 (V) = 0, 𝑥 ∈ 𝜕Ω.

(14)

Finally, we cite a strong maximum principle (see [5,
Proposition 2.2]).

Lemma 8. Suppose that Ω is smooth and 𝑔 ∈ 𝐶(Ω × R1).
Assume that 𝑧 ∈ 𝐶

2
(Ω) ∩ 𝐶

1
(Ω) and satisfies

Δ𝑧 (𝑥) + 𝑔 (𝑥, 𝑧 (𝑥)) ≥ 0, 𝑥 ∈ Ω,

𝜕𝑧

𝜕]
≤ 0, 𝑥 ∈ 𝜕Ω.

(15)

If 𝑧(𝑥
0
) = max

Ω
𝑧(𝑥), then 𝑔(𝑥

0
, 𝑧(𝑥

0
)) ≥ 0.

3. Existence and Nonexistence of
Positive Solution

By using the upper-lower solutions argument for nonlinear
boundary problems, we first study the existence of positive
solutions to (1). Our method is technically and conceptually
simple in the proof of existence results involving upper-
lower solutions hypotheses and Leray-Schauder continuation
argument. Next, we prove that problem (1) has no positive
solution, if one of the diffusion coefficients is sufficiently
large. Finally, we discuss the stability of semitrivial solutions.

We will show that the positive solutions of systems (1)
have a priori bound.

Lemma9. Suppose that (𝑢, V) is a positive solution of (1).Then
𝑢 ≤ 𝑎

1
/𝑏

1
and V ≤ 𝑎

2
/𝑐

2
.

Proof. In view of the first equation of (1), 𝑢 satisfies

−𝑑

1
Δ𝑢 − 𝑢 (𝑎

1
− 𝑏

1
𝑢 − 𝑐

1
V) = 0, 𝑥 ∈ Ω,

𝜕𝑢

𝜕]
+ 𝑓 (𝑢) = 0, 𝑥 ∈ 𝜕Ω.

(16)

As 𝑢 is continuous on the compact setΩ and𝑓(𝑢) ≥ 0, thanks
to Lemma 8, it is easy to know 𝑢 ≤ 𝑎

1
/𝑏

1
. In a similar manner,

we obtain V ≤ 𝑎

2
/𝑐

2
.

Next, we give the definitions of upper and lower solutions
to (1).

Definition 10. Assume that (𝑢, V), (𝑢, V) ∈ 𝐶

1
(Ω) ∩𝐶

2
(Ω). We

called that (𝑢, V) and (𝑢, V) are the coupled upper and lower
solutions of (1), if (𝑢, V) and (𝑢, V) satisfy

−𝑑

1
Δ𝑢 − 𝑢 (𝑎

1
− 𝑏

1
𝑢 − 𝑐

1
V) ≥ 0, 𝑥 ∈ Ω,

−𝑑

2
ΔV − V (𝑎

2
− 𝑏

2
𝑢 − 𝑐

2
V) ≥ 0, 𝑥 ∈ Ω,

𝜕𝑢

𝜕]
+ 𝑓 (𝑢) ≥ 0, 𝑥 ∈ 𝜕Ω,

𝜕V
𝜕]

+ 𝑔 (V) ≥ 0, 𝑥 ∈ 𝜕Ω,

−𝑑

1
Δ𝑢 − 𝑢 (𝑎

1
− 𝑏

1
𝑢 − 𝑐

1
V) ≤ 0, 𝑥 ∈ Ω,

−𝑑

2
ΔV − V (𝑎

2
− 𝑏

2
𝑢 − 𝑐

2
V) ≤ 0, 𝑥 ∈ Ω,

𝜕𝑢

𝜕]
+ 𝑓 (𝑢) ≤ 0, 𝑥 ∈ 𝜕Ω,

𝜕V
𝜕]

+ 𝑔 (V) ≤ 0, 𝑥 ∈ 𝜕Ω.

(17)
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Theorem 11. Suppose that (𝑢, V) and (𝑢, V) are the coupled
upper and lower solutions of (1) and (𝑢, V) ≥ (𝑢, V). Then (1)
has at least one solution (𝑢, V) and (𝑢, V) ≥ (𝑢, V) ≥ (𝑢, V).

Proof. For any given 𝑊 := (𝑤

1
, 𝑤

2
) ∈ [𝐶(Ω)]

2 and a suffi-
ciently large positive constant𝑀, let

𝐹

1
(𝑥) = 𝑤

1
(𝑎

1
− 𝑏

1
𝑤

1
− 𝑐

1
𝑤

2
) + 𝑀𝑤

1
,

𝐹

2
(𝑥) = 𝑤

2
(𝑎

2
− 𝑏

2
𝑤

1
− 𝑐

2
𝑤

2
) + 𝑀𝑤

2
.

(18)

Consider the following problem:

−𝑑

1
Δ𝑢 + 𝑀𝑢 = 𝑤

1
(𝑎

1
− 𝑏

1
𝑤

1
− 𝑐

1
𝑤

2
) + 𝑀𝑤

1
, 𝑥 ∈ Ω,

𝜕𝑢

𝜕]
+ 𝑓 (𝑢) = 0, 𝑥 ∈ 𝜕Ω.

(19)

Since 𝐹1(𝑥) ∈ 𝐶(Ω), we see that (19) admits a unique solution
𝑢 ∈ 𝐶

1+𝛼
(Ω) by Lemma 5. Similarly, the problem

−𝑑

2
ΔV + 𝑀V = 𝑤

2
(𝑎

2
− 𝑏

2
𝑤

1
− 𝑐

2
𝑤

2
) + 𝑀𝑤

2
, 𝑥 ∈ Ω,

𝜕V
𝜕]

+ 𝑔 (V) = 0, 𝑥 ∈ 𝜕Ω

(20)

has a unique solution V ∈ 𝐶

1+𝛼
(Ω). Denote 𝑈 = (𝑢, V), 𝑈 =

(𝑢, V), and 𝑈 = (𝑢, V). We define the ordered interval

𝐴 = {𝑈 ∈ [𝐶 (Ω)]

2

: 𝑈 ≤ 𝑈 ≤ 𝑈} (21)

and an operator 𝑇 : 𝐴 → [𝐶(Ω)]

2 by

𝑈 = 𝑇𝑊. (22)

Thanks to Lemma 5, we have

‖𝑢‖

𝐶
1,𝛼
(Ω)

≤ 𝐶 (

󵄩

󵄩

󵄩

󵄩

𝑤

1
(𝑎

1
− 𝑏

1
𝑤

1
− 𝑐

1
𝑤

2
)

󵄩

󵄩

󵄩

󵄩∞
+

󵄩

󵄩

󵄩

󵄩

𝑤

1

󵄩

󵄩

󵄩

󵄩∞
) ,

‖V‖
𝐶
1,𝛼
(Ω)

≤ 𝐶 (

󵄩

󵄩

󵄩

󵄩

𝑤

2
(𝑎

2
− 𝑏

2
𝑤

1
− 𝑐

2
𝑤

2
)

󵄩

󵄩

󵄩

󵄩∞
+

󵄩

󵄩

󵄩

󵄩

𝑤

2

󵄩

󵄩

󵄩

󵄩∞
) .

(23)

Hence, 𝑇(𝐴) is bounded in [𝐶(Ω)]

2.
We claim that𝑇 : 𝐴 → [𝐶(Ω)]

2 is a compact operator. To
see this, it suffices to prove that the operator 𝑇 is continuous.
Suppose that 𝑊

𝑛
= (𝑤

1𝑛
, 𝑤

2𝑛
) → 𝑊 = (𝑤

1
, 𝑤

2
) in [𝐶(Ω)]

2.
Denote

𝐹

1

𝑛
(𝑥) = 𝑤

1𝑛
(𝑎

1
− 𝑏

1
𝑤

1𝑛
− 𝑐

1
𝑤

2𝑛
) + 𝑀𝑤

1𝑛
,

𝐹

2

𝑛
(𝑥) = 𝑤

2𝑛
(𝑎

2
− 𝑏

2
𝑤

1𝑛
− 𝑐

2
𝑤

2𝑛
) + 𝑀𝑤

2𝑛
.

(24)

Then 𝐹

𝑛
= (𝐹

1

𝑛
, 𝐹

2

𝑛
) → 𝐹 = (𝐹

1
, 𝐹

2
) in [𝐶(Ω)]

2. Let 𝑈
𝑛
=

𝑇𝑊

𝑛
. By Lemma 5, we obtain

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛

󵄩

󵄩

󵄩

󵄩𝑊
2,𝑝
(Ω)

≤ 𝐶 (

󵄩

󵄩

󵄩

󵄩

󵄩

𝐹

1

𝑛
(𝑥) − 𝐹

1
(𝑥)

󵄩

󵄩

󵄩

󵄩

󵄩∞
+

󵄩

󵄩

󵄩

󵄩

󵄩

𝐹

1
(𝑥)

󵄩

󵄩

󵄩

󵄩

󵄩∞
) ,

󵄩

󵄩

󵄩

󵄩

V
𝑛

󵄩

󵄩

󵄩

󵄩𝑊
2,𝑝
(Ω)

≤ 𝐶 (

󵄩

󵄩

󵄩

󵄩

󵄩

𝐹

2

𝑛
(𝑥) − 𝐹

2
(𝑥)

󵄩

󵄩

󵄩

󵄩

󵄩∞
+

󵄩

󵄩

󵄩

󵄩

󵄩

𝐹

2
(𝑥)

󵄩

󵄩

󵄩

󵄩

󵄩∞
) .

(25)

Therefore, 𝑈
𝑛

⇀ 𝑈 in [𝑊

2,𝑝
(Ω)]

2. Note that 𝑊2,𝑝(Ω) 󳨅→

𝐶

1+𝛼
(Ω) is compact; it is deduced that 𝑈

𝑛
→ 𝑈 in

[𝐶

1+𝛼
(Ω)]

2. It is obvious that 𝑈 = (𝑢, V) is the solution of

−𝑑

1
Δ𝑢 + 𝑀𝑢 = 𝑢 (𝑎

1
− 𝑏

1
𝑤

1
− 𝑐

1
𝑤

2
) + 𝑀𝑤

1
, 𝑥 ∈ Ω,

−𝑑

2
ΔV + 𝑀V = V (𝑎

2
− 𝑏

2
𝑤

1
− 𝑐

2
𝑤

2
) + 𝑀𝑤

2
, 𝑥 ∈ Ω,

𝜕𝑢

𝜕]
+ 𝑓 (𝑢) = 0, 𝑥 ∈ 𝜕Ω,

𝜕V
𝜕]

+ 𝑔 (V) = 0, 𝑥 ∈ 𝜕Ω.

(26)

This shows that 𝑇 : 𝐴 → [𝐶(Ω)]

2 is continuous.
Now, we would like to prove𝑇(𝐴) ⊂ 𝐴. Suppose that𝑊 ∈

𝐴 and 𝑈 = 𝑇𝑊, where 𝑈 = (𝑢, V), 𝑊 = (𝑤

1
, 𝑤

2
). We first

prove 𝑢 ≥ 𝑢. In virtue of (𝑤
1
, 𝑤

2
) ∈ 𝐴, we have that

−𝑑

1
Δ𝑢 + 𝑀𝑢 ≥ 𝑢 (𝑎

1
− 𝑏

1
𝑢 − 𝑐

1
𝑤

2
) + 𝑀𝑢, 𝑥 ∈ Ω,

𝜕𝑢

𝜕]
+ 𝑓 (𝑢) ≥ 0, 𝑥 ∈ 𝜕Ω.

(27)

Let 𝑧 = 𝑢 − 𝑢. Noting that 𝑢 ≥ 𝑤

1
and 𝑢 satisfies (19), it is

obvious that

−𝑑

1
Δ𝑧 + 𝑀𝑧 ≥ 𝑢 (𝑎

1
− 𝑏

1
𝑢 − 𝑐

1
𝑤

2
)

− 𝑤

1
(𝑎

1
− 𝑏

1
𝑤

1
− 𝑐

1
𝑤

2
)

+ 𝑀(𝑢 − 𝑤

1
) ≥ 0, 𝑥 ∈ Ω,

𝜕𝑧

𝜕]
+ 𝑓 (𝑢) − 𝑓 (𝑢) ≥ 0, 𝑥 ∈ 𝜕Ω.

(28)

On the contrary, we assume that 𝑢 ≥ 𝑢 is not true. By the
strongmaximum theory (see [12]), there exists 𝑥

0
∈ 𝜕Ω, such

that min
𝑥∈Ω

𝑧(𝑥) = 𝑧(𝑥

0
) = 𝑢(𝑥

0
) − 𝑢(𝑥

0
) < 0. Thanks to the

Hopf boundary lemma, we know

𝜕𝑧

𝜕]

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨𝑥=𝑥
0

< 0. (29)

In view of (28), we get

𝜕𝑧

𝜕]

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨𝑥=𝑥
0

≥ − [𝑓 (𝑢 (𝑥

0
)) − 𝑓 (𝑢 (𝑥

0
))] > 0. (30)

This is a contradiction with (29). Thus 𝑧 ≥ 0; that is, 𝑢 ≥ 𝑢.
Similarly, 𝑢 ≤ 𝑢, V ≥ V, and V ≤ V. By the Schauder fixed point
theorem, 𝑇 has a fixed point 𝑈 in 𝐴. The proof is complete.

Theorem 12. Suppose that 𝑏
1
/𝑏

2
> 𝑎

1
/𝑎

2
> 𝑐

1
/𝑐

2
and 𝑓, 𝑔 are

convex functions in R+. Then the problem (1) has at least one
positive solution.

Proof. By the assumption 𝑓

󸀠
(0) = 𝑔

󸀠
(0) = 0, there exists a

constant 𝛽 > 0 such that

lim
𝑠→0

𝑓 (𝑠)

𝑠

1+𝛽
= 0, lim

𝑠→0

𝑔 (𝑠)

𝑠

1+𝛽
= 0.

(31)
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Let 𝜃
1
, 𝜃

2
∈ 𝐶

1,𝛼
(Ω) be the unique positive solutions of

(13) and (14), respectively. Set 𝑈 = (𝑢, V) = (𝜃

1
, 𝜃

2
), 𝑈 =

(𝑢, V) = (𝜀

1+𝛽
𝜃

1
+ 𝜀, 𝜀

1+𝛽
𝜃

2
+ 𝜀), where 𝜀 > 0 is sufficiently

small. Then 𝑈 ≤ 𝑈 as 𝜃
1
and 𝜃

2
are positive on Ω. To prove

that𝑈 and𝑈 are the coupled upper and lower solutions of (1),
it suffices to verify inequalities (17) in Definition 10. Consider
the following.

(i) Thanks to 𝜃

1
, 𝜃

2
> 0 on Ω, the following are obvious

provided that 𝜀 > 0 is sufficiently small:

−𝑑

1
Δ𝑢 = 𝑢 (𝑎

1
− 𝑏

1
𝑢) ≥ (𝑎

1
− 𝑏

1
𝑢 − 𝑐

1
V) , 𝑥 ∈ Ω,

−𝑑

2
ΔV = (𝑎

2
− 𝑐

2
V) ≥ (𝑎

𝑐
− 𝑐

2
V − 𝑏

2
𝑢) , 𝑥 ∈ Ω,

𝜕𝑢

𝜕]
+ 𝑓 (𝑢) = 0,

𝜕V
𝜕]

+ 𝑔 (V) = 0, 𝑥 ∈ 𝜕Ω.

(32)

(ii) By Lemma 8, we have that 𝜃
1
(𝑥) ≤ 𝑎

1
/𝑏

1
and 𝜃(𝑥) ≤

𝑎

2
/𝑐

2
onΩ. In virtue of 𝑎

1
, 𝑎

2
> 0 and 𝑏

1
/𝑏

2
> 𝑎

1
/𝑎

2
>

𝑐

1
/𝑐

2
, a direct computation gives

− 𝑑

1
Δ𝑢 − (𝑎

1
− 𝑏

1
𝑢 − 𝑐

1
V)

= −𝑑

1
Δ (𝜀

1+𝛽
𝜃

1
+ 𝜀)

− (𝜀

1+𝛽
𝜃

1
+ 𝜀) (𝑎

1
− 𝑏

1
(𝜀

1+𝛽
𝜃

1
+ 𝜀) − 𝑐

1
𝜃

2
)

= 𝜀

1+𝛽
[𝜃

1
(𝑎

1
− 𝑏

1
𝜃

1
)]

− (𝜀

1+𝛽
𝜃

1
+ 𝜀) (𝑎

1
− 𝑏

1
(𝜀

1+𝛽
𝜃

1
+ 𝜀) − 𝑐

1
𝜃

2
)

= −𝜀 (𝑎

1
− 𝑐

1
𝜃

2
) + 𝑜 (𝜀)

≤ −𝜀 (

𝑎

1
− 𝑐

1
𝑎

2

𝑐

2

) + 𝑜 (𝜀)

< 0, 𝑥 ∈ Ω

(33)

provided 0 < 𝜀 ≪ 1. Since the function 𝑓 is convex inR+, we
know that, when 0 < 𝜀 ≪ 1,

𝜕𝑢

𝜕]
+ 𝑓 (𝑢) = 𝜀

1+𝛽 𝜕𝜃1

𝜕]
+ 𝑓 (𝜀

1+𝛽
𝜃

1
+ 𝜀)

− 𝜀

1+𝛽
𝑓 (𝜃

1
) + 𝑓 (𝜀

1+𝛽
𝜃

1
+ 𝜀)

=

𝑓 (𝜀

1+𝛽
𝜃

1
+ 𝜀)

(𝜀

1+𝛽
𝜃

1
+ 𝜀)

1+𝛽

(𝜀

1+𝛽
𝜃

1
+ 𝜀)

1+𝛽

𝜀

1+𝛽
− 𝑓 (𝜃

1
)

≤ 0, 𝑥 ∈ 𝜕Ω.

(34)

Similarly,

−𝑑

1
ΔV − (𝑎

1
− 𝑏

1
𝑢 − 𝑐

1
V) < 0, 𝑥 ∈ Ω,

𝜕V
𝜕]

+ 𝑓 (V) ≤ 0, 𝑥 ∈ 𝜕Ω.

(35)

Wehave proved that𝑈,𝑈 are the coupled upper and lower
solutions of (1). Taking advantage of Theorem 11, (1) has at
least one positive solution. The proof is complete.

Next, we show that (1) has no positive solution, when the
diffusion coefficient 𝑑

1
or 𝑑
2
is sufficiently large.

Theorem 13. There exists a positive constant𝑀 = 𝑀(𝑎

𝑖
, 𝑏

𝑖
, 𝑐

𝑖
)

such that when max{𝑑
1
, 𝑑

2
} ≥ 𝑀, problem (1) has no positive

solution.

Proof. There exists a positive constant 𝐶, independent of 𝑢
and V, such that

󵄩

󵄩

󵄩

󵄩

𝑢 − 𝑢

∗󵄩
󵄩

󵄩

󵄩∞
≤

𝐶

𝑑

1

,

󵄩

󵄩

󵄩

󵄩

V − V∗󵄩󵄩
󵄩

󵄩∞
≤

𝐶

𝑑

2

, (36)

where

𝑢

∗
=

∫

𝜕Ω
𝑓 (𝑢) 𝑢

∫

𝜕Ω
𝑓 (𝑢)

, V∗ =
∫

𝜕Ω
𝑔 (V) V

∫

𝜕Ω
𝑔 (V)

. (37)

Following the results of Lemma 9, we have

max {‖𝑢‖∞, ‖V‖∞} ≤ 𝐶 ≡ max{𝑎

1

𝑏

1

,

𝑎

2

𝑏

2

} . (38)

Rewrite (1) as

−𝑑

1
Δ (𝑢 − 𝑢

∗
) = 𝑢 (𝑎

1
− 𝑏

1
𝑢 − 𝑐

1
V) , 𝑥 ∈ Ω,

−𝑑

2
Δ (V − V∗) = V (𝑎

2
− 𝑏

2
𝑢 − 𝑐

2
V) , 𝑥 ∈ Ω,

𝜕 (𝑢 − 𝑢

∗
)

𝜕]
+ 𝑓 (𝑢) = 0, 𝑥 ∈ 𝜕Ω,

𝜕 (V − V∗)
𝜕]

+ 𝑔 (V) = 0, 𝑥 ∈ 𝜕Ω.

(39)

Note that ‖𝑢(𝑎
1
− 𝑏

1
𝑢 − 𝑐

1
V)‖
∞

≤ 𝐶 = max
0≤𝑢,V≤𝐶|𝑢(𝑎1−𝑏

1
𝑢−

𝑐

1
V)|. Multiplying the first equation of (39) by 𝑢 − 𝑢

∗, and
integrating onΩ, we derive that, by Green’s identity, Holder’s
inequality, and Poincare’s inequality,

∫

Ω

|∇𝑢|

2
≤

󵄨

󵄨

󵄨

󵄨

𝑢 (𝑎

1
− 𝑏

1
𝑢 − 𝑐

1
V)󵄨󵄨
󵄨

󵄨

𝑑

1

∫

Ω

󵄨

󵄨

󵄨

󵄨

𝑢 − 𝑢

∗󵄨
󵄨

󵄨

󵄨

≤

𝐶

𝑑

1

󵄩

󵄩

󵄩

󵄩

𝑢 − 𝑢

∗󵄩
󵄩

󵄩

󵄩2
≤

𝐶

𝑑

1

‖∇𝑢‖2
,

(40)

which implies that

󵄩

󵄩

󵄩

󵄩

𝑢 − 𝑢

∗󵄩
󵄩

󵄩

󵄩2
≤

𝐶

𝑑

1

. (41)

By Lemma 5, (36), and (41), we obtain
󵄩

󵄩

󵄩

󵄩

𝑢 − 𝑢

∗󵄩
󵄩

󵄩

󵄩𝑊
2,2
(Ω)

≤ 𝐶(

󵄩

󵄩

󵄩

󵄩

𝑢 − 𝑢

∗󵄩
󵄩

󵄩

󵄩2
+

󵄩

󵄩

󵄩

󵄩

𝑢 (𝑎

1
− 𝑏

1
𝑢 − 𝑐

1
V)󵄩󵄩
󵄩

󵄩∞

𝑑

1

)

≤

𝐶

𝑑

1

.

(42)
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Thanks to the Sobolev embedding theorem (see [12]), for 0 <

𝛽 < 1,

󵄩

󵄩

󵄩

󵄩

𝑢 − 𝑢

∗󵄩
󵄩

󵄩

󵄩𝐶
1,𝛽
(Ω)

≤

𝐶

𝑑

1

. (43)

Review to the third equation of (1), we obtain

|𝐷𝑢| |]| ≥ |𝐷𝑢 ⋅ ]| = 𝑓 (𝑢) . (44)

In view of (43) and (44), it is easy to see

𝐶

𝑑

1

≥ 𝑓 (𝑢) > 𝑓(𝑢

∗
−

𝐶

𝑑

1

) . (45)

Note that 𝑓(𝑢) is increasing function and 𝑓(0) = 0, as 𝑑
1
→

∞, and

0 ≥ 𝑓 (𝑢

∗
) > 0. (46)

This is a contradiction.The sameproof as aboveworks equally
well for the case when 𝑑

2
is large. This completes the proof.

Finally, we discuss the stability of semitrivial solutions.

Theorem 14. Suppose that 𝑓, 𝑔 are convex functions in R+.
Then the following hold:

(a) the semitrivial solution (𝜃

1
, 0) is unstable;

(b) the semitrivial solution (0, 𝜃

2
) is unstable.

Proof. For part (a), to prove the stability of (𝜃
1
, 0), we consider

the corresponding elliptic system eigenvalue problem:

−𝑑

1
Δ𝑢 − (𝑎

1
− 2𝑏

1
𝜃

1
) 𝑢 + 𝑐

1
𝜃

1
V = 𝜆𝑢, 𝑥 ∈ Ω,

−𝑑

2
ΔV − (𝑎

2
− 𝑏

2
𝜃

1
) V = 𝜆V, 𝑥 ∈ Ω,

𝜕𝑢

𝜕]
+ 𝑓

󸀠
(𝜃

1
) 𝑢 = 0, 𝑥 ∈ 𝜕Ω,

𝜕V
𝜕]

= 0, 𝑥 ∈ 𝜕Ω.

(47)

First, observe that all eigenvalues of (47) are real since they
are also eigenvalues of the second equation:

−𝑑

2
ΔV − (𝑎

2
− 𝑏

2
𝜃

1
) V = 𝜆V, 𝑥 ∈ Ω,

𝜕V
𝜕𝑛

= 0, 𝑥 ∈ 𝜕Ω.

(48)

Next, note that 𝑏
1
/𝑏

2
> 𝑎

1
/𝑎

2
> 𝑐

1
/𝑐

2
; by Lemma 1, we have

𝜎

1
(𝑑

2
, 𝑞) < 0. Thus (𝜃

1
, 0) is unstable. In a similar way, we are

able to conclude (b).
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