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This paper proposes a fuzzy slack-diversifying fluctuation-smoothing rule to enhance the scheduling performance in a wafer
fabrication factory. The proposed rule considers the uncertainty in the remaining cycle time and is aimed at simultaneous
improvement of the average cycle time, cycle time standard deviation, the maximum lateness, and number of tardy jobs. Existing
publications rarely discusse ways to optimize all of these at the same time. An important input to the proposed rule is the job
remaining cycle time. To this end, this paper proposes a self-adjusted fuzzy back propagation network (SA-FBPN) approach to
estimate the remaining cycle time of a job. In addition, a systematic procedure is also established, which can solve the problem of
slack overlapping in a nonsubjective way and optimize the overall scheduling performance.The simulation study provides evidence
that the proposed rule can improve the four performance measures simultaneously.

1. Introduction

The task of job dispatching is to determine which jobs must
be processed next on the available machines. However, job
dispatching in a wafer fabrication factory is a very difficult
task. A single recipe may contain more than 500 steps, and
a wafer fabrication factory can produce as many as 200
products. In addition, some machines in a wafer fabrication
factory, for example, steppers, are very expensive, and there
are only a very limited number of them. Therefore, wafers
have to revisit these machines for the processing of different
layers. This gives rise to the characteristic re-entrant flows.

The scheduling of a wafer fabrication factory usually
needs to consider various points of view. To shorten the cycle
time is one, and to meet the due date is another. However, for
such a complex production system, it is difficult to optimize
even a single measure [1, 2], let alone the simultaneous
optimization of multiple measures. To solve this problem,
many attempts have beenmade in the literature. Some results
are as follows. First, a näıve aggregation of single-objective
heuristics does not necessarily yield feasible nondominated
solutions [3]. In addition, considering the weighted sum

of multiple objectives often leads to unsatisfactory results.
Further, scaling parameters can be used to weigh the different
objectives, and the determination of appropriate weights is a
key research issue.

On the other hand, job scheduling in a wafer fabrication
factory is subject to many sources of uncertainty or random-
ness. Such uncertainty or randomness is partly due tomanual
operations, including loading and unloading jobs, setting up
or repairing machines, visual inspection, and others. Other
causes include unexpected releases of emergency orders and
machine breakdowns that are beyond the control of the
factory. To consider the uncertainty or randomness, fuzzy
methods are easier to use than probabilistic (stochastic)
methods.

A fuzzy slack-diversifying fluctuation-smoothing rule is
proposed in this study for multiobjective job dispatching in a
wafer fabrication factory.The existing fuzzy dispatching rules
usually take the form of fuzzy inference rules; for example, “if
the total processing time is long and the due date is tight then
the job priority is high” [4, 5].

To give a precise schedule, usually multiple fuzzy dis-
patching rules are used simultaneously. The results of these
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Table 1: Some existing fuzzy dispatching rules.

References System type Rules/inputs/outputs Number of objectives
Xiong et al. [4] TSK 2/2/1 2 (average cycle time, lateness)
Benincasa et al. [5] Mamdani 27/3/1 2 (average cycle time, WIP level)
Lee et al. [9] Single-rule-based 2/4/1 2 (average cycle time, cycle time standard deviation)
Tan and Tang [10] Mamdani 8/4/1 3 (throughput, average cycle time, no. of vehicles)
Dong and Liu [11] ANFIS 16/4/1 1 (average cycle time)

Tsai and Chen [12] Fusion 4/5/1 4 (average cycle time, cycle time standard deviation,
maximum lateness, number of tardy jobs)

∗WIP: work-in progress.

dispatching rules must be aggregated. To this end, there are
at least three types of fuzzy inference systems—Mamdani’s
fuzzy inference systems [6], Takagi-Sugeno-Kang’s (TSK’s)
[7] fuzzy inference systems, and adaptive neurofuzzy infer-
ence systems (ANFISs) [8]. These systems use different
aggregation and defuzzification methods. Xiong et al. [4]
scheduled a flexible manufacturing system (FMS) using two
fuzzy dispatching rules of the TSK type. Lee et al. [9]
established fuzzy inference rules to select a combination of
some existing dispatching rules for scheduling a FMS. The
effectiveness of a fuzzy inference system depends critically on
the way in which the related variables are partitioned. For
this reason, Tan and Tang [10] applied Taguchi’s design of
experiment (DOE) techniques to improve the design of some
fuzzy dispatching rules for a test facility. According to Benin-
casa et al. [5], up to 27 rules (each with three inputs and one
output) were established for scheduling automated guided
vehicles. According to Dong and Liu [11], the uncertainty in
the processing time was modeled with a fuzzy number, and
an ANFIS was established to schedule a job shop. Inputs to
the ANFIS were the differences between any two jobs, while
the output from the ANFIS determined the sequence of the
two jobs. If the output was greater than zero, then the first job
should be processed before the second job. Tsai andChen [12]
fuzzified four traditional dispatching rules, and added five
adjustable parameters to merge the four rules. A summary
of some existing fuzzy dispatching rules is shown in Table 1.

The existing approaches have the following problems.
(1) Establishing fuzzy inference rules is a subjective

process that is not easy to optimize.
(2) The fuzziness of parameters causes the uncertainty in

scheduling and therefore must be controlled.
(3) The parameters that have the greatest relevance for

the scheduling performance must be estimated more
accurately (such as the remaining cycle time), in order
to enhance the effectiveness of scheduling.

(4) How to solve ties, that is, jobs with the same slacks,
when the parameters are fuzzy valued has not been
fully discussed.

To tackle these problems and to enhance the performance
of multiobjective job scheduling in a wafer fabrication fac-
tory, a fuzzy slack-diversifying fluctuation-smoothing rule is
proposed in this study. The unique features of the proposed
methodology include the following.

(1) Considering the uncertainty in the remaining cycle
time. Dispatching rules that consider the remaining
cycle time are more able to respond to the changes
in the production environment [13]. To consider the
uncertainty in the remaining cycle time, it is estimated
with a fuzzy number and fed into a fuzzy dispatching
rule. To this end, a self-adjusted fuzzy back propaga-
tion network (SA-FBPN) approach is proposed. Com-
pared with the existing methods, this SA-FBPN
approach can generate a very precise estimate of the
remaining cycle time in an efficient manner.

(2) Establishing a fuzzy dispatching rule directly from the
existing rules. A fuzzy slack-diversifying fluctuation-
smoothing rule is proposed by fuzzifying the four-
objective fluctuation-smoothing dispatching rule [14]
and diversifying the job slack. This rule accepts the
fuzzy remaining cycle time as an input.

(3) Diversifying the slackwith a new approach: according
to Wang et al. [15], the slack was defuzzified by maxi-
mizing the standard deviation. However, such a treat-
ment has several drawbacks. This study establishes a
systematic procedure to overcome those drawbacks,
so that the slacks of jobs can be evenly distributed,
and the possibility of forming ties may be reduced as
much as possible.

(4) Solving the problem of slack overlapping without the
need to defuzzify the slacks subjectively.

(5) Proposing the fuzzy intersection (FI) and generalized
average (GAV) approach to aggregate the estimation
results from various FBPNs.

Some predictive scheduling methods have been pro-
posed in recent years. The differences between the pro-
posed methodology and these methods were summarized in
Table 2. The distinct advantages of the proposed methodol-
ogy over these predictive scheduling methods include the
following.

(1) The upper and lower bounds of the remaining cycle
time used in the proposed methodology are tighter.

(2) The proposed methodology provides an easier way
to optimize the scheduling rule, which improves the
usability of the proposed methodology.

To assess the effectiveness of the proposed methodology,
production simulation is also applied in this study.The rest of
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Table 2: The differences between the proposed methodology and some predictive methods.

Scheduling method
Remaining cycle
time estimation

method

Types of inputs
to the rule

Types of outputs
from the rule

Number of
objectives

Number of
adjustable
parameters

Optimization method

Tsai and Chen [12] Effective FBPN Crisp + fuzzy Fuzzy 4 5
Minimizing the sum of the
standard deviations of
slacks by FNLP

Chen and Wang [21] FCM-FBPN Crisp Crisp 2 1
Minimizing the standard
deviation of slack by
polynomial fitting

Chen [22] FCM-BPN-GP Crisp + fuzzy Fuzzy 2 1 A systematic procedure for
diversifying the fuzzy slack

Chen and Wang [37] Postclassifying
FBPN Crisp Crisp 2 2∼3 Enumeration

Chen and
Romanowski [23] FCM-BPN Crisp Crisp 2 2

Minimizing the standard
deviation of slack by
polynomial fitting

The proposed
methodology

SA-FBPN-
aggregation Crisp + fuzzy Fuzzy 4 5 A systematic procedure for

diversifying the fuzzy slack
∗FCM: fuzzy c-means; BPN: back propagation network; GP: goal programming; FNLP: fuzzy nonlinear programming.

Table 3: The steps of fabricating a semiconductor product.

Step Step no. Machine Machine no.
OXWS 1 4HTB, 6HTB, 2DOD, 3DOD, 1WOD, 3WOD, 4WOD, 5WOD 1, 2, 3, 4, 5, 6, 7, 8
MKWF 2 1PFC, 2PFC 9, 10
ALZER 3 7B-I200 11
ETZER 4 1B-DP5KZ 12
STZER 5 1B-DASP, 3B-DASP, 1B-DULT, 2B-DULT, 9B-DULT, 10B-DULT 13, 14, 15, 16, 17, 18
ALNW 6 10B-I100, 9B-I100, 5B-I200, 7B-I200, 11B-I80 19, 20, 21, 11, 22

...
QCOG 121 4HTB, 6HTB, 2DOD, 3DOD, 1WOD, 3WOD, 4WOD, 5WOD 1, 2, 3, 4, 5, 6, 7, 8

this paper is organized as follows. Section 2 briefly describes
the production environment of a wafer fabrication factory.
Then, the scheduling problem to be solved is defined. The
proposed method for this is described. Section 3 is divided
into three parts: SA-FBPN, the fuzzy slack-diversifying
fluctuation-smoothing rule, and systematic slack diversifi-
cation. The SA-FBPN approach is proposed to estimate the
remaining cycle time of a job with a fuzzy number. To accept
the fuzzy remaining cycle time as an input, the four-objective
dispatching rule is fuzzified, resulting in fuzzy-valued slacks
that may overlap. In order to solve the problem of slack
overlapping, a systematic procedure is established to diver-
sify the slack. In Section 4, a wafer fabrication simulation
system is applied to test the effectiveness of the proposed
methodology, so that its advantages and disadvantages can
be discussed. Finally, some concluding remarks are given in
Section 5.

2. Problem Description

At a very high level, integrated circuit production may be
divided up into five blocks: raw substrate, wafer fabrication,
wafer test, mark and final test, and packaging. A wafer

fabrication factory is one of the most complex production
systems.The complexity of a wafer fabrication processmay be
characterized by the number of mask layers or major process
steps. Inputs to a wafer fabrication factory include 8, 12, or
18 inch wafers, on which various types of integrated circuits
can be made. There are four basic steps to fabricate a wafer:
film, etching, diffusion, and photo lithography. These steps
will be repeated many times; finally a wafer may need to
go through hundreds of production steps. In addition, 20 to
30 pieces of wafers are grouped into a job/lot and may be
processed together. In total, theremay bemore than 1000 jobs
(or 30000 wafers) that are being processed or to be processed
in a wafer fabrication factory. To this end, typically hundreds
of machines are used simultaneously in a wafer fabrication
factory. In addition, a wafer may visit the same machine
multiple times, which constitutes a special type of production
system—a re-entrant job shop.An example is given inTable 3.
In theory, the problem of scheduling a simple job shop to
optimize a single regular measure, for example, 𝐽

𝑚
‖ 𝐶max, is

alreadyNP-hard. Scheduling a reentrant job shop to optimize
multiplemeasures at the same time is muchmore difficult. To
tackle such difficulties, the following treatments are taken in
this study.
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Table 4: The nomenclature table.

Variable/parameter Meaning
𝑡 The current time
𝑅

𝑗
The release time of job 𝑗; 𝑗 = 1 ∼ 𝑛

CT
𝑗

The cycle time of job 𝑗
̃CTE

𝑗
The estimated cycle time of job 𝑗

RCT
𝑗𝑢

The remaining cycle time of job 𝑗 from step 𝑢
̃RCTE

𝑗𝑢
The estimated remaining cycle time of job 𝑗 from step 𝑢

RPT
𝑗𝑢

The remaining processing time of job 𝑗 from step 𝑢
SCT

𝑗𝑢
The step cycle time of job 𝑗 until step 𝑢

SK
𝑗𝑢

The slack of job 𝑗 at step 𝑢
𝜆 Mean release rate
𝑥

𝑗𝑝
The inputs to the three-layer FBPN of job 𝑗, 𝑝 = 1 ∼ 𝑃

ℎ

𝑙
The output from hidden layer node 𝑙, 𝑙 = 1 ∼ 𝐿

𝑤

𝑜

𝑙
The connection weight between hidden layer node 𝑙 and the output node

𝑤

ℎ

𝑝𝑙

The connection weight between input node p and hidden layer node 𝑙, 𝑝 = 1 ∼ 𝑃;
𝑙 = 1 ∼ 𝐿

𝜃

ℎ

𝑙
The threshold on hidden layer node 𝑙

𝜃

𝑜 The threshold on the output node

(1) Dispatching rules have often been criticised for being
too simple, suboptimal, and myopic. Nevertheless,
dispatching rules are still prevalent in the semicon-
ductor manufacturing industry. For this reason, this
study aims to propose a new dispatching rule.

(2) Predictive information, such as the remaining cycle
time estimate, is incorporated into the scheduling
rule to improve the responsiveness of the rule to the
changing conditions of a wafer fabrication factory.

(3) Some of the existing dispatching rules that are effec-
tive for four measures (the average cycle time, cycle
time standard deviation, the maximum lateness, and
the number of tardy jobs) are fused to optimize these
measures at the same time. Therefore, the scheduling
problem to be investigated can be indicated with
𝐽

𝑚
|𝑟

𝑗
, 𝑑

𝑗
, rent|𝐶, 𝜎

𝐶
, 𝐿max, 𝑁𝑇

.
A flow chart of the proposed methodology is shown in

Figure 1.

3. Methodology

The variables and parameters that will be used in the
proposed methodology are defined in Table 4.

Before any job is scheduled, the remaining cycle time
of the job needs to be estimated. To this end, the SA-
FBPN approach is proposed and the remaining cycle time is
estimated with a fuzzy value.

3.1. Step 1: Estimating the Remaining Cycle Time

3.1.1. The SA-FBPN Approach. The remaining cycle time of a
job being processed in a wafer fabrication factory is the time
still needed to complete the job. The remaining cycle time is

Feed the fuzzy remaining cycle 
time estimate to the new rule

Estimate the remaining cycle
time using the SA-FBPN

approach

Fuzzify the four-objective
fluctuation-smoothing rule

Establish a systematic
procedure to defuzzify the slack

Use the slack-diversifying rule
to sequence jobs

Figure 1: The flowchart of the proposed methodology.

an important attribute (or performance measure) for work-
in-progress (WIP) in a wafer fabrication factory. Past studies
(e.g., [14]) have shown that the accuracy of remaining cycle
time estimation can be improved by job classification. Soft
computing methods (e.g., [16]) have received much attention
in this field.
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In the SA-FBPN approach, jobs are classified into 𝐾

categories using FCM. First, in order to facilitate the sub-
sequent calculation, all raw data are preprocessed. In the
literature, there are two ways of preprocessing. One is partial
normalization [17]; the other is variable replacement through
principal component analysis (PCA) [18]. However, the
simple combination of PCA and FBPN does not have much
effect.Themain effect of PCA is to improve the correctness of
the job classification [19]. Then, we place the (pre-processed)
attributes of a job in vector x

𝑗
= [𝑥

𝑗𝑝
]; 𝑝 = 1 ∼ 𝑃.

FCM classifies jobs byminimizing the following objective
function:

Min
𝐾

∑

𝑘=1

𝑛

∑

𝑗=1

𝜇

𝑚

𝑗(𝑘)
𝑒

2

𝑗(𝑘)
, (1)

where𝐾 is the required number of categories; 𝑛 is the number
of jobs; 𝜇

𝑗(𝑘)
indicates that job 𝑗 belongs to category 𝑘; 𝑒

𝑗(𝑘)

measures the distance from job 𝑗 to the centroid of category
𝑘; 𝑚 ∈ [1,∞) is a parameter to adjust the fuzziness and is
usually set to 2. The procedure of FCM is as follows.

(1) Set 𝐾 = 1.

(2) Produce a preliminary clustering result.

(3) (Iterations) Calculate the centroid of each category as

𝑥

(𝑘)
= {𝑥

(𝑘)𝑝
} ; 𝑝 = 1 ∼ 𝑃,

𝑥

(𝑘)𝑝
=

∑

𝑛

𝑗=1
𝜇

𝑚

𝑗(𝑘)
𝑥

𝑗𝑝

∑

𝑛

𝑗=1
𝜇

𝑚

𝑗(𝑘)

,

𝜇

𝑗(𝑘)
=

1

∑

𝐾

𝑞=1
(𝑒

𝑗(𝑘)
/𝑒

𝑗(𝑞)
)

2/(𝑚−1)

,

𝑒

𝑗(𝑘)
=

√

∑

all𝑝
(𝑥

𝑗𝑝
− 𝑥

(𝑘)𝑝
)

2

,

(2)

where 𝑥
(𝑘)

is the centroid of category 𝑘. 𝜇(𝑡)
𝑗(𝑘)

is the
membership function that indicates that job 𝑗 belongs
to category 𝑘 after the 𝑡th iteration.

(4) Re-measure the distance from each job to the centroid
of each category, and then recalculate the correspond-
ing membership.

(5) If the following condition is met, go to step (6).
Otherwise, return to step (3) as follows:

max
𝑘

max
𝑗











𝜇

(𝑡)

𝑗(𝑘)
− 𝜇

(𝑡−1)

𝑗(𝑘)











< 𝑑, (3)

where 𝑑 is a real number representing the threshold
for the convergence of membership.
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Figure 2: The architecture of the three-layer FBPN.

(6) Calculate the following indexes:

𝐽

𝑚
=

𝐾

∑

𝑘=1

𝑛

∑

𝑗=1

𝜇

𝑚

𝑗(𝑘)
𝑒

2

𝑗(𝑘)
,

𝑒

2

min = min
𝑘
1

̸= 𝑘
2

(∑

all𝑝
(𝑥

(𝑘
1
)𝑝
− 𝑥

(𝑘
2
)𝑝
)

2

) ,

𝑆 =

𝐽

𝑚

𝑛 × 𝑒

2

min
.

(4)

(7) 𝐾 = 𝐾+1. If𝐾 = 𝐾max, stop; the𝐾 value minimizing
𝑆 determines the optimal number of categories [20].
Otherwise, return to step (2).

After clustering, for each category, a three-layer FBPN is
established to estimate the remaining cycle times of jobs in
this category. A portion of the jobs is input as the “training
examples” to the three-layer FBPN to determine the param-
eter values. The joint use of fuzzy logic and artificial neural
networks is becoming more common in recent years. For
example, fuzzy classifiers were applied in [21–23] to separate
jobs in a wafer fabrication factory into different clusters
before estimating their cycle times using artificial neural
networks. Taghadomi-Saberi et al. [24] established an ANFIS
to estimate the antioxidant activity and the anthocyanin
content at different ripening stages of sweet cherries. Bui
et al. [25] also used an ANFIS to determine the landslide
susceptibility in theHoa Binh province of Vietnam.Ocampo-
Duque et al. [26] proposed a fuzzy inference system to
compute ecological risk points (ERPs), thereby estimating the
changes in water quality over time.

The configuration of the three-layer FBPN is as follows
(see Figure 2). First, inputs are the 𝑃 parameters of job
𝑗. Subsequently, there is a single hidden layer with 2𝑃

neurons. Finally, the output from the three-layer FBPN is the
(normalized) remaining cycle time estimate (𝑁(

̃RCTE
𝑗𝑢
)) of

job 𝑗, where𝑁() is the normalization function.
The procedure for determining the parameter values is

now described. Two phases are involved at the training stage.
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First, in the forward phase, inputs aremultipliedwithweights,
summed and transferred to the hidden layer. Then, activated
signals are output from the hidden layer as

̃

ℎ

𝑙
= (ℎ

𝑙1
, ℎ

𝑙2
, ℎ

𝑙3
) =

1

1 + 𝑒

−𝑛
ℎ

𝑙

= (

1

1 + 𝑒

−𝑛
ℎ

𝑙1

,

1

1 + 𝑒

−𝑛
ℎ

𝑙2

,

1

1 + 𝑒

−𝑛
ℎ

𝑙3

) ,

(5)

where

𝑛

ℎ

𝑙
= (𝑛

ℎ

𝑙1
, 𝑛

ℎ

𝑙2
, 𝑛

ℎ

𝑙3
) =

̃

𝐼

ℎ

𝑙
(−)

̃

𝜃

ℎ

𝑙

= (𝐼

ℎ

𝑙1
− 𝜃

ℎ

𝑙3
, 𝐼

ℎ

𝑙2
− 𝜃

ℎ

𝑙2
, 𝐼

ℎ

𝑙3
− 𝜃

ℎ

𝑙1
) ,

̃

𝐼

ℎ

𝑙
= (𝐼

ℎ

𝑙1
, 𝐼

ℎ

𝑙2
, 𝐼

ℎ

𝑙3
) = ∑

all 𝑝
𝑤

ℎ

𝑝𝑙
⋅ 𝑥

𝑗𝑝

= (∑

all 𝑝
min (𝑤ℎ

𝑝𝑙1
𝑥

𝑗𝑝
, 𝑤

ℎ

𝑝𝑙3
𝑥

𝑗𝑝
) ,

∑

all 𝑝
𝑤

ℎ

𝑝𝑙2
𝑥

𝑗𝑝
, ∑

all 𝑝
max (𝑤ℎ

𝑝𝑙1
𝑥

𝑗𝑝
, 𝑤

ℎ

𝑝𝑙3
𝑥

𝑗𝑝
)) ,

(6)

where (−) and (×) denote fuzzy subtraction and multiplica-
tion, respectively.

̃

ℎ

𝑙
values are also transferred to the output layer with the

same procedure. Finally, the output of the FBPN is generated
as follows:

𝑜

𝑗
= (𝑜

𝑗1
, 𝑜

𝑗2
, 𝑜

𝑗3
) =

1

1 + 𝑒

−𝑛
𝑜

= (

1

1 + 𝑒

−𝑛
𝑜

1

,

1

1 + 𝑒

−𝑛
𝑜

2

,

1

1 + 𝑒

−𝑛
𝑜

3

) ,

(7)

where

𝑛

𝑜

= (𝑛

𝑜

1
, 𝑛

𝑜

2
, 𝑛

𝑜

3
) =

̃

𝐼

𝑜

(−)

̃

𝜃

𝑜

= (𝐼

𝑜

1
− 𝜃

𝑜

3
, 𝐼

𝑜

2
− 𝜃

𝑜

2
, 𝐼

𝑜

3
− 𝜃

𝑜

1
) ,

(8)

̃

𝐼

𝑜

= (𝐼

𝑜

1
, 𝐼

𝑜

2
, 𝐼

𝑜

3
) = ∑

all 𝑙
𝑤

𝑜

𝑙
(×)

̃

ℎ

𝑙

≅ (∑

all 𝑙
min (𝑤𝑜

𝑙1
ℎ

𝑙1
, 𝑤

𝑜

𝑙3
ℎ

𝑙3
) , ∑

all 𝑙
𝑤

𝑜

𝑙2
ℎ

𝑙2
,

∑

all 𝑙
max (𝑤𝑜

𝑙1
ℎ

𝑙1
, 𝑤

𝑜

𝑙3
ℎ

𝑙3
)) .

(9)

Subsequently, in the backward phase, the training of the
FBPN is decomposed into three subtasks: determining the
center value and upper and lower bounds of the parameters.
First, to determine the center of each parameter (such as
𝑤

ℎ

𝑝𝑙2
, 𝜃ℎ

𝑙2
, 𝑤𝑜

𝑙2
, and 𝜃

𝑜

2
), the FBPN is treated as a crisp net-

work. Some algorithms are applicable for this purpose, such
as the gradient descent algorithms, the conjugate gradient
algorithms, the Levenberg-Marquardt algorithm, and others.

In this study, the Levenberg-Marquardt algorithm is applied
[27].

Subsequently, the upper bound of each parameter (e.g.,
𝑤

ℎ

𝑝𝑙3
, 𝜃ℎ

𝑙3
, 𝑤𝑜

𝑙3
, and 𝜃

𝑜

3
) is to be determined, so that the actual

value will be less than the upper bound of the network
output. Chen and Wang [28] and Chen and Lin [29] have
describedhowanonlinear programming (NLP)model can be
constructed to adjust the connection weights and thresholds
in the FBPN.However, theNP problem is not easy to solve. In
the proposed methodology, only the threshold on the output
node will be adjusted in an iterative way. This way is much
simpler and can also achieve good results.

Substituting (8) into (7),

𝑜

𝑗2
=

1

1 + 𝑒

−𝑛
𝑜

𝑗2

=

1

1 + 𝑒

−(𝐼
𝑜

𝑗2
−𝜃
𝑜

2
)

=

1

1 + 𝑒

𝜃
𝑜

2
−𝐼
𝑜

𝑗2

. (10)

Therefore,

ln( 1

𝑜

𝑗2

− 1) = 𝜃

𝑜

2
− 𝐼

𝑜

𝑗2
. (11)

So

𝐼

𝑜

𝑗2
= 𝜃

𝑜

2
− ln( 1

𝑜

𝑗2

− 1) . (12)

Assume that the adjustment made to the threshold on the
output node is denoted asΔ𝜃𝑜 = 𝜃

𝑜

3
−𝜃

𝑜

2
. After adjustment, the

output from the new FBPN, 𝑜
𝑗3
, determines the upper bound

of the remaining cycle time:

𝑜

𝑗3
=

1

1 + 𝑒

−𝑛
𝑜

𝑗3

, (13)

where

𝑛

𝑜

𝑗3
= 𝐼

𝑜

𝑗3
− 𝜃

𝑜

3
= 𝐼

𝑜

𝑗3
− (𝜃

𝑜

2
+ Δ𝜃

𝑜

) . (14)

Substituting (14) into (13),

𝑜

𝑗3
=

1

1 + 𝑒

−(𝐼
𝑜

𝑗3
−𝜃
𝑜

2
−Δ𝜃
𝑜
)

. (15)

And substituting (12) into (15),

𝑜

𝑗3
=

1

1 + 𝑒

−(𝜃
𝑜

2
−ln(1/𝑜

𝑗2
−1)−𝜃

𝑜

2
−Δ𝜃
𝑜
)

=

1

1 + 𝑒

ln(1/𝑜
𝑗2
−1)+Δ𝜃

𝑜
=

1

1 + 𝑒

Δ𝜃
𝑜

(1/𝑜

𝑗2
− 1)

.

(16)

Obviously, the maximum ofΔ𝜃𝑜 determines the lowest upper
bound.

Since 𝑜
𝑗3
is the upper bound of the remaining cycle time,

𝑜

𝑗3
≥ 𝑁(RCT

𝑗𝑢
),

1

1 + 𝑒

ln(1/𝑜
𝑗2
−1)+Δ𝜃

𝑜
≥ 𝑁(RCT

𝑗𝑢
) , (17)

Δ𝜃

𝑜

≤ ln( 1

𝑁(RCT
𝑗𝑢
)

− 1) − ln( 1

𝑜

𝑗2

− 1) . (18)
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⊤
⊤
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Figure 3: Iterative reduction of the upper bound.

Equation (18) holds for all jobs, so

Δ𝜃

𝑜

≤ min
𝑗

(ln( 1

𝑁(RCT
𝑗𝑢
)

− 1) − ln( 1

𝑜

𝑗2

− 1)) . (19)

According to (19), the optimal value of Δ𝜃𝑜 should be set to
the maximum possible value:

Δ𝜃

𝑜∗

= min
𝑗

(ln( 1

𝑁(RCT
𝑗𝑢
)

− 1) − ln( 1

𝑜

𝑗2

− 1)) .

(20)

The optimization results of the FBPN are dependent
on the initial conditions and therefore are different every
iteration. Assume that the optimal value of 𝑜

𝑗3
in the 𝑡th

replication is denoted by 𝑜
𝑗3
(𝑡), then after some iterations,

𝑜

𝑗3
(all iterations) = min

𝑡

𝑜

𝑗3
(𝑡) . (21)

In this way, the upper bound of the remaining cycle time
is decreased gradually (see Figure 3). Another merit of this
approach is that it does not rely on the parameters of the
FBPN.

In a similar way, the lower bound of each parameter (e.g.,
𝑤

ℎ

𝑝𝑙1
, 𝜃ℎ

𝑙3
, 𝑤𝑜

𝑙3
, and 𝜃𝑜

3
) can be determined, so that each actual

value will be greater than the lower bound.The optimal value
of Δ𝜃𝑜 can be obtained as

Δ𝜃

𝑜∗

= max
𝑗

(ln( 1

𝑁(RCT
𝑗𝑢
)

− 1) − ln( 1

𝑜

𝑗2

− 1)) .

(22)

Assume that the optimal value of 𝑜
𝑗1
in the 𝑡th replication

is denoted by 𝑜
𝑗1
(𝑡); then, after some iterations,

𝑜

𝑗1
(all iterations) = max

𝑡

𝑜

𝑗1
(𝑡) . (23)

In this way, the upper bound of the remaining cycle time
is increased gradually (Figure 4). Δ𝜃𝑜∗ does not rely on the
parameters of the FBPN either.

Actual cycle time

Final result

Lower bound 6
Lower bound 1
Lower bound 3
Lower bound 2
Lower bound 4
Lower bound 5

⊥

⊥

⊥
⊥

⊥
⊥

⊥

Figure 4: Iterative reduction of the lower bound.

From Figure 5, it can be seen that if only the remaining
cycle time is considered, then the sequence should be 3 →

2 → 1. By contrast, the sequence based on imprecise fuzzy
remaining cycle time estimates is 3 → 1 → 2. This problem
can be solved by increasing the precision of the remaining
cycle time estimate, resulting in the correct sequence, 3 →

2 → 1.

3.1.2. Considering theUncertainty in JobClassification. In past
studies, the remaining cycle time of a job is usually deter-
mined by the FBPN of the cluster with the highest member-
ship. However, that makes fuzzy classification meaningless.
To tackle this problem, various treatments have been taken
in the literature [30]. Recently, Wu and Chen [31] proposed
the GAV approach to aggregate the estimation results from
various BPNs, which is modified by incorporating in the
concept of FI in this study. Consider

̃RCTE
𝑗𝑢
= (max (RCTE

𝑗𝑢1
(𝑘)) ,

∑

𝐾

𝑘=1

2/(𝑚−1)
√1/𝜇

𝑗(𝑘)
⋅ RCTE

𝑗𝑢2
(𝑘)

∑

𝐾

𝑘=1

2/(𝑚−1)
√1/𝜇

𝑗(𝑘)

,

min (RCTE
𝑗𝑢3

(𝑘))) ,

(24)

where ̃RCTE
𝑗𝑢
(𝑘) is the remaining cycle time of job 𝑗

estimated by the FBPN of cluster 𝑘.

3.2. The New Rule

3.2.1. Two Basic Fluctuation Smoothing Rules. Lu et al. [13]
proposed two fluctuation smoothing rules—the fluctuation
smoothing policy for mean cycle time (FSMCT) and the
fluctuation smoothing policy for variation of cycle time
(FSVCT). FSMCT effectively diminishes the burst of arrivals
to all buffers simultaneously, thereby reducing themean cycle
time. On the other hand, FSVCT attempts to make every job
equally late or equally early, thereby reducing the standard
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Figure 5: Precise remaining cycle time estimation eliminates misscheduling.

deviation of lateness. In fluctuation smoothing rules, each job
is assigned a slack value, and the processing order of the job
is dependent on the slack value:

(FSMCT)

SK
𝑗𝑢
(FSMCT) =

𝑗

𝜆

− RCTE
𝑗𝑢

(25)

(FSVCT)

SK
𝑗𝑢
(FSVCT) = 𝑅

𝑗
− RCTE

𝑗𝑢
. (26)

Jobs with the smallest slack values will be given higher
priorities.

3.2.2. Step 2: The Fuzzy Fluctuation-Smoothing Rule. Sub-
sequently, if the remaining cycle time is estimated with a
triangular fuzzy number, then we have two fuzzy fluctuation
smoothing rules as

(fuzzy FSMCT, FFSMCT)

̃SK
𝑗𝑢
(FSMCT) =

𝑗

𝜆

−

̃RCTE
𝑗𝑢

(27)

(fuzzy FSVCT, FFSVCT)

̃SK
𝑗𝑢
(FSVCT) = 𝑅

𝑗
−

̃RCTE
𝑗𝑢
. (28)

To determine the sequence of jobs, the fuzzy slacks need
to be compared. To this end, various methods have been
proposed in the literature, such as the method based on the
probability measure [32], the coefficient of variance (CV)
index [8], the method considering the area between the
centroid and original points [33], and the method based
on the fuzzy mean and standard deviation [34]. For a
comparison of these methods, refer to Zhu and Xu [34]. In
this study, the method based on the fuzzy mean and standard
deviation is applied, because it is relatively simple and can
yield reasonable comparison results. To put this in context,
the following theorems are introduced.

Theorem 1. The fuzzy mean of a triangular fuzzy number ̃𝐴 =
(𝑥

0
− 𝑎, 𝑥

0
, 𝑥

0
+ 𝑏) is

𝜇̃
𝐴
= 𝑥

0
+

𝑏 − 𝑎

3

(29)

while the fuzzy standard deviation of ̃𝐴 is

𝜎̃
𝐴
=

√

𝑎

2

+ 𝑎𝑏 + 𝑏

2

18

.

(30)

Proof (see Zhu and Xu [34]). It is, in fact, the center-of-gra-
vity (COG) method.

The following definition details the comparison method
based on the fuzzy mean and standard deviation.

Definition 2. For any two fuzzy numbers ̃𝐴 and ̃

𝐵 ∈ 𝐹(𝑅), the
sequence of ̃𝐴 and ̃

𝐵 can be determined according to their
fuzzy means and standard deviations as follows:

(1) 𝜇̃
𝐴
> 𝜇̃

𝐵
if and only if ̃𝐴 ≻

̃

𝐵;

(2) 𝜇̃
𝐴
< 𝜇̃

𝐵
if and only if ̃𝐴 ≺

̃

𝐵;

(3) if 𝜇̃
𝐴
= 𝜇̃

𝐵
, then

(i) 𝜎̃
𝐴
> 𝜎̃

𝐵
if and only if ̃𝐴 ≺

̃

𝐵;
(ii) 𝜎̃

𝐴
< 𝜎̃

𝐵
if and only if ̃𝐴 ≻

̃

𝐵;
(iii) 𝜎̃

𝐴
= 𝜎̃

𝐵
if and only if ̃𝐴 =

̃

𝐵.

3.2.3. The Slack-Diversifying Rule. The idea behind the fluc-
tuation smoothing rules is to disperse the arrivals of jobs to
a machine, and the tool to control this is the slack value. For
this reason, to diversify the slack values of jobs seems to be a
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possible way to disperse their arrivals. To this end,Wang et al.
[15] maximized the standard deviation of the slack value:

𝜎SK
𝑗𝑢

=

√

∑

𝑁

𝑖=1
(SK

𝑗𝑢
− SK

𝑢
)

2

𝑛 − 1

.

(31)

However, to achieve this, the slack formula should contain at
least one parameter that is adjustable and differentiable. In
addition, Wu and Chen [31] showed that such a treatment
may lead to the situation that most slacks concentrate on the
two extremes.

3.2.4. Step 3: The Four-Factor Fuzzy Fluctuation-Smoothing
Rule. Chen [14] combined four traditional dispatching rules-
EDD, critical ratio (CR), FSMCT, and FSVCT and proposed
the four-objective dispatching rule. In the four-objective
dispatching rule, the slack of job 𝑗 at processing step 𝑢 is
defined as

SK
𝑗𝑢
= (

𝑗 − 1

𝑛 − 1

)

𝛼

⋅ (

RPT
𝑗𝑢
−min

𝑗
RPT

𝑗𝑢

max
𝑗
RPT

𝑗𝑢
−min

𝑗
RPT

𝑗𝑢

)

𝛽

⋅ (

𝑅

𝑗
−min

𝑗
𝑅

𝑗

max
𝑗
𝑅

𝑗
−min

𝑗
𝑅

𝑗

)

𝛾

⋅ (

RCTE
𝑗𝑢
−min

𝑗
RCTE

𝑗𝑢

max
𝑗
RCTE

𝑗𝑢
−min

𝑗
RCTE

𝑗𝑢

)

𝜂

⋅ (

SCT
𝑗𝑢
−min

𝑗
SCT

𝑗𝑢

max
𝑗
SCT

𝑗𝑢
−min

𝑗
SCT

𝑗𝑢

)

𝜗

,

(32)

where, 𝛼, 𝛽, 𝛾, and 𝜂 and are positive real numbers that satisfy
the following constraints:

If 𝛼 = 1 then 𝛽, 𝛾, 𝜗 = 0; 𝜂 = −1, and vice versa

If 𝛽 = 1 then 𝛼 = 0; 𝛾, 𝜂, 𝜗 = −1, and vice versa

If 𝜂 = 1 then 𝛼, 𝛽 = 0; 𝛾, 𝜗 = 1, and vice versa.
(33)

Jobs with the smallest slack values will be given higher
priorities. There are many possible models that can form the
combinations of 𝛼, 𝛽, 𝛾, 𝜂, and 𝜗. For example,

(Linear model)

𝛼 = 1 − 2𝛽 − 𝛾, 𝛾 = 𝜗 = 𝜂 + 𝛼,

(34)

(Nonlinear model)

𝛼 = (1 − 2𝛽 − 𝛾)

𝑢

; 𝑢 ∈ 𝑍

+

;

𝛾 = 𝜗 = (𝜂 + 𝛼)

V
, V = 1, 3, 5, . . . ,

(35)

(Logarithmic model 1)

𝛼 =

ln (2 − 2𝛽 − 𝛾)

ln 2
; 𝛾 = 𝜗 =

ln (1.5𝜂 + 𝛼 + 2.5)

ln 2
− 1.

(36)

The values of 𝛼 and 𝛽 are within [0 1].

Theorem 3. The four-objective nonlinear fluctuation smooth-
ing rule is more responsive than the four original rules if
𝑅𝐶𝑇𝐸

𝑗𝑢
is large, which is a common phenomenon in a wafer

fabrication factory.

Proof. See the Appendix.

If the remaining cycle time is estimated with a triangular
fuzzy number, then (34) becomes

̃SK
𝑗𝑢
= (

𝑗 − 1

𝑛 − 1

)

𝛼

⋅ (

RPT
𝑗𝑢
−min

𝑗
RPT

𝑗𝑢

max
𝑗
RPT

𝑗𝑢
−min

𝑗
RPT

𝑗𝑢

)

𝛽

⋅ (

𝑅

𝑗
−min

𝑗
𝑅

𝑗

max
𝑗
𝑅

𝑗
−min

𝑗
𝑅

𝑗

)

𝛾

⋅ (

̃RCTE
𝑗𝑢
−min

𝑗

̃RCTE
𝑗𝑢

max
𝑗

̃RCTE
𝑗𝑢
−min

𝑗

̃RCTE
𝑗𝑢

)

𝜂

⋅ (

SCT
𝑗𝑢
−min

𝑗
SCT

𝑗𝑢

max
𝑗
SCT

𝑗𝑢
−min

𝑗
SCT

𝑗𝑢

)

𝜗

= (SK
𝑗𝑢1

, SK
𝑗𝑢2

, SK
𝑗𝑢3

)

(37)

which is equivalent to

SK
𝑗𝑢1

= (

𝑗 − 1

𝑛 − 1

)

𝛼

⋅ (

RPT
𝑗𝑢
−min

𝑗
RPT

𝑗𝑢

max
𝑗
RPT

𝑗𝑢
−min

𝑗
RPT

𝑗𝑢

)

𝛽

⋅ (

𝑅

𝑗
−min

𝑗
𝑅

𝑗

max
𝑗
𝑅

𝑗
−min

𝑗
𝑅

𝑗

)

𝛾

⋅ (

RCTE
𝑗𝑢1

−min
𝑗
RCTE

𝑗𝑢1

max
𝑗
RCTE

𝑗𝑢3
−min

𝑗
RCTE

𝑗𝑢1

)

𝜂

⋅ (

SCT
𝑗𝑢
−min

𝑗
SCT

𝑗𝑢

max
𝑗
SCT

𝑗𝑢
−min

𝑗
SCT

𝑗𝑢

)

𝜗

,

(38)

SK
𝑗𝑢2

= (

𝑗 − 1

𝑛 − 1

)

𝛼

⋅ (

RPT
𝑗𝑢
−min

𝑗
RPT

𝑗𝑢

max
𝑗
RPT

𝑗𝑢
−min

𝑗
RPT

𝑗𝑢

)

𝛽

⋅ (

𝑅

𝑗
−min

𝑗
𝑅

𝑗

max
𝑗
𝑅

𝑗
−min

𝑗
𝑅

𝑗

)

𝛾

⋅ (

RCTE
𝑗𝑢2

−min
𝑗
RCTE

𝑗𝑢2

max
𝑗
RCTE

𝑗𝑢2
−min

𝑗
RCTE

𝑗𝑢2

)

𝜂

⋅ (

SCT
𝑗𝑢
−min

𝑗
SCT

𝑗𝑢

max
𝑗
SCT

𝑗𝑢
−min

𝑗
SCT

𝑗𝑢

)

𝜗

,

(39)
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Table 5: An example (𝜆 = 1.18).

# 𝑅

𝑗
𝑗 SCT

𝑗𝑢
RPT

𝑗𝑢
RCTE

𝑗𝑢
SK

𝑗𝑢
(FSMCT) SK

𝑗𝑢
(FSVCT)

1 102 159 881 560 1399 −1264 −1297
2 756 37 227 451 1127 −1096 −371
3 826 37 157 489 1223 −1192 −397
4 652 86 331 729 1822 −1749 −1170
5 208 55 775 212 530 −483 −322
6 783 84 200 816 2040 −1969 −1257
7 800 96 183 946 2366 −2285 −1566
8 478 52 505 377 942 −898 −464
9 469 65 514 446 1116 −1061 −647
10 699 32 284 398 995 −968 −296
11 836 85 147 860 2151 −2079 −1315
12 497 45 486 353 883 −845 −386
13 596 101 387 819 2047 −1961 −1451
14 798 34 185 458 1146 −1117 −348
15 197 79 786 297 743 −676 −546
16 804 85 179 837 2092 −2020 −1288
17 163 78 820 259 647 −581 −484
18 457 44 526 324 810 −773 −353
19 523 100 460 740 1851 −1766 −1328

SK
𝑗𝑢3

= (

𝑗 − 1

𝑛 − 1

)

𝛼

⋅ (

RPT
𝑗𝑢
−min

𝑗
RPT

𝑗𝑢

max
𝑗
RPT

𝑗𝑢
−min

𝑗
RPT

𝑗𝑢

)

𝛽

⋅ (

𝑅

𝑗
−min

𝑗
𝑅

𝑗

max
𝑗
𝑅

𝑗
−min

𝑗
𝑅

𝑗

)

𝛾

⋅ (

RCTE
𝑗𝑢3

−min
𝑗
RCTE

𝑗𝑢1

max
𝑗
RCTE

𝑗𝑢3
−min

𝑗
RCTE

𝑗𝑢1

)

𝜂

⋅ (

SCT
𝑗𝑢
−min

𝑗
SCT

𝑗𝑢

max
𝑗
SCT

𝑗𝑢
−min

𝑗
SCT

𝑗𝑢

)

𝜗

.

(40)

Job 𝑗 is processed before job 𝑘 if ̃SK
𝑗𝑢
<

̃SK
𝑘𝑢
.

3.2.5. Step 4: The Four-Factor Fuzzy Slack-Diversifying
Fluctuation-Smoothing Rule. Wang et al. [15] diversified the
slack by maximizing the standard deviation of the slack.
However, such a practice causes slacks to concentrate on
the two extremes, rather than being evenly dispersed. To
solve this problem, the following procedure is established to
diversify the slack instead.

(1) Set 𝜓max to 0.

(2) Vary the values of the five parameters.

(3) Sequence the jobs by Definition 2 in ascending order.

(4) Calculate the distance of every two adjacent ̃SK
(𝑗)𝑢

’s
as

𝑑 (

̃SK
(𝑗−1)𝑢

,

̃SK
(𝑗)𝑢

) = SK
(𝑗)𝑢1

− SK
(𝑗−1)𝑢3

. (41)

(5) Evaluate whether there is no overlap by

𝜓 (𝑗 − 1, 𝑗) = {

1 if 𝑑 (̃SK
(𝑗−1)𝑢

,

̃SK
𝑗𝑢
) > 0,

0 otherwise.
(42)

(6) If ∑𝑛

𝑗=1
𝜓(𝑗 − 1, 𝑗) > 𝜓max, update 𝜓max to ∑

𝑛

𝑗=1
𝜓(𝑗 −

1, 𝑗).
(7) If 𝜓max ≥ a threshold, stop; otherwise, return to step

(2).

This procedure is a polynomial-time algorithm. By repeated
applications of this procedure, one obtains an optimal sched-
ule with the fewest overlaps in 𝑂(𝑛2) time.

3.2.6. Step 5: Applying the New Rule to Sequence Jobs. An
example is given in Table 5.The sequencing results by the two
traditional fluctuation smoothing rules are

FSMCT: 7 → 11 → 16 → 6 → 13 → 19 →

4 → 1 → 3 → 14 → 2 → 9 → 10 → 8 →

12 → 18 → 15 → 17 → 5.
FSVCT: 7 → 13 → 19 → 11 → 1 → 16 → 6 →

4 → 9 → 15 → 17 → 8 → 3 → 12 → 2 → 18
→ 14 → 5 → 10.

Subsequently, if the remaining cycle time is estimated
with a fuzzy value instead (see Table 6), then the sequencing
results by the two fuzzy fluctuation smoothing rules are

FFSMCT: 7 → 11 → 16 → 6 → 13 → 4 →

19 → 1 → 3 → 14 → 2 → 9 → 10 → 8 →

12 → 18 → 15 → 17 → 5.
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Table 6: The example with fuzzy remaining cycle times (𝜆 = 1.18).

# 𝑅

𝑗
𝑗 SCT

𝑗𝑢
RPT

𝑗𝑢

̃RCTE
𝑗𝑢

̃SK
𝑗𝑢
(FFSMCT) ̃SK

𝑗𝑢
(FFSVCT)

1 102 159 881 560 (1200, 1399, 1458) (−1324, −1265, −1066) (−1357, −1297, −1099)
2 756 37 227 451 (976, 1127, 1176) (−1145, −1096, −945) (−421, −371, −221)
3 826 37 157 489 (1086, 1223, 1299) (−1269, −1192, −1055) (−474, −397, −261)
4 652 86 331 729 (1618, 1822, 1976) (−1904, −1750, −1546) (−1325, −1170, −967)
5 208 55 775 212 (455, 530, 557) (−511, −484, −410) (−350, −322, −248)
6 783 84 200 816 (1742, 2040, 2158) (−2088, −1969, −1671) (−1376, −1257, −960)
7 800 96 183 946 (2039, 2366, 2549) (−2468, −2285, −1959) (−1750, −1566, −1240)
8 478 52 505 377 (848, 942, 992) (−949, −898, −805) (−515, −464, −371)
9 469 65 514 446 (992, 1116, 1176) (−1122, −1061, −938) (−708, −647, −524)
10 699 32 284 398 (853, 995, 1031) (−1005, −968, −827) (−333, −296, −155)
11 836 85 147 860 (1830, 2151, 2311) (−2240, −2079, −1759) (−1476, −1315, −995)
12 497 45 486 353 (794, 883, 918) (−881, −845, −757) (−422, −386, −298)
13 596 101 387 819 (1700, 2047, 2170) (−2086, −1962, −1615) (−1575, −1451, −1105)
14 798 34 185 458 (975, 1146, 1256) (−1228, −1118, −948) (−459, −348, −178)
15 197 79 786 297 (659, 743, 800) (−734, −677, −593) (−604, −546, −463)
16 804 85 179 837 (1819, 2092, 2318) (−2247, −2020, −1748) (−1515, −1288, −1016)
17 163 78 820 259 (560, 647, 708) (−643, −581, −495) (−546, −484, −398)
18 457 44 526 324 (685, 810, 839) (−803, −773, −649) (−383, −353, −229)
19 523 100 460 740 (1547, 1851, 2042) (−1958, −1767, −1463) (−1520, −1328, −1025)

FFSVCT: 7 → 13 → 19 → 16 → 11 → 1 →

6 → 4 → 9 → 15 → 17 → 8 → 3 → 12 →

2 → 14 → 18 → 5 → 10.

Obviously, after considering the uncertainty in the
remaining cycle time, the sequencing results are different.

The four-factor fuzzy slack-diversifying fluctuation-
smoothing rule and Wang et al.’s method are also applied
to this example. After 50 iterations, the optimal values of
the parameters are (𝛼, 𝛽, 𝛾, 𝜂, 𝜗) = (0.4, 0.08, 0.43, 0.43, 0.03)
with 𝜓max = 16. That means that 16 out of 19 jobs are not
overlapping with their neighbors. The slacks of the jobs are
shown in Figure 6. For a comparison, the slacks obtained by
using Wang et al.’s method are shown in Figure 7, in which
𝜎SK
𝑗𝑢

= 2.68. Obviously, Consider the following.

(1) The slacks obtained by using the proposed method-
ology are evenly distributed, and there are very little
slack overlapping and very few ties.

(2) Conversely, the slacks obtained using Wang et al.’s
method concentrate on one or two extremes, and
there are still some overlaps and ties that cause
difficulties in sequencing jobs and may lead to miss-
cheduling.

(3) The cumulative fuzziness during the reasoning pro-
cess of a fuzzy dispatching rule raises the possibility
of forming ties. In this regard, the proposed method-
ology surpasses Wang et al.’s method in reducing the
number of ties. The advantage is 83%.

(4) In addition, the proposed methodology also achieves
a very good performance in reducing the average
overlapping. When compared with Wang et al.’s
method, the advantage is as high as 98 hours.
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Figure 6: The fuzzy slacks of the 19 jobs after optimization.
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Figure 7: The fuzzy slacks obtained by using Wang et al.’s method.

4. Simulation Study

Simulation is widely used to assess the effectiveness of a
scheduling policy, especially when the proposed policy and
the current practice are very different [35]. A real wafer
fabrication factory located in Taichung Scientific Park of
Taiwan with a monthly capacity of about 25,000 wafers was
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Table 7: The performances of various approaches in the average cycle time.

Average cycle time (hrs) A (normal) A (hot) A (super hot) B (normal) B (hot)
FIFO 1254 400 317 1278 426
EDD 1094 345 305 1433 438
SRPT 948 350 308 1737 457
CR 1148 355 300 1497 440
FSMCT 1313 347 293 1851 470
FSVCT 1014 382 315 1672 475
4o-SDR 1183 347 271 1160 339
The proposed methodology 921 267 253 811 253

simulated.We used simulation to avoid disturbing the regular
operations of the wafer fabrication factory. The goal was
to evaluate the effectiveness of the fuzzy slack-diversifying
fluctuation-smoothing rule for multiobjective job scheduling
in the wafer fabrication factory. The simulation program has
been validated by comparing the actual cycle times with the
simulated values and verified by analyzing the trace reports.

Thewafer fabrication factory producesmore than 10 types
of memory products and has more than 500 workstations for
performing single-wafer or batch operations using 58 nm∼

110 nm technologies. Jobs released into the wafer fabrication
factory are assigned three types of priorities, that is, “normal”,
“hot”, and “super hot”. Jobs with the highest priorities will be
processed first.The large scale and the reentrant process flows
of the wafer fabrication factory exacerbate the difficulties of
job dispatching. Currently, the longest average cycle time
exceeds three months with a variation of more than 300
hours. The wafer fabrication factory is therefore seeking
better dispatching rules to replace FIFO and EDD, in order to
shorten the average cycle times and ensure on-time delivery
to its customers. One hundred replications of the simulation
were successively run. The time required for each simulation
replication was about 30 minutes on a PC with Intel Dual
E2200 2.2GHz CPUs and 1.99G RAM. A horizon of twenty-
four months was simulated.

To assess the effectiveness of the proposed methodology
and to make comparison with some existing approaches,
seven methods were tested. FIFO, EDD, shortest remaining
processing time (SRPT), CR, FSVCT, FSMCT, and the four-
objective slack-diversifying rule (4o-SDR) [14] were applied
to schedule the simulated wafer fabrication factory. We
collected the data of 1000 jobs, and then we separated the
collected data by product types and priorities.

Jobs with the highest priorities are processed first. With
FIFO, jobs were sequenced on each machine first by their
priorities and then by their arrival times at themachine.With
EDD, jobs were sequenced first by their priorities and then by
their due dates. With SRPT, the remaining processing time
of each job was calculated. Then, jobs were sequenced first
by their priorities and then by their remaining processing
times. With CR, jobs were sequenced first by their priorities,
then by their critical ratios. FSMCT and FSVCT used two
stages. First, jobs were scheduled using FIFO, in which the
remaining cycle times of all jobs were recorded and averaged
at each step. Then, FSMCT/FSVCT was applied to schedule

the jobs based on the average remaining cycle times obtained
earlier. In other words, jobs were sequenced on eachmachine
first by their priorities, then by their slack values. With 4o-
SDR, the remaining cycle time of a job was estimated using
the fuzzy c-means and back propagation network (FCM-
BPN) approach [28]; it was a crisp value. The five adjustable
parameters were set to (𝛼, 𝛽, 𝛾, 𝜂, 𝜗) = (0.6, 0.2, 0, −0.6, 0)

after initial scenarios had been examined. In the proposed
methodology, the remaining cycle time of a job was estimated
using the SA-FBPN approach. The effectiveness of the SA-
FBPN approach can be seen from Figure 8. The SA-FBPN
approach can generate a very precise interval of the remaining
cycle time for each job, thereby reducing the risk of miss-
cheduling. In this case, the performance of the effective FBPN
approach [12] was close to that of the proposedmethodology.
Nevertheless, in theory the proposed SA-FBPN approach
will outperform the effective FBPN approach because of its
iterative nature. By contrast, the FCM-BPN approach does
not guarantee that the actual value falls within a distance of
three times the root mean squared error (RMSE) from the
estimate.

The average cycle time, cycle time standard deviation, the
number of tardy jobs, and the maximum lateness of all cases
were calculated to assess the scheduling performance. The
results were summarized in Tables 7, 8, 9, and 10.

According to the experimental results, the following
points can be made.

(1) For the average cycle time, the fuzzy slack-dive-
rsifying fluctuation-smoothing rule outperformed
the existing approaches. In this respect, FIFO is often
a basis for comparison. The most obvious advantage
of the fuzzy slack-diversifying fluctuation-smoothing
rule over FIFO was about 31%.

(2) The fuzzy slack-diversifying fluctuation-smoothing
rule also achieved a very good performance in reduc-
ing the maximum lateness. When compared with
EDD, the advantage was as high as 36% on average. In
this regard, the fuzzy slack-diversifying fluctuation-
smoothing rule also outperformed 4o-SDR in most
cases, which was reasonable due to the uncertainty in
the remaining cycle time.

(3) In addition, the fuzzy slack-diversifying fluctuation-
smoothing rule surpassed the FSVCTpolicy in reduc-
ing cycle time standard deviation. The most obvious
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Figure 8: The performances of three approaches in estimating the remaining cycle time.

Table 8: The performances of various approaches in the maximum lateness.

The maximum lateness (hrs) A (normal) A (hot) A (super hot) B (normal) B (hot)
FIFO 401 −122 164 221 172
EDD 295 −181 144 336 185
SRPT 584 −142 174 718 194
CR 302 −159 138 423 192
FSMCT 875 −165 125 856 171
FSVCT 706 −112 174 686 260
4o-SDR 360 −152 118 21 94
The proposed methodology 292 −143 113 23 102
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Table 9: The performances of various approaches in cycle time standard deviation.

Cycle time standard deviation (hrs) A (normal) A (hot) A (super hot) B (normal) B (hot)
FIFO 55 24 25 87 51
EDD 129 25 22 50 63
SRPT 248 31 22 106 53
CR 69 29 18 58 53
FSMCT 419 33 16 129 104
FSVCT 280 37 27 201 77
4o-SDR 71 41 22 30 29
The proposed methodology 66 18 25 28 33

Table 10: The performances of various approaches in the number of tardy jobs.

Number of tardy jobs A (normal) A (hot) A (super hot) B (normal) B (hot)
FIFO 79 0 12 16 5
EDD 71 0 12 19 5
SRPT 37 0 12 19 5
CR 79 0 12 19 5
FSMCT 58 0 12 19 5
FSVCT 56 0 12 18 5
4o-SDR 79 0 12 19 5
The proposed methodology 37 0 12 19 5

advantage was 86%when product type B with normal
priority was scheduled. The fuzzy slack-diversifying
fluctuation-smoothing rule also surpassed 4o-SDR
policy in three out of five cases with an average
advantage of 8%.

(4) In reducing the number of tardy jobs, the proposed
methodology outperformed the existing methods in
most cases and achieved the best performance when
product type A with hot priority was scheduled.

(5) As expected, SRPT performed well in reducing the
average cycle times, especially for product types with
short cycle times (e.g., product A), but gave an
exceedingly bad performance with respect to cycle
time standard deviation. If the cycle time is long,
the remaining cycle time will be much longer than
the remaining processing time, which renders SRPT
ineffective. SRPT is similar to FSMCT. Both try to
make all jobs equally early or late.

(6) The performance of EDD was also satisfactory for
product types with short cycle times. If the cycle time
is long, it is more likely to deviate from the prescribed
internal due date, which makes EDD ineffective. This
becomesmore serious if the percentage of the product
type is high in the product mix (e.g., product type A).
CR has similar problems.

(7) The FCM-BPN approachwas also applied to the fuzzy
slack-diversifying fluctuation-smoothing rule. Taking
product type A (normal priority) as an example,

the results are shown in Table 11. We noticed that
with poorer remaining cycle time estimation, the
performances of fuzzy slack-diversifying fluctuation-
smoothing rule were indeed worsened. However,
incorporating the SA-FBPN approach with the fuzzy
slack-diversifying fluctuation-smoothing rule could
improve the scheduling performance significantly.

(8) Wilcoxon signed-rank test [36], a commonly used
nonparametric statistical hypothesis test, was used in
this study for comparisons of two related samples or
repeated measurements on a single sample, to assess
whether their population means differed or not. The
results were summarized in Table 12.Thenull hypoth-
esis𝐻

𝑎
was rejected at 𝛼 = 0.025, which showed that

the fuzzy slack-diversifying fluctuation-smoothing
rule was superior to seven existing approaches in
reducing the average cycle time. With regard to the
maximum lateness, the advantage of the fuzzy slack-
diversifying fluctuation-smoothing rule over FIFO,
SRPT, and FSVCT was significant. Similar results
could be observed with cycle time standard devi-
ation. However, the advantage of the fuzzy slack-
diversifying fluctuation-smoothing rule was not sta-
tistically significant for the number of tardy jobs.

5. Conclusions and Directions for
Future Research

Multiobjective scheduling in a wafer fabrication factory
is a challenging but important task. For such a complex
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Table 11: The results of applying the FCM-BPN approach to the fuzzy slack-diversifying fluctuation-smoothing rule.

Approach Average cycle time Maximum lateness Cycle time standard deviation Number of tardy jobs
FCM-BPN + the proposed rule 958 307 70 37
SA-FBPN + the proposed rule 921 292 66 37

Table 12: Results of the Wilcoxon sign-rank test.

𝐻

𝑎0
(the average cycle time) 𝐻

𝑏0
(the maximum lateness) 𝐻

𝑏0
(cycle time standard deviation) 𝐻

𝑏0
(the number of tardy jobs)

FIFO 2.02∗∗ 2.02∗∗ 1.21 0.54
EDD 2.02∗∗ 1.21 1.75∗ 1.21
SRPT 2.02∗∗ 2.02∗∗ 1.75∗ 0.67
CR 2.02∗∗ 1.48 1.48 1.21
FSMCT 2.02∗∗ 1.48 1.75∗ 1.21
FSVCT 2.02∗∗ 2.02∗∗ 2.02∗∗ 0.54
4o-SDR 2.02∗∗ −0.13 0.67 1.21
∗P < 0.05.
∗∗P < 0.025.

production system, to optimize a single objective is tough
enough, and to optimize four objectives at the same time is
a remarkable challenge. Further, the uncertainty in various
production conditions often leads to incorrect scheduling
decisions. To deal with these difficulties, the mainstream
of research is still the development of dispatching rules
through generalization or fusion. For this reason, this study
has proposed an effective fuzzy dispatching rule. First, to
consider the uncertainty in the fabrication process, the SA-
FBPN approach has been proposed to estimate the remaining
cycle time of a job. Compared to the existing methods, the
SA-FBPN approach can generate a very precise estimate of
the remaining cycle time in an iterative manner.The FI-GAV
approach has also been proposed to aggregate the estimation
results from various FBPNs. Subsequently, the fuzzy slack-
diversifying fluctuation-smoothing rule has been proposed.
The fuzzy remaining cycle time estimate is input to the
fuzzy slack-diversifying fluctuation-smoothing rule to derive
the job slack. There are five parameters in the fuzzy slack-
diversifying fluctuation-smoothing rule that can be adjusted
to optimize the rule. To this end, a systematic procedure has
been proposed.

After a simulation study, we concluded the following
points.

(1) By considering the uncertainty in the remaining cycle
time, four aspects of the scheduling performance—
the average cycle time, the maximum lateness, cycle
time standard deviation, and the number of tardy
jobs—can indeed be simultaneously improved. How-
ever, if the estimation accuracy is insufficient, the
scheduling process may be misled.

(2) The cumulative fuzziness during a fuzzy inference
process must be properly dealt with.

(3) By tackling slack overlapping in a nonsubjective
way, the problem of misscheduling can be effectively

avoided, which augments the performance of the
fuzzy slack-diversifying fluctuation-smoothing rule.

However, any further assessment of the proposed
methodology requires its application to an actual wafer
fabrication factory. In addition, different objectives can be
fused and fuzzified in the same way. Further, the SA-FBPN
approach can be applied to other real production lines in
future studies.

Appendix

Proof of Theorem 3. First, let us compare the four-objective
nonlinear fluctuation smoothing rule and FSMCT. For a fair
comparison, the parameters 𝛽, 𝛾, and 𝜗 are set to 0, because
the corresponding variables are not considered in FSMCT.

When 𝑗/𝜆 increases by 1%, in FSMCT SK
𝑗𝑢
is changed by
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If RCTE
𝑗𝑢
is greater than 𝑗/𝜆, then (A.1) becomes
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Conversely, in the four-objective nonlinear fluctuation
smoothing rule, SK

𝑗𝑢
will be changed by
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because 𝑗 ≥ 1. In addition, since 0 ≤ 𝛼 ≤ 1,
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Therefore, (A.3) becomes
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which finishes the proof. The comparison between the four-
objective nonlinear fluctuation smoothing rule and the other
rules can be done in similar ways.
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