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The chaotic time series can be expanded to the multidimensional space by phase space reconstruction, in order to reconstruct the
dynamic characteristics of the original system. It is difficult to obtain complete phase space for chaotic time series, as a result
of the inconsistency of phase space reconstruction. This paper presents an idea of subspace approximation. The chaotic time
series prediction based on the phase space reconstruction can be considered as the subspace approximation problem in different
neighborhood at different time. The common static neural network approximation is suitable for a trained neighborhood, but
it cannot ensure its generalization performance in other untrained neighborhood. The subspace approximation of neural network
based on the nonlinear extended Kalman filtering (EKF) is a dynamic evolution approximation from one neighborhood to another.
Therefore, in view of incomplete phase space, due to the chaos phase space reconstruction, we put forward subspace adaptive
evolution approximation method based on nonlinear Kalman filtering. This method is verified by multiple sets of wind speed
prediction experiments in Wulong city, and the results demonstrate that it possesses higher chaotic prediction accuracy.

1. Introduction

In recent years, industrial disasters and accidents occurred
frequently, the meteorological and hydrological conditions
were complicated and changeable, and financial markets fluc-
tuated drastically. These phenomena often contain chaotic
characteristics [1, 2], and prediction [3] for these phenomena
is imminent. For a long time, there was no scientific tool
for handling this issue, because the changing mechanisms
of characteristics in these phenomena were not understood
very well. Hence, aiming at the chaotic characteristics, some
scholars worked with structures and made a lot of new
researches on the prediction of chaotic time series [4–8].

To study and deal with the measurement data of chaotic
system, Kennel et al. presented the reconstruction method
of phase space system. Two parameters, the embedding
dimension 𝑚 and delay time 𝜏, needed to be determined
before the phase space reconstruction [9, 10]. At present,
time delay selection methods that are commonly used in
the chaotic short-term prediction mainly include autocor-
relation method [11], mutual information method [12], and

singular value fraction method [13]. Calculating methods of
embedding dimension mainly include saturated correlation
dimension [14], false nearest neighbors method [15], and
Cao’s method [16]. Hu and Chen put forward the C-C
method [17], which can simultaneously estimate the delay
time 𝜏 and embedding dimension 𝑚 with the correlation
integral. Autocorrelation method extracts only linear cor-
relation degree between time series, which is hard to be
applied to high-dimensional chaos system and nonlinear
dynamical system. Mutual information method, which can
determine the optimal delay time by calculating the first
minimal value of mutual information function, is a nonlinear
analysis method, but it cannot avoid massive calculation and
cannot satisfy the requirement of complicated space division.
It is difficult to determine the threshold of the singular value,
because the singular value fraction method is largely affected
by noise. When the embedded dimension with the saturated
correlation dimension is calculated, the main question is
to choose the different neighborhood radius. The radius
selection has certain randomness, and the result will be in
large deviationwith improper choice, because of the influence
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of noise in the data and excessive concentration of the data.
The determination of threshold has very strong subjectivity
when we use false nearest neighbors method to determine
the embedding dimension. There is no objective standard
to determine the threshold value, especially for the experi-
mental data, which may get a wrong result. Cao’s method,
an improved false nearest neighbors method, can effectively
distinguish random signals and deterministic signals, and
embedding dimension can be obtained through a less amount
of data. C-C method is based on the statistical theory, so 𝑚

cannot be precisely determined.
Researches have showed that different phase space recon-

struction methods get different 𝑚 and 𝜏. Moreover, the
same chaotic time series with the same kind of method
in different times may get different 𝑚 and 𝜏. There is no
phase space reconstruction that can obtain complete and
independent phase space. After phase space reconstruction,
prediction model is often established through the functional
approximation method.

The prediction model based on phase space reconstruc-
tion has been used to adopt the functional approximation
method based on the neural network [18–21], which has
strong nonlinear fitting capability and can approximate any
complex nonlinear relationships. However, since neural net-
work is only suitable for approximation of a deterministic
system, it is difficult to guarantee the time-varying system
performance and ensure its generalization performance in
other untrained neighborhood. Meanwhile, the prediction
effect of neural network is not good, because the chaotic time
series is a complex nonlinear uncertain system.

In this study, we introduce Kalman filtering to neural
network model [22], inspired by Kalman iteration and Bucy
and Sunahara’s nonlinear extended Kalman filtering theory
[23]. The subspace approximation of neural network based
on the nonlinear extended Kalman filtering (EKF) has a
function which is dynamic evolution approximation from
one neighborhood to another. Therefore, we can constitute a
phase space by choosing a kind of phase space reconstruction
method, and the space may be incomplete, not separate, and
can be seen as a subspace of the ideal phase space. On this
basis, we put forward adaptive neural network model based
on nonlinear Kalman filtering and finally realize the subspace
approximation of dynamic evolution system. In addition, we
simulate wind speed series inWulong city using the proposed
method. By comparing with BP neural network prediction
model, the results show that our method possesses higher
prediction accuracy.

The paper is organized as follows. Section 2 discusses
about the subspace approximation of phase space reconstruc-
tion. In Section 3, we describe the neural network model
based on nonlinear Kalman filtering. Section 4 uses practical
examples and series tests to verify the proposed method,
while Section 5 contains the conclusions of the present work.

2. Subspace Approximation of
Phase Space Reconstruction

Reconstructing phase space by chaos theory needs to identify
the chaos of time series. Single variable time series can

be reconstructed into a phase space by Takens’ embedding
theorem in phase space reconstruction [24, 25]; that is,
the original dynamical system can be restored in the
sense of topological equivalence as long as the embedding
dimension is sufficiently high. For the observed time series
𝑥(1), 𝑥(2), . . . , 𝑥(𝑡), after time delay reconstruction by Takens
embedding theorem, it will receive a set of space vector

X (𝑡) = {𝑥 (𝑡) , 𝑥 (𝑡 + 𝜏) , . . . , 𝑥 (𝑡 + (𝑚 − 1) 𝜏)} ,

𝑡 = 1, 2, . . .𝑀, 𝑀 = 𝑁 − (𝑚 − 1) 𝜏.

(1)

After phase space reconstruction, the data space is

[

[

[

[

[

𝑥 (1) 𝑥 (2) ⋅ ⋅ ⋅ 𝑥 (𝑡)

𝑥 (1 + 𝜏) 𝑥 (2 + 𝜏) ⋅ ⋅ ⋅ 𝑥 (𝑡 + 𝜏)

...
... d

...
𝑥 (1 + (𝑚 − 1) 𝜏) 𝑥 (2+(𝑚 − 1) 𝜏) ⋅ ⋅ ⋅ 𝑥 (𝑡+(𝑚 − 1) 𝜏)

]

]

]

]

]

.

(2)

Accordingly, we acquire

𝑓 : R𝑚 → R, (3)

where 𝑓 is a single-valued function. Then, we have

𝑥 (𝑡 + 𝑚𝜏) = 𝑓 (𝑥 (𝑡) , 𝑥 (𝑡 + 𝜏) , . . . , 𝑥 (𝑡 + (𝑚 − 1) 𝜏)) . (4)

However, it cannot be really obtained as the data are often
limited. Hence, ̂

𝑓 : R𝑚 → R can only be constituted by lim-
ited measurement data, making ̂

𝑓 sufficiently approximate to
𝑓, consequently we can get a nonlinear prediction model.

This paper employs the neural network to predict chaotic
series.However, the neural network cannot readily handle the
inconsistency of the phase space reconstruction because of
uncertain nonlinear chaotic time series. Therefore, it is cru-
cial to adaptively construct subspace to approximate chaotic
series through the incomplete phase space. The feature of
adaptive subspace approximation is that it can add new data
in real time and forget old data in the process of training.
Consequently, weights and thresholds of the neural network
are continuously modified to realize the dynamic evolution
modeling.

3. Neural Network Model Based on
Nonlinear Kalman Filtering

Kalman filtering has good adaptability. It can dynamically
update and forecast the system information in real time with
limited data. However, it cannot be readily used for com-
plicated nonlinear model. Meanwhile, the extended Kalman
filtering (EKF) is a kind of effective method to handle
nonlinear filtering.

The mathematical model of EKF is as follows:

X
𝑘+1

= 𝑓 (X
𝑘
, 𝑘) + Γ (X

𝑘
, 𝑘)W

𝑘

Z
𝑘
= ℎ (X

𝑘
, 𝑘) + V

𝑘
,

(5)
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whereW
𝑘
andV

𝑘
are independent, zero mean, and Gaussian

random processes with covariance matricesQ and R, respec-
tively. The statistical properties are as follows:

𝑝 (𝑤) ∼ 𝑁 (0,Q) , 𝑝 (V) ∼ 𝑁 (0,R) . (6)

EKF spreads nonlinear functions 𝑓(⋅) and ℎ(⋅) to Tay-
lor series around filtering value ̂X

𝑘
and predicted value

X̂−
𝑘
, respectively, only retaining the first-order information.

Hence, the linearization model of the nonlinear system
is obtained, and then we can obtain the EKF formula in
nonlinear system by basic equations of Kalman filtering.

Given a forward network with 𝑁 layers, the numbers
of neurons in each layer are 𝑆

𝑘
(𝑘 = 1, 2, . . . , 𝑁). Suppose

that input layer is the first layer and output layer is the 𝑁th
layer. The weights of the 𝑘th layer neurons are 𝑊

𝑘

𝑖𝑗
(𝑖 =

1, 2, . . . , 𝑆
𝑘−1

; 𝑗 = 1, 2, . . . , 𝑆
𝑘
). In order to convert the

calculation of connection weights 𝑊
𝑘

𝑖𝑗
in the above problem

into filter recursive estimation form, we let all of the network
weights constitute the state vector

W = [𝑊
1

11
⋅ ⋅ ⋅𝑊
1

𝑆
1
𝑆
2

𝑊
2

11
⋅ ⋅ ⋅𝑊
2

𝑆
2
𝑆
3

⋅ ⋅ ⋅𝑊
𝑁−1

11
𝑊
𝑁−1

𝑆
𝑁−1
𝑆
𝑁

]

𝑇

, (7)

where state vectorW consists of all of the weights according
to the linear array, and its dimension is as follows:

𝑁
𝑊

=

𝑁−1

∑

𝑖=1

𝑆
𝑖
𝑆
𝑖+1

. (8)

Then the state equation and measurement equation of the
system can be expressed as

W
𝑘
= W
𝑘−1

, (9)

Y
𝑒𝑘

= ℎ (W
𝑘
,X
𝑘
) + V
𝑘
= Y
𝑟𝑘

+ V
𝑘
, (10)

where Y
𝑒𝑘
is the expected output, X

𝑘
is the input vector, and

Y
𝑟𝑘
is the actual output.
The measurement noise V

𝑘
is assumed to be additive,

white, and Gaussian, with zero mean and with covariance
matrix defined by

𝐸 (V
𝑘
) = 0, 𝐸 (V

𝑘
V𝑇
𝑘
) = R

𝑘
. (11)

Suppose that the output of the 𝑗th node for the 𝑙th layer in the
𝑘th iteration is

𝑂
𝑙

𝑗𝑘
= 𝐹
𝑙

𝑗
(𝑊
𝑙

𝑗𝑘
, 𝑂
𝑙−1

𝑘
) . (12)

From (10) and (12), we have

Y
𝑒𝑘

= ℎ (W
𝑘
,X
𝑘
) + V
𝑘

= 𝐹
𝑁

(𝑊
𝑁

𝑘
, 𝐹
𝑁−1

(𝑊
𝑁−1

𝑘
⋅ ⋅ ⋅ 𝐹
2

(𝑊
2

𝑘
,X
𝑘
))) + V

𝑘
,

Y
𝑒𝑘

= ℎ (
̂W−
𝑘
,X
𝑘
) +

𝜕ℎ

𝜕𝑊








W
𝑘
=Ŵ−
𝑘

(W
𝑘
−

̂W−
𝑘
) + V
𝑘
.

(13)

Table 1: Extended Kalman filtering neural network algorithm.

Extended Kalman filtering neural network

(1) Initialization
̂𝜃
0
= 𝐸 (𝜃

0
) = [Ŵ

0
,
̂b
0
]

𝑇

P
0
= 𝐸 [(𝜃

0
−

̂𝜃
0
) (𝜃
0
−

̂𝜃
0
)

𝑇

]

(2) Time update (forecast)
̂𝜃
−

𝑘
=

̂𝜃
𝑘−1

P−
𝑘
= P
𝑘−1

+Q
𝑘−1

(3) Measurement update
(correct)

K
𝑘
= P−
𝑘
H
𝑘

𝑇

(H
𝑘
P−
𝑘
H
𝑘

𝑇

+ R
𝑘
)

−1

̂𝜃
𝑘
=

̂𝜃
−

𝑘
+ K
𝑘
[Y
𝑒𝑘

− ℎ (
̂𝜃
−

𝑘
,X
𝑘
)]

P
𝑘
= (I − K

𝑘
H
𝑘
)P−
𝑘

Q
𝑘−1

and R
𝑘
are process noise covariance and measurement noise covari-

ance, respectively, H
𝑘
is the Jacobian matrix of observable model, ̂𝜃

−

𝑘
is the

optimal predictive value for step 𝑘 according to step 𝑘 − 1, and ̂𝜃
𝑘
is the

optimal filter estimate for step 𝑘.

Assume that
𝜕ℎ

𝜕𝑊








W
𝑘
=Ŵ−
𝑘

= H
𝑘
, ℎ (Ŵ−

𝑘
,X
𝑘
) −

𝜕ℎ

𝜕𝑊








W
𝑘
=Ŵ−
𝑘

Ŵ−
𝑘
= C
𝑘
.

(14)

Accordingly, the measurement equation may also be
expressed as

Y
𝑒𝑘

= H
𝑘
W
𝑘
+ C
𝑘
+ V
𝑘
. (15)

The Jacobian matrix of the function ℎ(⋅) is described by

H
𝑘
=

[

[

[

[

[

[

[

[

[

[

[

[

𝜕ℎ
1

𝜕𝑤
1

𝜕ℎ
1

𝜕𝑤
2

⋅ ⋅ ⋅

𝜕ℎ
1

𝜕𝑤
𝑛

𝜕ℎ
2

𝜕𝑤
1

𝜕ℎ
2

𝜕𝑤
2

⋅ ⋅ ⋅

𝜕ℎ
2

𝜕𝑤
𝑛

...
... d

...
𝜕ℎ
𝑛

𝜕𝑤
1

𝜕ℎ
𝑛

𝜕𝑤
2

⋅ ⋅ ⋅

𝜕ℎ
𝑛

𝜕𝑤
𝑛

]

]

]

]

]

]

]

]

]

]

]

]

. (16)

Similarly, all thresholds of the network constitute the state
vector

b = [𝑏
1

1
⋅ ⋅ ⋅ 𝑏
1

𝑆
2

𝑏
2

1
⋅ ⋅ ⋅ 𝑏
2

𝑆
3

⋅ ⋅ ⋅ 𝑏
𝑁−1

1
⋅ ⋅ ⋅ 𝑏
𝑁−1

𝑆
𝑁

]

𝑇

, (17)

where the dimension is

𝑁
𝑏
=

𝑁−1

∑

𝑖=1

𝑆
𝑖+1

. (18)

Suppose thatW and b are both state variable; that is, the state
vector composed of weights and thresholds is described by

𝜃 = [W, b]𝑇

= [𝑊
1

11
⋅ ⋅ ⋅𝑊
1

𝑆
1
𝑆
2

𝑏
1

1
⋅ ⋅ ⋅ 𝑏
1

𝑆
2

𝑊
2

11
⋅ ⋅ ⋅𝑊
2

𝑆
2
𝑆
3

𝑏
2

1

⋅ ⋅ ⋅ 𝑏
2

𝑆
3

⋅ ⋅ ⋅𝑊
𝑁−1

11
𝑊
𝑁−1

𝑆
𝑁−1
𝑆
𝑁

𝑏
𝑁−1

1
⋅ ⋅ ⋅ 𝑏
𝑁−1

𝑆
𝑁

]

𝑇

.

(19)

Kalman filtering algorithm on training weights and thresh-
olds of the neural network is as in Table 1.
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Table 2: Comparison among phase space reconstruction methods.

Parameter Method
Autocorrelation Mutual information False nearest neighbors Cao C-C

𝜏 1 12 — — 5
𝑚 — — 4 3 5
“—” means nothing.

Table 3: Parameters of the same phase space reconstruction during different time periods.

Parameter
Interval

𝑇
1

(𝑘 = 1, 2, . . . , 600)

𝑇
2

(𝑘 = 601, 602, . . . , 1200)

𝑇
3

(𝑘 = 1201, . . . , 1800)

𝑇
4

(𝑘 = 1801, . . . , 2400)

𝑇
5

(𝑘 = 2401, . . . , 3000)

𝜏 5 3 4 4 5
𝑚 5 5 4 9 10

Table 4: Comparison among phase space reconstruction methods.

Parameter Method
Autocorrelation Mutual information False nearest neighbors Cao C-C

𝜏 1 12 — — 3
m — — 3 7 4

Table 5: Various combinations on two forecasting methods.

Model Combination Parameter Forecasting
a1 Autocorrelation + false nearest neighbors 𝜏 = 1,𝑚 = 3 BPNN
b1 Autocorrelation + false nearest neighbors 𝜏 = 1,𝑚 = 3 EKFNN
a2 Mutual information + false nearest neighbors 𝜏 = 12,𝑚 = 3 BPNN
b2 Mutual information + false nearest neighbors 𝜏 = 12,𝑚 = 3 EKFNN
a3 Autocorrelation + Cao 𝜏 = 1,𝑚 = 7 BPNN
b3 Autocorrelation + Cao 𝜏 = 1,𝑚 = 7 EKFNN
a4 Mutual information + Cao 𝜏 = 12,𝑚 = 7 BPNN
b4 Mutual information + Cao 𝜏 = 12,𝑚 = 7 EKFNN
a5 C-C 𝜏 = 3,𝑚 = 4 BPNN
b5 C-C 𝜏 = 3,𝑚 = 4 EKFNN

4. Simulation Examples

4.1. Determining of Embedding Dimension and Delay Time.
One of the most popular chaos logistic mapper is selected as
the study object. Logistic equation is

𝑥
𝑛+1

= 𝛼𝑥
𝑛
(1 − 𝑥

𝑛
) , 𝛼 ∈ [0, 4] . (20)

The related time series are produced according to (20).
It is a chaotic system when 𝛼 = 4. Assume that initial value
of series is 0.1, and 4000 points are calculated. The first 1000
points are eliminated as transition phenomenon, leaving the
remaining 3000 points to reconstruct phase space. Before
the phase space reconstruction, we determine the embedding
dimension𝑚 and delay time 𝜏. A comparison among several
methods is present in Table 2.

Obviously, the optimal embedding dimension and delay
time are generally different by different methods of phase
space reconstruction.

In order to verify the fact that data at different time will
obtain different embedding dimension 𝑚 and delay time 𝜏

with the same phase space reconstruction method, we have
the following experiment.

The remaining 3000 points (𝑘 = 1, 2, . . . , 3000) are
divided into five parts, with time intervals 𝑇

1
, 𝑇
2
, 𝑇
3
, 𝑇
4
, and

𝑇
5
, respectively. Embedding dimension and delay time are

present in Table 3 by C-C method.
Apparently, the data during different time periods will

acquire different embedding dimension and delay time by
using the same phase space reconstruction method.

4.2. Wind Speed Chaotic Series Forecasting Simulation. Anal-
ysis about the chaotic characteristics of wind speed in the
process of wind power generation has been presented in a
related article [26]. We record one of the wind speed data
every 10 minutes, and 150 groups of wind speed data in
Wulong city are used to simulate experiments in our study.
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We obtain the corresponding𝑚 and 𝜏 by different phase space
reconstruction methods, as shown in Table 4.

Various combinations are present in Table 5.
Wind speed prediction [27, 28] of chaotic time series

about neural network model usually extracts phase space
reference points as the BP neural network training samples
on the basis of phase space reconstruction. We establish the
neural network model based on nonlinear Kalman filtering,
including two parts: predict wind speed and constantly
modify weights and thresholds of the neural network by
Kalman recursion. In this paper, BPNN model in the same
structure is employed to forecast wind speed time series, in
order to illustrate the validity of EKFNN on predicting the
chaotic time series. The same 150 groups of wind speed data
are used to simulate experiments. The predicted curves and
error curves are shown in Figures 1, 2, 3, 4, and 5.

Comparisons among several models in four indices are
present in Table 6.

We list 12 groups, a total of 2 hours of wind speed
forecasting results in two methods, under the same phase

Table 6: Different wind speed model index.

Model Error
MAE MRE MSE SSE

a1 0.8482 0.1076 1.3786 206.7967
b1 0.3365 0.0416 0.1919 28.7834
a2 1.2279 0.1674 2.9614 444.2152
b2 0.6190 0.0759 0.6209 93.1357
a3 0.5106 0.0656 0.4089 61.3361
b3 0.3783 0.0458 0.2654 39.8130
a4 2.4005 0.3079 8.4766 1.2715𝑒 + 003

b4 0.0852 0.0110 0.0177 2.6584
a5 0.8952 0.1173 1.7970 269.5495
b5 0.2867 0.0357 0.1359 20.3850
MAE, MRE, MSE, and SSE are Mean Absolute Error, Mean Relative Error,
Mean Square Error, and Sum of Squared Error, respectively.

space reconstruction. Compare the prediction performance
in the next 10min, 20min, 30min, and up to, 120min.
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Table 7: Observed wind speed data and predicted data.

Time (min) Observed value
(m/s)

Predicted value
(m/s)

Relative error
(%)

Predicted value
(m/s)

Relative error
(%)

a1 b1

10 10.4900 10.0801 3.9561 10.5101 0.1823
20 10.3700 9.9783 3.7762 10.4011 0.2630
30 10.6900 10.1024 5.4902 10.4621 2.1476
40 10.2100 10.8802 6.5374 10.6202 4.0235
50 10.3000 9.1424 11.2402 10.1531 1.4947
60 9.8000 10.3508 5.6401 10.2210 4.2446
70 9.3000 8.6881 6.5810 9.6032 3.2585
80 9.4900 8.1883 13.7201 9.3163 1.8295
90 10.1100 9.6013 5.0321 9.7631 3.4282
100 9.2100 10.4726 13.7200 10.0300 8.9132
110 8.5500 7.2082 15.6903 8.8621 3.6533
120 9.0000 7.0824 21.3101 8.5470 5.0347

a2 b2

10 10.4900 9.6930 7.5977 10.4785 0.1095
20 10.3700 10.4006 0.2955 10.4249 0.5292
30 10.6900 10.0489 5.9968 10.4992 1.7845
40 10.2100 10.5699 3.5250 10.3357 1.2311
50 10.3000 10.2559 0.4285 10.2518 0.4675
60 9.8000 10.1445 3.5151 10.1132 3.1960
70 9.3000 9.2583 0.4488 10.0703 8.2826
80 9.4900 9.8944 4.2609 9.9547 4.8963
90 10.1100 10.6937 5.7739 9.7503 3.5580
100 9.2100 11.4420 24.2351 9.5212 3.3787
110 8.5500 11.8315 38.3804 9.1823 7.3954
120 9.0000 11.2543 25.0475 9.3012 3.3463

a3 b3

10 10.4900 10.9775 4.6468 10.7194 2.1870
20 10.3700 10.4931 1.1872 10.4277 0.5567
30 10.6900 10.3878 2.8269 10.4168 2.5559
40 10.2100 13.7393 34.5672 10.1893 0.2032
50 10.3000 9.8085 4.7716 10.2918 0.0793
60 9.8000 12.1826 24.3126 10.0993 3.0540
70 9.3000 9.7924 5.2943 9.8370 5.7739
80 9.4900 9.3521 1.4529 9.6689 1.8855
90 10.1100 14.5803 44.2168 9.7772 3.2920
100 9.2100 14.6095 58.6264 9.5805 4.0233
110 8.5500 8.6425 0.0821 9.3442 9.2884
120 9.0000 9.7379 8.1988 9.3314 3.6817

a4 b4

10 10.4900 8.9295 14.8759 10.1137 3.5868
20 10.3700 9.2037 11.2466 9.7344 6.1296
30 10.6900 8.6494 19.0887 10.3308 3.3597
40 10.2100 8.5516 16.2426 9.9803 2.2501
50 10.3000 9.3038 9.6717 10.5685 2.6064
60 9.8000 8.7467 10.7479 10.1183 3.2477
70 9.3000 8.7126 6.3161 9.7779 5.1391
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Table 7: Continued.

Time (min) Observed value
(m/s)

Predicted value
(m/s)

Relative error
(%)

Predicted value
(m/s)

Relative error
(%)

80 9.4900 8.6188 9.1802 9.8413 3.7021

90 10.1100 9.4713 6.3176 10.9886 8.6901

100 9.2100 9.3204 1.1992 8.8816 3.5657

110 8.5500 9.5029 11.1452 8.2497 3.5118

120 9.0000 9.6909 7.6768 8.8558 1.6017
a5 b5

10 10.4900 10.1227 3.5017 10.4227 0.6412

20 10.3700 10.5150 1.3985 10.4890 1.1473

30 10.6900 10.3714 2.9805 10.6268 0.5909

40 10.2100 10.1625 0.4652 10.5638 3.4649

50 10.3000 10.5236 2.1705 10.4778 1.7260

60 9.8000 10.5366 7.5159 10.1741 3.8174

70 9.3000 9.8748 6.1807 9.8224 5.6174

80 9.4900 9.4500 0.4217 9.6744 1.9432

90 10.1100 9.7279 3.7794 9.8950 2.1267

100 9.2100 8.9728 2.5755 9.6195 4.4458

110 8.5500 9.3838 9.7519 9.2464 8.1455

120 9.0000 9.3328 3.6973 9.0710 0.7889

Comparisons among several prediction results in two
methods are present in Table 7.

Figures 1–5 show that relative error of wind speed pre-
diction by EKF neural network is much smaller than that
by BP neural network, through observing the future wind
speed prediction of 150 groups. As can be seen in Table 6,
the prediction effects are largely different by different kinds
of phase space reconstruction methods. Four performance
indices, which are Mean Absolute Error (MAE), Mean Rel-
ative Error (MRE), Mean Square Error (MSE), and Sum of
Squared Error (SSE), of EKF neural network, are also far less
than those of corresponding general neural network.

Apparently, EKF neural network can solve the inconsis-
tency problem of phase space reconstruction and approxi-
mate chaotic time series well through subspace. The neural
networkmodel based on EKFhas outstanding adaptability, so
it can predict the wind speed chaotic time series with higher
precision, compared with BP neural network.

Furthermore, we can conclude that in Table 7, prediction
accuracy of EKF neural network is higher than that of BP
neural network, by comparing the prediction performance
of wind speed in the next 10min, 20min, 30min, and
up to, 120min. It demonstrates that EKF neural network
model, which has better dynamic adaptability, can better the
prediction of wind speed time series with nonlinear chaotic
characteristics. Therefore, the proposed phase space recon-
struction method of the adaptive evolution approximation in
this paper is an effective approach.

5. Conclusion and Further Work

The phase space reconstruction cannot meet characteristics
of the completeness and independence, and the results with
different reconstruction methods are obviously inconsistent.
The reconstructed phase space is a subspace of the ideal space.
If a subspace approximation can make the real-time dynamic
evolution, then the initial constructed phase space, for which
the evolution is adaptive subspace approximation, can finally
approximate to the ideal phase space much better.

In this paper, neural network model based on nonlinear
Kalman filter is established, by dynamic adaptivity of nonlin-
earKalmanfilter.Themodelwill add new samples in real time
and gradually eliminate previous data, as a moving samples
window, and the evolution of the training sample continually
updates weights and thresholds of the neural network. As a
result, adaptive subspace approximation is implemented by
reconstructed incomplete phase space.

The optimized plan, which combines the nonlinear
Kalman filter with neural network, sufficiently utilizes the
nonlinear approximation capability of neural network and
dynamic adaptive ability of real-time update correction of
nonlinear Kalman filter. Consequently, it can realize subspace
adaptive evolution approximation and solve the inconsis-
tency problem of phase space reconstruction. Therefore, it is
a nice direction in research into chaotic prediction. Future
research can be performed in a number of areas. It provides a
good technical support in studying problems of meteorology,
hydrology, and finance fields.
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