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Consider the nonlinear matrix equation𝑋−∑
𝑚

𝑖=1
𝐴
∗

𝑖
𝑋
𝑝𝑖
𝐴
𝑖
= 𝑄 with 0 < 𝑝

𝑖
< 1. Two perturbation bounds and the backward error

of an approximate solution to the equation are derived. Explicit expressions of the condition number for the equation are obtained.
The theoretical results are illustrated by numerical examples.

1. Introduction

In this paper we consider the Hermitian positive definite
solution of the nonlinear matrix equation

𝑋 −

𝑚

∑

𝑖=1

𝐴
∗

𝑖
𝑋
𝑝𝑖
𝐴
𝑖
= 𝑄, (1)

where 0 < 𝑝
𝑖
< 1 (𝑖 = 1, 2, . . . , 𝑚), 𝐴

1
, 𝐴
2
, . . . , 𝐴

𝑚
are 𝑛 × 𝑛

complex matrices, 𝑚 is a positive integer, and 𝑄 is a positive
definite matrix. Here, 𝐴∗

𝑖
denotes the conjugate transpose of

the matrix 𝐴
𝑖
.

When 𝑚 > 1, (1) is recognized as playing an important
role in solving a system of linear equations. For example,
in many physical calculations, one must solve the system of
linear equation

𝑀𝑥 = 𝑓, (2)

where

𝑀 = (

𝐼 0 ⋅ ⋅ ⋅ 0 𝐴
1

0 𝐼 ⋅ ⋅ ⋅ 0 𝐴
2

...
... d

...
...

0 0 ⋅ ⋅ ⋅ 𝐼 𝐴
𝑚

𝐴
∗

1
𝐴
∗

2
⋅ ⋅ ⋅ 𝐴

∗

𝑚
−𝑄

) (3)

arises in a finite difference approximation to an elliptic partial
differential equation (for more information, refer to [1]). We
can rewrite𝑀 as𝑀 = 𝑀̃ + 𝐷, where

𝑀̃ = (

𝑋
−𝑝1

0 ⋅ ⋅ ⋅ 0 𝐴
1

0 𝑋
−𝑝2

⋅ ⋅ ⋅ 0 𝐴
2

...
... d

...
...

0 0 ⋅ ⋅ ⋅ 𝑋
−𝑝𝑚

𝐴
𝑚

𝐴
∗

1
𝐴
∗

2
⋅ ⋅ ⋅ 𝐴

∗

𝑚
−𝑄

),

𝐷 = (

𝐼 − 𝑋
−𝑝1

0 ⋅ ⋅ ⋅ 0 0

0 𝐼 − 𝑋
−𝑝2

⋅ ⋅ ⋅ 0 0

...
... d

...
...

0 0 ⋅ ⋅ ⋅ 𝐼 − 𝑋
−𝑝𝑚

0

0 0 ⋅ ⋅ ⋅ 0 0

).

(4)

𝑀̃ can be factored as

𝑀̃ = (

−𝐼 0 ⋅ ⋅ ⋅ 0 0

0 −𝐼 ⋅ ⋅ ⋅ 0 0

...
... d

...
...

0 0 ⋅ ⋅ ⋅ −𝐼 0

−𝐴
∗

1
𝑋
𝑝1

−𝐴
∗

2
𝑋
𝑝2

⋅ ⋅ ⋅ −𝐴
∗

𝑚
𝑋
𝑝𝑚

−𝐼

)
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×(

−𝑋
−𝑝1

0 ⋅ ⋅ ⋅ 0 −𝐴
1

0 −𝑋
−𝑝2

⋅ ⋅ ⋅ 0 −𝐴
2

...
... d

...
...

0 0 ⋅ ⋅ ⋅ −𝑋
−𝑝𝑚

−𝐴
𝑚

0 0 ⋅ ⋅ ⋅ 0 𝑋

)

(5)

if and only if𝑋 is a solution of equation𝑋−∑
𝑚

𝑖=1
𝐴
∗

𝑖
𝑋
𝑝𝑖
𝐴
𝑖
=

𝑄. When 𝑚 = 1, this type of nonlinear matrix equations
arises in ladder networks, dynamic programming, control
theory, stochastic filtering, statistics, and so forth [2–7].

For the similar equations 𝑋 ± 𝐴
∗

𝑋
−𝑝

𝐴 = 𝑄, 𝑋𝑠 ±
𝐴
∗

𝑋
−𝑡

𝐴 = 𝑄,𝑋+∑
𝑚

𝑖=1
𝐴
∗

𝑖
𝑋
−1

𝐴
𝑖
= 𝐼, and𝑋 = 𝑄−𝐴

∗

𝑋
−1

𝐴+

𝐵
∗

𝑋
−1

𝐵, there were many contributions in the literature to
the theory, numerical solutions, and perturbation analysis [8–
32]. Jia and Gao [33] derived two perturbation estimates for
the solution of the equation 𝑋 − 𝐴

∗

𝑋
𝑞

𝐴 = 𝑄 with 0 <

𝑞 < 1. In addition, Duan et al. [34] proved that the equation
𝑋 − ∑

𝑚

𝑖=1
𝐴
∗

𝑖
𝑋
𝛿𝑖
𝐴
𝑖
= 𝑄 (0 < |𝛿

𝑖
| < 1) has a unique positive

definite solution. They also proposed an iterative method for
obtaining the unique positive definite solution. However, to
our best knowledge, there has been no perturbation analysis
for (1) with𝑚 > 1 in the known literature.

As a continuation of the previous results, the rest of the
paper is organized as follows. In Section 2, some preliminary
lemmas are given. In Section 3, two perturbation bounds
for the unique solution to (1) are derived. Furthermore, in
Section 4, we obtain the backward error of an approximate
solution to (1). In Section 5, we also discuss the condition
number of the unique solution to (1). Finally, several numer-
ical examples are presented in Section 6.

We denote by C𝑛×𝑛 the set of 𝑛 × 𝑛 complex matrices, by
H𝑛×𝑛 the set of 𝑛 × 𝑛 Hermitian matrices, by 𝐼 the identity
matrix, by i the imaginary unit, by ‖ ⋅ ‖ the spectral norm,
by ‖ ⋅ ‖

𝐹
the Frobenius norm, and by 𝜆max(𝑀) and 𝜆min(𝑀)

the maximal and minimal eigenvalues of𝑀, respectively. For
𝐴 = (𝑎

1
, . . . , 𝑎

𝑛
) = (𝑎

𝑖𝑗
) ∈ C𝑛×𝑛 and a matrix 𝐵, 𝐴 ⊗ 𝐵 =

(𝑎
𝑖𝑗
𝐵) is a Kronecker product, and vec𝐴 is a vector defined

by vec𝐴 = (𝑎
𝑇

1
, . . . , 𝑎

𝑇

𝑛
)
𝑇. For 𝑋,𝑌 ∈ H𝑛×𝑛, we write 𝑋 ≥

𝑌 (𝑋 > 𝑌, resp.) if 𝑋 − 𝑌 is Hermitian positive semidefinite
(definite, resp.).

2. Preliminaries

Lemma 1 (see [35]). If 𝐴 ≥ 𝐵 > 0 and 0 ≤ 𝛾 ≤ 1, then
𝐴
𝛾

≥ 𝐵
𝛾.

Lemma 2 (see [33]). For any Hermitian positive definite
matrix 𝑋 and Hermitian matrix Δ𝑋, one has

(i) 𝑋𝑞 = (sin 𝑞𝜋/𝜋) ∫∞
0

𝑋
1/2

(𝜆𝐼 + 𝑋)
−1

𝑋
1/2

𝜆
𝑞−1

𝑑𝜆, 0 <

𝑞 < 1;

(ii) 𝑋𝑞 = (sin 𝑞𝜋/(1 − 𝑞)𝜋) ∫

∞

0

𝑋
1/2

(𝜆𝐼 + 𝑋)
−1

𝑋(𝜆𝐼 +

𝑋)
−1

𝑋
1/2

𝜆
𝑞−1

𝑑𝜆, 0 < 𝑞 < 1.

In addition, if𝑋 + Δ𝑋 ≥ (1/])𝑋 > 0 and 0 < 𝑞 < 1, then

(iii) ‖𝑋−1/2𝐴∗((𝑋 + Δ𝑋)
𝑞

− 𝑋
𝑞

)𝐴𝑋
−1/2

‖ ≤ 𝑞(‖𝑋
−1/2

Δ𝑋𝑋
−1/2

‖) + ]‖𝑋−1/2Δ𝑋𝑋−1/2‖
2

)‖𝑋
𝑞/2

𝐴𝑋
−1/2

‖

2

.

Lemma3 (see [34]). Thematrix equation𝑋−∑
𝑚

𝑖=1
𝐴
∗

𝑖
𝑋
𝛿𝑖
𝐴
𝑖
=

𝑄 (0 < |𝛿
𝑖
| < 1) always has a unique positive definite solution

𝑋. The matrix sequence𝑋
𝑘
:

𝑋
𝑠+𝑚+1

= 𝑄 +

𝑚

∑

𝑖=1

𝐴
∗

𝑖
𝑋
𝛿𝑖

𝑠+𝑖
𝐴
𝑖
, 𝑠 = 0, 1, 2, . . . , (6)

converges to the unique positive definite solution𝑋 for arbitrary
initial positive definite matrices𝑋

1
, 𝑋
2
, . . . , 𝑋

𝑚
.

3. Perturbation Bounds

Here the perturbed equation

𝑋 −

𝑚

∑

𝑖=1

𝐴
∗

𝑖
𝑋
𝑝𝑖
𝐴
𝑖
= 𝑄. (7)

is considered, where 0 < 𝑝
𝑖
< 1 and 𝐴

𝑖
and 𝑄 are small

perturbations of𝐴
𝑖
and𝑄 in (1), respectively.We assume that

𝑋 and 𝑋 are the solutions of (1) and (7), respectively. Let
Δ𝑋 = 𝑋 − 𝑋, Δ𝑄 = 𝑄 − 𝑄 and Δ𝐴

𝑖
= 𝐴

𝑖
− 𝐴

𝑖
.

By Lemma 3, we know that (1) always has a unique posi-
tive definite solution𝑋; then in this section two perturbation
bounds for the unique positive definite solution of (1) are
developed. The relative perturbation bound in Theorem 5
does not depend on any knowledge of the actual solution𝑋 of
(1). Furthermore, a sharper perturbation bound inTheorem 8
is derived.

To prove the next theorem, we first verify the following
lemma.

Lemma 4. If𝑋 is a solution of (1), then

𝑋 ≥ (𝜆min (𝑄) +
𝑚

∑

𝑖=1

𝜆min (𝐴
∗

𝑖
𝐴
𝑖
) 𝜆
𝑝𝑖

min (𝑄)) 𝐼 = 𝛽𝐼. (8)

Proof. By Lemma 3, (1) with 0 < 𝑝
𝑖
< 1 always has a unique

positive definite solution 𝑋. Then 𝑋 > 0, and it follows that
𝑋
𝑝𝑖
> 0. Therefore 𝑋 ≥ 𝑄. By Lemma 1 and (1), we have 𝑋 ≥

𝑄+∑
𝑚

𝑖=1
𝐴
∗

𝑖
𝑄
𝑝𝑖
𝐴
𝑖
≥ (𝜆min(𝑄)+∑

𝑚

𝑖=1
𝜆min(𝐴

∗

𝑖
𝐴
𝑖
)𝜆
𝑝𝑖

min(𝑄))𝐼 =
𝛽𝐼.

The next theorem generalizes [33, Theorem 4] with 𝑚 =

1, ‖Δ𝑄‖ = 0 to arbitrary integer𝑚 ≥ 1, ‖Δ𝑄‖ > 0.

Theorem 5. Let 𝑏 = 𝛽 + ‖Δ𝑄‖ − ∑
𝑚

𝑖=1
𝑝
𝑖
𝛽
𝑝𝑖
‖𝐴
𝑖
‖
2

, 𝑠 =

∑
𝑚

𝑖=1
𝛽
𝑝𝑖
‖Δ𝐴

𝑖
‖(2‖𝐴

𝑖
‖ + ‖Δ𝐴

𝑖
‖). If

0 < 𝑏 < 2 (𝛽 − 𝑠) ,

𝑏
2

− 4 (𝛽 − 𝑠) (𝑠 + ‖Δ𝑄‖) ≥ 0,

(9)

then
󵄩
󵄩
󵄩
󵄩
󵄩
𝑋 − 𝑋

󵄩
󵄩
󵄩
󵄩
󵄩

‖𝑋‖

≤ 󰜚

𝑚

∑

𝑖=1

󵄩
󵄩
󵄩
󵄩
Δ𝐴
𝑖

󵄩
󵄩
󵄩
󵄩
+ 𝜔 ‖Δ𝑄‖ ≜ 𝜉

1
, (10)
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where

󰜚 =

2𝑠

∑
𝑚

𝑖=1

󵄩
󵄩
󵄩
󵄩
Δ𝐴
𝑖

󵄩
󵄩
󵄩
󵄩
(𝑏 + √𝑏

2
− 4 (𝛽 − 𝑠) (𝑠 + ‖Δ𝑄‖))

,

𝜔 =

2

𝑏 + √𝑏
2
− 4 (𝛽 − 𝑠) (𝑠 + ‖Δ𝑄‖)

.

(11)

Proof. Let

Ω = {Δ𝑋 ∈ H
𝑛×𝑛

:

󵄩
󵄩
󵄩
󵄩
󵄩
𝑋
−1/2

Δ𝑋𝑋
−1/2

󵄩
󵄩
󵄩
󵄩
󵄩

≤ 󰜚

𝑚

∑

𝑖=1

󵄩
󵄩
󵄩
󵄩
Δ𝐴
𝑖

󵄩
󵄩
󵄩
󵄩
+ 𝜔 ‖Δ𝑄‖} .

(12)

Obviously,Ω is a nonempty bounded convex closed set. Let

𝑓 (Δ𝑋) =

𝑚

∑

𝑖=1

(𝐴
∗

𝑖
(𝑋 + Δ𝑋)

𝑝𝑖
𝐴
𝑖
− 𝐴

∗

𝑖
𝑋
𝑝𝑖
𝐴
𝑖
)

+ Δ𝑄, Δ𝑋 ∈ Ω.

(13)

Evidently, 𝑓 : Ω 󳨃→ H𝑛×𝑛 is continuous. We will prove that
𝑓(Ω) ⊆ Ω.

For every Δ𝑋 ∈ Ω, it follows that ‖𝑋−1/2Δ𝑋𝑋−1/2‖ ≤

󰜚∑
𝑚

𝑖=1
‖Δ𝐴

𝑖
‖ + 𝜔‖Δ𝑄‖.Thus

(󰜚

𝑚

∑

𝑖=1

󵄩
󵄩
󵄩
󵄩
Δ𝐴
𝑖

󵄩
󵄩
󵄩
󵄩
+ 𝜔 ‖Δ𝑄‖) 𝐼

≥ 𝑋
−1/2

Δ𝑋𝑋
−1/2

≥ (−󰜚

𝑚

∑

𝑖=1

󵄩
󵄩
󵄩
󵄩
Δ𝐴
𝑖

󵄩
󵄩
󵄩
󵄩
− 𝜔 ‖Δ𝑄‖) 𝐼,

(1 + 󰜚

𝑚

∑

𝑖=1

󵄩
󵄩
󵄩
󵄩
Δ𝐴
𝑖

󵄩
󵄩
󵄩
󵄩
+ 𝜔 ‖Δ𝑄‖)𝑋

≥ 𝑋 + Δ𝑋

≥ (1 − 󰜚

𝑚

∑

𝑖=1

󵄩
󵄩
󵄩
󵄩
Δ𝐴
𝑖

󵄩
󵄩
󵄩
󵄩
− 𝜔 ‖Δ𝑄‖)𝑋.

(14)

According to (9), we have

󰜚

𝑚

∑

𝑖=1

󵄩
󵄩
󵄩
󵄩
Δ𝐴
𝑖

󵄩
󵄩
󵄩
󵄩
+ 𝜔 ‖Δ𝑄‖ =

2 (‖Δ𝑄‖ + 𝑠)

𝑏 + √𝑏
2
− 4 (𝛽 − 𝑠) (𝑠 + ‖Δ𝑄‖)

≤

2 (‖Δ𝑄‖ + 𝑠)

𝑏

≤

𝑏

2 (𝛽 − 𝑠)

< 1.

(15)

Therefore

(1 − 󰜚

𝑚

∑

𝑖=1

󵄩
󵄩
󵄩
󵄩
Δ𝐴
𝑖

󵄩
󵄩
󵄩
󵄩
− 𝜔 ‖Δ𝑄‖)𝑋 > 0. (16)

From Lemmas 2 and 4, it follows that

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑋
−1/2

[

𝑚

∑

𝑖=1

𝐴
∗

𝑖
((𝑋 + Δ𝑋)

𝑝𝑖
− 𝑋

𝑝𝑖
) 𝐴
𝑖
]𝑋

−1/2

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤ (

󵄩
󵄩
󵄩
󵄩
󵄩
𝑋
−1/2

Δ𝑋𝑋
−1/2

󵄩
󵄩
󵄩
󵄩
󵄩

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑋
−1/2

Δ𝑋𝑋
−1/2

󵄩
󵄩
󵄩
󵄩
󵄩

2

1 − 󰜚∑
𝑚

𝑖=1

󵄩
󵄩
󵄩
󵄩
Δ𝐴
𝑖

󵄩
󵄩
󵄩
󵄩
− 𝜔 ‖Δ𝑄‖

)

× (

𝑚

∑

𝑖=1

𝑝
𝑖

󵄩
󵄩
󵄩
󵄩
󵄩
𝑋
𝑝𝑖/2

𝐴
𝑖
𝑋
−1/2

󵄩
󵄩
󵄩
󵄩
󵄩

2

)

≤ (

󵄩
󵄩
󵄩
󵄩
󵄩
𝑋
−1/2

Δ𝑋𝑋
−1/2

󵄩
󵄩
󵄩
󵄩
󵄩
+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑋
−1/2

Δ𝑋𝑋
−1/2

󵄩
󵄩
󵄩
󵄩
󵄩

2

1 − 󰜚∑
𝑚

𝑖=1

󵄩
󵄩
󵄩
󵄩
Δ𝐴
𝑖

󵄩
󵄩
󵄩
󵄩
− 𝜔 ‖Δ𝑄‖

)

× (

𝑚

∑

𝑖=1

𝑝
𝑖

𝛽
1−𝑝𝑖

󵄩
󵄩
󵄩
󵄩
𝐴
𝑖

󵄩
󵄩
󵄩
󵄩

2

) .

(17)

Therefore

󵄩
󵄩
󵄩
󵄩
󵄩
𝑋
−1/2

𝑓 (Δ𝑋)𝑋
−1/2

󵄩
󵄩
󵄩
󵄩
󵄩

=

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑋
−1/2

[

𝑚

∑

𝑖=1

𝐴
∗

𝑖
(𝑋 + Δ𝑋)

𝑝𝑖
𝐴
𝑖
− 𝐴

∗

𝑖
𝑋
𝑝𝑖
𝐴
𝑖
]

× 𝑋
−1/2

+ 𝑋
−1/2

Δ𝑄𝑋
−1/2

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑚

∑

𝑖=1

𝑋
−1/2

𝐴
∗

𝑖
((𝑋 + Δ𝑋)

𝑝𝑖
− 𝑋

𝑝𝑖
) 𝐴
𝑖
𝑋
−1/2

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑋
−1/2

Δ𝑄𝑋
−1/2

󵄩
󵄩
󵄩
󵄩
󵄩

+

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑚

∑

𝑖=1

𝑋
−1/2

[Δ𝐴
∗

𝑖
(𝑋 + Δ𝑋)

𝑝𝑖
(𝐴
𝑖
+ Δ𝐴

𝑖
)

+𝐴
∗

𝑖
(𝑋 + Δ𝑋)

𝑝𝑖
Δ𝐴
𝑖
]𝑋
−1/2

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤ (

󵄩
󵄩
󵄩
󵄩
󵄩
𝑋
−1/2

Δ𝑋𝑋
−1/2

󵄩
󵄩
󵄩
󵄩
󵄩
+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑋
−1/2

Δ𝑋𝑋
−1/2

󵄩
󵄩
󵄩
󵄩
󵄩

2

1 − 󰜚∑
𝑚

𝑖=1

󵄩
󵄩
󵄩
󵄩
Δ𝐴
𝑖

󵄩
󵄩
󵄩
󵄩
− 𝜔 ‖Δ𝑄‖

)

× (

𝑚

∑

𝑖=1

𝑝
𝑖

𝛽
1−𝑝𝑖

󵄩
󵄩
󵄩
󵄩
𝐴
𝑖

󵄩
󵄩
󵄩
󵄩

2

)

+

𝑚

∑

𝑖=1

󵄩
󵄩
󵄩
󵄩
Δ𝐴
𝑖

󵄩
󵄩
󵄩
󵄩
(2

󵄩
󵄩
󵄩
󵄩
𝐴
𝑖

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
Δ𝐴
𝑖

󵄩
󵄩
󵄩
󵄩
)

𝛽
1−𝑝𝑖
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× (1 + 󰜚

𝑚

∑

𝑖=1

󵄩
󵄩
󵄩
󵄩
Δ𝐴
𝑖

󵄩
󵄩
󵄩
󵄩
+ 𝜔 ‖Δ𝑄‖) +

‖Δ𝑄‖

𝛽

≤ (𝜉
1
+

𝜉
2

1

1 − 𝜉
1

)(

𝑚

∑

𝑖=1

𝑝
𝑖

𝛽
1−𝑝𝑖

󵄩
󵄩
󵄩
󵄩
𝐴
𝑖

󵄩
󵄩
󵄩
󵄩

2

)

+

𝑠

𝛽

(1 + 𝜉
1
) +

‖Δ𝑄‖

𝛽

= 𝜉
1
.

(18)

That is, 𝑓(Ω) ⊆ Ω. By Brouwer’s fixed point theorem, there
exists a Δ𝑋 ∈ Ω such that 𝑓(Δ𝑋) = Δ𝑋. Moreover, by
Lemma 3, we know that 𝑋 and 𝑋 are the unique solutions
to (1) and (7), respectively. Then

󵄩
󵄩
󵄩
󵄩
󵄩
𝑋 − 𝑋

󵄩
󵄩
󵄩
󵄩
󵄩

‖𝑋‖

=

‖Δ𝑋‖

‖𝑋‖

=

󵄩
󵄩
󵄩
󵄩
󵄩
𝑋
1/2

(𝑋
−1/2

Δ𝑋𝑋
−1/2

)𝑋
1/2

󵄩
󵄩
󵄩
󵄩
󵄩

‖𝑋‖

≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝑋
−1/2

Δ𝑋𝑋
−1/2

󵄩
󵄩
󵄩
󵄩
󵄩
≤ 󰜚

𝑚

∑

𝑖=1

󵄩
󵄩
󵄩
󵄩
Δ𝐴
𝑖

󵄩
󵄩
󵄩
󵄩
+ 𝜔 ‖Δ𝑄‖ .

(19)

Remark 6. According to

󰜚

𝑚

∑

𝑖=1

󵄩
󵄩
󵄩
󵄩
Δ𝐴
𝑖

󵄩
󵄩
󵄩
󵄩
+ 𝜔 ‖Δ𝑄‖

=

2 (∑
𝑚

𝑖=1

󵄩
󵄩
󵄩
󵄩
Δ𝐴
𝑖

󵄩
󵄩
󵄩
󵄩
(2

󵄩
󵄩
󵄩
󵄩
𝐴
𝑖

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
Δ𝐴
𝑖

󵄩
󵄩
󵄩
󵄩
) + ‖Δ𝑄‖)

𝑏 + √𝑏
2
− 4 (𝛽 − 𝑠) (𝑠 + ‖Δ𝑄‖)

,

(20)

we get 󰜚∑𝑚
𝑖=1

‖Δ𝐴
𝑖
‖ + 𝜔‖Δ𝑄‖ → 0 for ‖Δ𝑄‖ → 0 and

‖Δ𝐴
𝑖
‖ → 0 (𝑖 = 1, 2, . . . , 𝑚). Therefore (1) is well posed.

Next, a sharper perturbation estimate is derived.
Subtracting (1) from (7), we have

Δ𝑋 +

𝑚

∑

𝑖=1

sin𝑝
𝑖
𝜋

𝜋

∫

∞

0

[(𝜆𝐼 + 𝑋)
−1

𝑋
1/2

𝐴
𝑖
]

∗

× Δ𝑋 [(𝜆𝐼 + 𝑋)
−1

𝑋
1/2

𝐴
𝑖
] 𝜆
𝑝𝑖−1

𝑑𝜆

= 𝐸 + ℎ (Δ𝑋) ,

(21)

where

𝐵
𝑖
= 𝑋

𝑝𝑖
𝐴
𝑖
, 𝑖 = 1, 2, . . . , 𝑚,

𝐸 =

𝑚

∑

𝑖=1

(𝐵
∗

𝑖
Δ𝐴
𝑖
+ Δ𝐴

∗

𝑖
𝐵
𝑖
) +

𝑚

∑

𝑖=1

Δ𝐴
∗

𝑖
𝑋
𝑝𝑖
Δ𝐴
𝑖
+ Δ𝑄,

𝑍
𝑖
(Δ𝑋) =

sin𝑝
𝑖
𝜋

𝜋

∫

∞

0

𝑋
1/2

(𝜆𝐼 + 𝑋)
−1

Δ𝑋(𝜆𝐼 + 𝑋 + Δ𝑋)
−1

× Δ𝑋(𝜆𝐼 + 𝑋)
−1

𝑋
1/2

𝜆
𝑝𝑖−1

𝑑𝜆,

𝑉
𝑖
(Δ𝑋) =

sin𝑝
𝑖
𝜋

𝜋

∫

∞

0

𝑋
1/2

(𝜆𝐼 + 𝑋)
−1

Δ𝑋

× (𝜆𝐼 + 𝑋 + Δ𝑋)
−1

𝑋
1/2

𝜆
𝑝𝑖−1

𝑑𝜆,

ℎ (Δ𝑋) =

𝑚

∑

𝑖=1

[𝐴
∗

𝑖
𝑍
𝑖
(Δ𝑋)𝐴

𝑖
− 𝐴

∗

𝑖
𝑉
𝑖
(Δ𝑋)Δ𝐴

𝑖

−Δ𝐴
∗

𝑖
𝑉
𝑖
(Δ𝑋)𝐴

𝑖
] .

(22)

Lemma 7. If ∑𝑚
𝑖=1

(
󵄩
󵄩
󵄩
󵄩
𝐴
𝑖

󵄩
󵄩
󵄩
󵄩

2

/𝛽
1−𝑝𝑖

) < 1, then the linear operator
L : H𝑛×𝑛 → H𝑛×𝑛 defined by

L𝑊 = 𝑊 +

𝑚

∑

𝑖=1

sin𝑝
𝑖
𝜋

𝜋

× ∫

∞

0

[(𝜆𝐼 + 𝑋)
−1

𝑋
1/2

𝐴
𝑖
]

∗

×𝑊[(𝜆𝐼 + 𝑋)
−1

𝑋
1/2

𝐴
𝑖
]

× 𝜆
𝑝𝑖−1d𝜆, 𝑊 ∈ H

𝑛×𝑛

(23)

is invertible.

Proof. It suffices to show that the following equation:

L𝑊 = 𝑉 (24)

has a unique solution for every 𝑉 ∈ H𝑛×𝑛. Define the oper-
atorM : H𝑛×𝑛 → H𝑛×𝑛 by

M𝑍 =

𝑚

∑

𝑖=1

sin𝑝
𝑖
𝜋

𝜋

× ∫

∞

0

𝑋
−1/2

𝐴
∗

𝑖
𝑋
1/2

× (𝜆𝐼 + 𝑋)
−1

𝑋
1/2

𝑍𝑋
1/2

× (𝜆𝐼 + 𝑋)
−1

𝑋
1/2

𝐴
𝑖
𝑋
−1/2

× 𝜆
𝑝𝑖−1

𝑑𝜆, 𝑍 ∈ H
𝑛×𝑛

.

(25)

Let 𝑌 = 𝑋
−1/2

𝑊𝑋
−1/2. Thus (21) is equivalent to

𝑌 +M𝑌 = 𝑋
−1/2

𝑉𝑋
−1/2

. (26)
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According to Lemma 2, we have

‖M𝑌‖ ≤

𝑚

∑

𝑖=1

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

sin𝑝
𝑖
𝜋

𝜋

× ∫

∞

0

𝑋
−1/2

𝐴
∗

𝑖
𝑋
1/2

× (𝜆𝐼 + 𝑋)
−1

𝑋(𝜆𝐼 + 𝑋)
−1

× 𝑋
1/2

𝐴
𝑖
𝑋
−1/2

𝜆
𝑝𝑖−1

𝑑𝜆

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

‖𝑌‖

≤

𝑚

∑

𝑖=1

(1 − 𝑝
𝑖
)

󵄩
󵄩
󵄩
󵄩
󵄩
𝑋
𝑝𝑖/2

𝐴
𝑖
𝑋
−1/2

󵄩
󵄩
󵄩
󵄩
󵄩

2

‖𝑌‖

≤

𝑚

∑

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝐴
𝑖

󵄩
󵄩
󵄩
󵄩

2

𝛽
1−𝑝𝑖

‖𝑌‖ < ‖𝑌‖ ,

(27)

which implies that ||M|| < 1 and 𝐼+M is invertible.Therefore,
the operator L is invertible.

Furthermore, we define operators P
𝑖
: C𝑛×𝑛 → H𝑛×𝑛 by

P
𝑖
𝑍
𝑖
= L−1 (𝐵∗

𝑖
𝑍
𝑖
+ 𝑍

∗

𝑖
𝐵
𝑖
) , 𝑍

𝑖
∈ C

𝑛×𝑛

, 𝑖 = 1, 2, . . . , 𝑚.

(28)

Thus, we can rewrite (21) as

Δ𝑋 = L−1Δ𝑄

+

𝑚

∑

𝑖=1

P
𝑖
Δ𝐴
𝑖
+ L−1(

𝑚

∑

𝑖=1

Δ𝐴
∗

𝑖
𝑋
𝑝𝑖
Δ𝐴
𝑖
)

+ L−1 (ℎ (Δ𝑋)) .

(29)

Define

󵄩
󵄩
󵄩
󵄩
󵄩
L−1󵄩󵄩󵄩󵄩

󵄩
= max
𝑊∈H𝑛×𝑛

‖𝑊‖=1

󵄩
󵄩
󵄩
󵄩
󵄩
L−1𝑊󵄩

󵄩
󵄩
󵄩
󵄩
,

󵄩
󵄩
󵄩
󵄩
P
𝑖

󵄩
󵄩
󵄩
󵄩
= max
𝑍∈C𝑛×𝑛

‖𝑍‖=1

󵄩
󵄩
󵄩
󵄩
P
𝑖
𝑍
󵄩
󵄩
󵄩
󵄩
, 𝑖 = 1, 2, . . . , 𝑚.

(30)

Now we denote that

𝑙 =

󵄩
󵄩
󵄩
󵄩
󵄩
L−1󵄩󵄩󵄩󵄩

󵄩

−1

, 𝜁 =

󵄩
󵄩
󵄩
󵄩
󵄩
𝑋
−1
󵄩
󵄩
󵄩
󵄩
󵄩
,

𝜉
𝑖
=
󵄩
󵄩
󵄩
󵄩
𝑋
𝑝𝑖
󵄩
󵄩
󵄩
󵄩
, 𝑛

𝑖
=
󵄩
󵄩
󵄩
󵄩
P
𝑖

󵄩
󵄩
󵄩
󵄩
,

𝜃 =

𝜁
2

𝑙

𝑚

∑

𝑖=1

𝜉
𝑖

󵄩
󵄩
󵄩
󵄩
𝐴
𝑖

󵄩
󵄩
󵄩
󵄩

2

,

𝑖 = 1, 2, . . . , 𝑚,

𝜖 =

1

𝑙

‖Δ𝑄‖ +

𝑚

∑

𝑖=1

(𝑛
𝑖

󵄩
󵄩
󵄩
󵄩
Δ𝐴
𝑖

󵄩
󵄩
󵄩
󵄩
+

𝜉
𝑖

𝑙

󵄩
󵄩
󵄩
󵄩
Δ𝐴
𝑖

󵄩
󵄩
󵄩
󵄩

2

) ,

𝜎 =

𝜁

𝑙

𝑚

∑

𝑖=1

𝜉
𝑖
(2

󵄩
󵄩
󵄩
󵄩
𝐴
𝑖

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
Δ𝐴
𝑖

󵄩
󵄩
󵄩
󵄩
)
󵄩
󵄩
󵄩
󵄩
Δ𝐴
𝑖

󵄩
󵄩
󵄩
󵄩
.

(31)

Theorem 8. Suppose that𝑋 and𝑋 are the solutions of (1) and
(7), respectively. If ∑𝑚

𝑖=1
‖𝐴
𝑖
‖
2

/𝛽
1−𝑝𝑖

< 1,

𝜎 < 1,

𝜖 <

(1 − 𝜎)
2

𝜁 + 𝜎𝜁 + 2𝜃 + 2√((𝜁 + 𝜃) (𝜎𝜁 + 𝜃))

,

(32)

then

󵄩
󵄩
󵄩
󵄩
󵄩
𝑋 − 𝑋

󵄩
󵄩
󵄩
󵄩
󵄩
≤

2𝜖

1 + 𝜖𝜁 − 𝜎 + √(1 + 𝜁𝜖 − 𝜎)
2

− 4𝜖 (𝜁 + 𝜃)

≡ ].

(33)

Proof. Let

𝑓 (Δ𝑋) = L−1Δ𝑄 +

𝑚

∑

𝑖=1

P
𝑖
Δ𝐴
𝑖

+ L−1(
𝑚

∑

𝑖=1

Δ𝐴
∗

𝑖
𝑋
𝑝𝑖
Δ𝐴
𝑖
) + L−1 (ℎ (Δ𝑋)) .

(34)

Obviously, 𝑓 : H𝑛×𝑛 → H𝑛×𝑛 is continuous. The condition
(32) ensures that the quadratic equation (𝜁 + 𝜃)𝑥

2

− (1 + 𝜁𝜖 −

𝜎)𝑥+𝜖 = 0with respect to the variable 𝑥 has two positive real
roots. The smaller one is

] =
2𝜖

1 + 𝜖𝜁 − 𝜎 + √(1 + 𝜁𝜖 − 𝜎)
2

− 4𝜖 (𝜁 + 𝜃)

. (35)

Define Ω = {Δ𝑋 ∈ H𝑛×𝑛 :‖ Δ𝑋 ‖≤ ]}. Then for any Δ𝑋 ∈ Ω,
by (32), we have

󵄩
󵄩
󵄩
󵄩
󵄩
𝑋
−1

Δ𝑋

󵄩
󵄩
󵄩
󵄩
󵄩
≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝑋
−1
󵄩
󵄩
󵄩
󵄩
󵄩
‖Δ𝑋‖ ≤ 𝜁]

≤ 𝜁 ⋅

2𝜖

1 + 𝜁𝜖 − 𝜎

= 1 +

𝜁𝜖 + 𝜎 − 1

1 + 𝜁𝜖 − 𝜎

≤ 1 +

−2 (1 − 𝜎) (𝜁𝜎 + 𝜃)

(𝜁 + 𝜎𝜁 + 2𝜃) (1 + 𝜁𝜖 − 𝜎)

< 1.

(36)

It follows that 𝐼 − 𝑋
−1

Δ𝑋 is nonsingular and

󵄩
󵄩
󵄩
󵄩
󵄩
𝐼 − 𝑋

−1

Δ𝑋

󵄩
󵄩
󵄩
󵄩
󵄩
≤

1

1 −
󵄩
󵄩
󵄩
󵄩
𝑋
−1
Δ𝑋

󵄩
󵄩
󵄩
󵄩

≤

1

1 − 𝜁 ‖Δ𝑋‖

. (37)
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Using (22) and Lemma 2, we have

󵄩
󵄩
󵄩
󵄩
𝑍
𝑖
(Δ𝑋)

󵄩
󵄩
󵄩
󵄩
≤ (1 − 𝑝

𝑖
) ‖Δ𝑋‖

2
󵄩
󵄩
󵄩
󵄩
󵄩
𝑋
−1
󵄩
󵄩
󵄩
󵄩
󵄩

2

×

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

(𝐼 + 𝑋
−1

Δ𝑋)

−1󵄩󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑋
𝑝𝑖
󵄩
󵄩
󵄩
󵄩

≤ 𝜉
𝑖
𝜁
2 ‖Δ𝑋‖

2

1 − 𝜁 ‖Δ𝑋‖

,

󵄩
󵄩
󵄩
󵄩
𝑉
𝑖
(Δ𝑋)

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑋
𝑝𝑖
󵄩
󵄩
󵄩
󵄩
‖Δ𝑋‖

󵄩
󵄩
󵄩
󵄩
󵄩
𝑋
−1
󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

(𝐼 + 𝑋
−1

Δ𝑋)

−1󵄩󵄩
󵄩
󵄩
󵄩
󵄩

≤ 𝜉
𝑖
𝜁

‖Δ𝑋‖

1 − 𝜁 ‖Δ𝑋‖

,

(38)

‖ℎ (Δ𝑋)‖ ≤

𝑚

∑

𝑖=1

(
󵄩
󵄩
󵄩
󵄩
𝐴
𝑖

󵄩
󵄩
󵄩
󵄩

2 󵄩
󵄩
󵄩
󵄩
𝑍
𝑖
(Δ𝑋)

󵄩
󵄩
󵄩
󵄩

+ (2
󵄩
󵄩
󵄩
󵄩
𝐴
𝑖

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
Δ𝐴
𝑖

󵄩
󵄩
󵄩
󵄩
)

×
󵄩
󵄩
󵄩
󵄩
Δ𝐴
𝑖

󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑉
𝑖
(Δ𝑋)

󵄩
󵄩
󵄩
󵄩
)

≤

𝑚

∑

𝑖=1

(𝜉
𝑖
𝜁
2󵄩
󵄩
󵄩
󵄩
𝐴
𝑖

󵄩
󵄩
󵄩
󵄩

2 ‖Δ𝑋‖
2

1 − 𝜁 ‖Δ𝑋‖

+ (2
󵄩
󵄩
󵄩
󵄩
𝐴
𝑖

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
Δ𝐴
𝑖

󵄩
󵄩
󵄩
󵄩
)

×
󵄩
󵄩
󵄩
󵄩
Δ𝐴
𝑖

󵄩
󵄩
󵄩
󵄩
𝜉
𝑖
𝜁

‖Δ𝑋‖

1 − 𝜁 ‖Δ𝑋‖

) .

(39)

Noting (31) and (34), it follows that

󵄩
󵄩
󵄩
󵄩
𝑓 (Δ𝑋)

󵄩
󵄩
󵄩
󵄩
≤

1

𝑙

‖Δ𝑄‖ +

𝑚

∑

𝑖=1

(𝑛
𝑖

󵄩
󵄩
󵄩
󵄩
Δ𝐴
𝑖

󵄩
󵄩
󵄩
󵄩
+

𝜁
𝑖

𝑙

󵄩
󵄩
󵄩
󵄩
Δ𝐴
𝑖

󵄩
󵄩
󵄩
󵄩

2

)

+

1

𝑙

‖ℎ (Δ𝑋)‖

≤ 𝜖 +

𝜎 ‖Δ𝑋‖

1 − 𝜁 ‖Δ𝑋‖

+

𝜃‖Δ𝑋‖
2

1 − 𝜁 ‖Δ𝑋‖

≤ 𝜖 +

𝜎]

1 − 𝜁]
+

𝜃]2

1 − 𝜁]
= ],

(40)

for Δ𝑋 ∈ Ω. That is, 𝑓(Ω) ⊆ Ω. According to Schauder fixed
point theorem, there existsΔ𝑋

∗
∈ Ω such that𝑓(Δ𝑋

∗
) = 𝑋

∗
.

It follows that 𝑋 + Δ𝑋
∗
is a Hermitian solution of (7). By

Lemma 3, we know that the solution of (7) is unique. Then
‖Δ𝑋

∗
‖ = ‖𝑋 − 𝑋‖ ≤ ].

Remark 9. FromTheorem 8, we get the first order perturba-
tion bound for the solution as follows:

󵄩
󵄩
󵄩
󵄩
󵄩
𝑋 − 𝑋

󵄩
󵄩
󵄩
󵄩
󵄩
≤

1

𝑙

‖Δ𝑄‖ +

𝑚

∑

𝑖=1

𝑛
𝑖

󵄩
󵄩
󵄩
󵄩
Δ𝐴
𝑖

󵄩
󵄩
󵄩
󵄩

+ 𝑂 (
󵄩
󵄩
󵄩
󵄩
(Δ𝐴

1
, Δ𝐴

2
, . . . , Δ𝐴

𝑚
, Δ𝑄)

󵄩
󵄩
󵄩
󵄩

2

𝐹
) ,

(41)

as (Δ𝐴
1
, Δ𝐴

2
, . . . , Δ𝐴

𝑚
, Δ𝑄) → 0.

Combining this with (29) gives

Δ𝑋 = L−1Δ𝑄 + L−1
𝑚

∑

𝑖=1

(𝐵
∗

𝑖
Δ𝐴
𝑖
+ Δ𝐴

∗

𝑖
𝐵
𝑖
)

+ 𝑂 (
󵄩
󵄩
󵄩
󵄩
(Δ𝐴

1
, Δ𝐴

2
, . . . , Δ𝐴

𝑚
, Δ𝑄)

󵄩
󵄩
󵄩
󵄩

2

𝐹
) .

(42)

as (Δ𝐴
1
, Δ𝐴

2
, . . . , Δ𝐴

𝑚
, Δ𝑄) → 0.

4. Backward Error

In this section, a backward error of an approximate solution
for the unique solution to (1) is obtained.

Theorem 10. Let 𝑋 > 0 be an approximation to the solution
𝑋 of (1). If Σ = ∑

𝑚

𝑖=1
𝑝
𝑖
‖𝑋
𝑝𝑖/2

𝐴
𝑖
𝑋
−1/2

‖

2

< 1 and the residual
𝑅(𝑋) ≡ 𝑄 + ∑

𝑚

𝑖=1
𝐴
∗

𝑖
𝑋
𝑝𝑖
𝐴
𝑖
− 𝑋 satisfies

󵄩
󵄩
󵄩
󵄩
󵄩
𝑅 (𝑋)

󵄩
󵄩
󵄩
󵄩
󵄩
<

𝜃
1

2

󵄩
󵄩
󵄩
󵄩
󵄩
𝑋
−1
󵄩
󵄩
󵄩
󵄩
󵄩

min{1, 𝜃1
2

} ,

where 𝜃
1
≡ 1 +

󵄩
󵄩
󵄩
󵄩
󵄩
𝑋
−1
󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
𝑅 (𝑋)

󵄩
󵄩
󵄩
󵄩
󵄩
− Σ > 0,

(43)

then
󵄩
󵄩
󵄩
󵄩
󵄩
𝑋 − 𝑋

󵄩
󵄩
󵄩
󵄩
󵄩
≤ 𝜇

󵄩
󵄩
󵄩
󵄩
󵄩
𝑅 (𝑋)

󵄩
󵄩
󵄩
󵄩
󵄩
,

where 𝜇 =

2

󵄩
󵄩
󵄩
󵄩
󵄩
𝑋

󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
𝑋
−1
󵄩
󵄩
󵄩
󵄩
󵄩

𝜃
1
+ √𝜃

2

1
− 4

󵄩
󵄩
󵄩
󵄩
󵄩
𝑋
−1
󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
𝑅 (𝑋)

󵄩
󵄩
󵄩
󵄩
󵄩

.

(44)

Proof. Let

Ψ = {Δ𝑋 ∈ H
𝑛×𝑛

:

󵄩
󵄩
󵄩
󵄩
󵄩
𝑋
−1/2

Δ𝑋𝑋
−1/2

󵄩
󵄩
󵄩
󵄩
󵄩
≤ 𝜃
2

󵄩
󵄩
󵄩
󵄩
󵄩
𝑅 (𝑋)

󵄩
󵄩
󵄩
󵄩
󵄩
} , (45)

where 𝜃
2
= 𝜇/‖𝑋‖. Obviously, Ψ is a nonempty bounded

convex closed set. Let

𝑔 (Δ𝑋) =

𝑚

∑

𝑖=1

𝐴
∗

𝑖
[(𝑋 + Δ𝑋)

𝑝𝑖

− 𝑋
𝑝𝑖
]𝐴
𝑖
+ 𝑅 (𝑋) . (46)

Evidently 𝑔 : Ψ 󳨃→ H𝑛×𝑛 is continuous. We will prove that
𝑔(Ψ) ⊆ Ψ. For every Δ𝑋 ∈ Ψ, we have

󵄩
󵄩
󵄩
󵄩
󵄩
𝑋
−1/2

Δ𝑋𝑋
−1/2

󵄩
󵄩
󵄩
󵄩
󵄩
≤ 𝜃
2

󵄩
󵄩
󵄩
󵄩
󵄩
𝑅 (𝑋)

󵄩
󵄩
󵄩
󵄩
󵄩
. (47)

Hence

𝑋
−1/2

Δ𝑋𝑋
−1/2

≥ −𝜃
2

󵄩
󵄩
󵄩
󵄩
󵄩
𝑅 (𝑋)

󵄩
󵄩
󵄩
󵄩
󵄩
𝐼. (48)

That is,

𝑋 + Δ𝑋 ≥ (1 − 𝜃
2

󵄩
󵄩
󵄩
󵄩
󵄩
𝑅 (𝑋)

󵄩
󵄩
󵄩
󵄩
󵄩
)𝑋. (49)

Using (43), one sees that

𝜃
2

󵄩
󵄩
󵄩
󵄩
󵄩
𝑅 (𝑋)

󵄩
󵄩
󵄩
󵄩
󵄩
=

2

󵄩
󵄩
󵄩
󵄩
󵄩
𝑋
−1
󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
𝑅 (𝑋)

󵄩
󵄩
󵄩
󵄩
󵄩

𝜃
1
+ √𝜃

2

1
− 4

󵄩
󵄩
󵄩
󵄩
󵄩
𝑋
−1
󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
𝑅 (𝑋)

󵄩
󵄩
󵄩
󵄩
󵄩

<

2

󵄩
󵄩
󵄩
󵄩
󵄩
𝑋
−1
󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
𝑅 (𝑋)

󵄩
󵄩
󵄩
󵄩
󵄩

𝜃
1

< 1.

(50)

Therefore (1 − 𝜃
2
‖𝑅(𝑋)‖)𝑋 > 0.
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According to (17), we obtain
󵄩
󵄩
󵄩
󵄩
󵄩
𝑋
−1/2

𝑔 (Δ𝑋)𝑋
−1/2

󵄩
󵄩
󵄩
󵄩
󵄩

≤ (

󵄩
󵄩
󵄩
󵄩
󵄩
𝑋
−1/2

Δ𝑋𝑋
−1/2

󵄩
󵄩
󵄩
󵄩
󵄩
+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑋
−1/2

Δ𝑋𝑋
−1/2

󵄩
󵄩
󵄩
󵄩
󵄩

2

1 − 𝜃
2

󵄩
󵄩
󵄩
󵄩
󵄩
𝑅 (𝑋)

󵄩
󵄩
󵄩
󵄩
󵄩

)Σ

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑋
−1/2

𝑅 (𝑋)𝑋
−1/2

󵄩
󵄩
󵄩
󵄩
󵄩

≤ (𝜃
2

󵄩
󵄩
󵄩
󵄩
󵄩
𝑅 (𝑋)

󵄩
󵄩
󵄩
󵄩
󵄩
+

(𝜃
2

󵄩
󵄩
󵄩
󵄩
󵄩
𝑅 (𝑋)

󵄩
󵄩
󵄩
󵄩
󵄩
)

2

1 − 𝜃
2

󵄩
󵄩
󵄩
󵄩
󵄩
𝑅 (𝑋)

󵄩
󵄩
󵄩
󵄩
󵄩

)Σ +

󵄩
󵄩
󵄩
󵄩
󵄩
𝑋
−1
󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
𝑅 (𝑋)

󵄩
󵄩
󵄩
󵄩
󵄩

= 𝜃
2

󵄩
󵄩
󵄩
󵄩
󵄩
𝑅 (𝑋)

󵄩
󵄩
󵄩
󵄩
󵄩
,

(51)

for Δ𝑋 ∈ Ψ. That is, 𝑔(Ψ) ⊆ Ψ. By Brouwer’s fixed point
theorem, there exists a Δ𝑋 ∈ Ψ such that 𝑔(Δ𝑋) = Δ𝑋.
Hence 𝑋 + Δ𝑋 is a solution of (1). Moreover, by Lemma 3,
we know that the solution𝑋 of (1) is unique. Then

󵄩
󵄩
󵄩
󵄩
󵄩
𝑋 − 𝑋

󵄩
󵄩
󵄩
󵄩
󵄩
= ‖Δ𝑋‖ ≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝑋

󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
𝑋
−1/2

Δ𝑋𝑋
−1/2

󵄩
󵄩
󵄩
󵄩
󵄩

= 𝜃
2

󵄩
󵄩
󵄩
󵄩
󵄩
𝑋

󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
𝑅 (𝑋)

󵄩
󵄩
󵄩
󵄩
󵄩
= 𝜇

󵄩
󵄩
󵄩
󵄩
󵄩
𝑅 (𝑋)

󵄩
󵄩
󵄩
󵄩
󵄩
.

(52)

5. Condition Number

In this section, we apply the theory of condition number
developed by Rice [36] to study condition numbers of the
unique solution to (1).

5.1. The Complex Case. Suppose that 𝑋 and 𝑋 are the
solutions of the matrix equations (1) and (7), respectively. Let
Δ𝐴
𝑖
= 𝐴

𝑖
−𝐴
𝑖
,Δ𝑄 = 𝑄−𝑄 andΔ𝑋 = 𝑋−𝑋. UsingTheorem 8

and Remark 9, we have

Δ𝑋 = 𝑋 − 𝑋 = L−1Δ𝑄

+ L−1
𝑚

∑

𝑖=1

(𝐵
∗

𝑖
Δ𝐴
𝑖
+ Δ𝐴

∗

𝑖
𝐵
𝑖
)

+ 𝑂 (
󵄩
󵄩
󵄩
󵄩
(Δ𝐴

1
, Δ𝐴

2
, . . . , Δ𝐴

𝑚
, Δ𝑄)

󵄩
󵄩
󵄩
󵄩

2

𝐹
) ,

(53)

as (Δ𝐴
1
, Δ𝐴

2
, . . . , Δ𝐴

𝑚
, Δ𝑄) → 0.

By the theory of condition number developed by Rice
[36], we define the condition number of the Hermitian
positive definite solution𝑋 to (1) by

𝑐 (𝑋) = lim
𝛿→0

sup
‖(Δ𝐴1/𝜂1,Δ𝐴2/𝜂2 ,...,Δ𝐴𝑚/𝜂𝑚 ,Δ𝑄/𝜌)‖𝐹

≤𝛿

‖Δ𝑋‖
𝐹

𝜉𝛿

, (54)

where 𝜉, 𝜌, and 𝜂
𝑖
, 𝑖 = 1, 2, . . . , 𝑚, are positive parameters.

Taking 𝜉 = 𝜂
𝑖
= 𝜌 = 1 in (54) gives the absolute condition

number 𝑐abs(𝑋), and taking 𝜉 = ‖𝑋‖
𝐹
, 𝜂
𝑖
= ‖𝐴

𝑖
‖
𝐹
, and 𝜌 =

‖𝑄‖
𝐹
in (54) gives the relative condition number 𝑐rel(𝑋).

Substituting (53) into (54), we get

𝑐 (𝑋) =

1

𝜉

max
(Δ𝐴1/𝜂1 ,Δ𝐴2/𝜂2 ,...,Δ𝐴𝑚/𝜂𝑚 ,Δ𝑄/𝜌) ̸= 0

Δ𝐴𝑖∈C
𝑛×𝑛
,Δ𝑄∈H𝑛×𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
L−1 (Δ𝑄 + ∑

𝑚

𝑖=1
(𝐵
∗

𝑖
Δ𝐴
𝑖
+ Δ𝐴

∗

𝑖
𝐵
𝑖
))

󵄩
󵄩
󵄩
󵄩
󵄩𝐹

󵄩
󵄩
󵄩
󵄩
(Δ𝐴

1
/𝜂
1
, Δ𝐴

2
/𝜂
2
, . . . , Δ𝐴

𝑚
/𝜂
𝑚
, Δ𝑄/𝜌)

󵄩
󵄩
󵄩
󵄩𝐹

=

1

𝜉

max
(𝐸1 ,𝐸2,...,𝐸𝑚,𝐻) ̸= 0

𝐸𝑖∈C
𝑛×𝑛
,𝐻∈H𝑛×𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
L−1 (𝜌𝐻 + ∑

𝑚

𝑖=1
𝜂
𝑖
(𝐵
∗

𝑖
𝐸
𝑖
+ 𝐸
∗

𝑖
𝐵
𝑖
))

󵄩
󵄩
󵄩
󵄩
󵄩𝐹

󵄩
󵄩
󵄩
󵄩
(𝐸
1
, 𝐸
2
, . . . , 𝐸

𝑚
, 𝐻)

󵄩
󵄩
󵄩
󵄩𝐹

.

(55)

Let 𝐿 be the matrix representation of the linear operator L.
Then it is easy to see that

𝐿 = 𝐼 +

𝑚

∑

𝑖=1

sin𝑝
𝑖
𝜋

𝜋

∫

∞

0

[(𝜆𝐼 + 𝑋)
−1

𝑋
1/2

𝐴
𝑖
]

𝑇

⊗ [(𝜆𝐼 + 𝑋)
−1

𝑋
1/2

𝐴
𝑖
]

∗

× 𝜆
𝑝𝑖−1

𝑑𝜆.

(56)

Let

𝐿
−1

= 𝑆 + iΣ,

𝐿
−1

(𝐼 ⊗ 𝐵
∗

𝑖
) = 𝐿

−1

(𝐼 ⊗ (𝑋
𝑝𝑖
𝐴
𝑖
)

∗

) = 𝑈
𝑖1
+ iΩ

𝑖1
,

𝐿
−1

(𝐵
𝑇

𝑖
⊗ 𝐼)Π = 𝐿

−1

((𝑋
𝑝𝑖
𝐴
𝑖
)

𝑇

⊗ 𝐼)Π = 𝑈
𝑖2
+ iΩ

𝑖2
,

𝑆
𝑐
= [

𝑆 −Σ

Σ 𝑆
] ,

𝑈
𝑖
= [

𝑈
𝑖1
+ U

𝑖2
Ω
𝑖2
− Ω

𝑖1

Ω
𝑖1
+ Ω

𝑖2
𝑈
𝑖1
− 𝑈

𝑖2

] , 𝑖 = 1, 2, . . . , 𝑚, (57)
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vec𝐻 = 𝑥 + i𝑦, vec𝐸
𝑖
= 𝑎

𝑖
+ i𝑏

𝑖
, 𝑔 = (𝑥

𝑇

, 𝑦
𝑇

, 𝑎
𝑇

1
,

𝑏
𝑇

1
, . . . , 𝑎

𝑇

𝑚
, 𝑏
𝑇

𝑚
)
𝑇

, 𝑀 = (𝐸
1
, 𝐸
2
, . . . , 𝐸

𝑚
, 𝐻), where𝑥, 𝑦, 𝑎

𝑖
, 𝑏
𝑖
∈

R𝑛
2

, 𝑆, Σ, 𝑈
𝑖1
, 𝑈
𝑖2
, Ω
𝑖1
, Ω
𝑖2
∈ R𝑛

2
×𝑛
2

, 𝑖 = 1, 2, . . . , 𝑚, and Π

is the vec-permutation matrix, such that

vec𝐴𝑇 = Π vec𝐴. (58)

Then we obtain that

𝑐 (𝑋) =

1

𝜉

max
𝑀 ̸= 0

󵄩
󵄩
󵄩
󵄩
󵄩
L−1 (𝜌𝐻 + ∑

𝑚

𝑖=1
𝜂
𝑖
(𝐵
∗

𝑖
𝐸
𝑖
+ 𝐸
∗

𝑖
𝐵
𝑖
))

󵄩
󵄩
󵄩
󵄩
󵄩𝐹

󵄩
󵄩
󵄩
󵄩
(𝐸
1
, 𝐸
2
, . . . , 𝐸

𝑚
, 𝐻)

󵄩
󵄩
󵄩
󵄩𝐹

=

1

𝜉

max
𝑀 ̸= 0

(

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜌𝐿
−1 vec𝐻

+

𝑚

∑

𝑖=1

𝜂
𝑖
𝐿
−1

((𝐼 ⊗ 𝐵
∗

𝑖
) vec𝐸

𝑖

+ (𝐵
𝑇

𝑖
⊗ 𝐼) vec𝐸∗

𝑖
)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

)

× (
󵄩
󵄩
󵄩
󵄩
vec (𝐸

1
, 𝐸
2
, . . . , 𝐸

𝑚
, 𝐻)

󵄩
󵄩
󵄩
󵄩
)
−1

=

1

𝜉

max
𝑀 ̸= 0

(

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜌 (𝑆 + iΣ) (𝑥 + i𝑦)

+

𝑚

∑

𝑖=1

𝜂
𝑖
[(𝑈
𝑖1
+ iΩ

𝑖1
) (𝑎
𝑖
+ i𝑏

𝑖
)

+ (𝑈
𝑖2
+ iΩ

𝑖2
) (𝑎
𝑖
− i𝑏

𝑖
)]

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

)

× (
󵄩
󵄩
󵄩
󵄩
vec (𝐸

1
, 𝐸
2
, . . . , 𝐸

𝑚
, 𝐻)

󵄩
󵄩
󵄩
󵄩
)
−1

=

1

𝜉

max
𝑔 ̸= 0

󵄩
󵄩
󵄩
󵄩
(𝜌𝑆
𝑐
, 𝜂
1
𝑈
1
, 𝜂
2
𝑈
2
, . . . , 𝜂

𝑚
𝑈
𝑚
) 𝑔

󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑔
󵄩
󵄩
󵄩
󵄩

=

1

𝜉

󵄩
󵄩
󵄩
󵄩
(𝜌𝑆
𝑐
, 𝜂
1
𝑈
1
, 𝜂
2
𝑈
2
, . . . , 𝜂

𝑚
𝑈
𝑚
)
󵄩
󵄩
󵄩
󵄩
,

𝐸
𝑖
∈ C

𝑛×𝑛

, 𝐻 ∈ H
𝑛×𝑛

.

(59)

Then we have the following theorem.

Theorem 11. If ∑𝑚
𝑖=1

‖𝐴
𝑖
‖
2

/𝛽
1−𝑝𝑖

< 1, then the condition
number 𝑐(𝑋) defined by (54) has the explicit expression

𝑐 (𝑋) =

1

𝜉

󵄩
󵄩
󵄩
󵄩
(𝜌𝑆
𝑐
, 𝜂
1
𝑈
1
, 𝜂
2
𝑈
2
, . . . , 𝜂

𝑚
𝑈
𝑚
)
󵄩
󵄩
󵄩
󵄩
, (60)

where the matrices 𝑆
𝑐
and 𝑈

𝑖
are defined as in (57).

Remark 12. From (60) we have the relative condition number

𝑐rel (𝑋) =

󵄩
󵄩
󵄩
󵄩
(‖𝑄‖

𝐹
𝑆
𝑐
,
󵄩
󵄩
󵄩
󵄩
𝐴
1

󵄩
󵄩
󵄩
󵄩𝐹
𝑈
1
,
󵄩
󵄩
󵄩
󵄩
𝐴
2

󵄩
󵄩
󵄩
󵄩𝐹
𝑈
2
, . . . ,

󵄩
󵄩
󵄩
󵄩
𝐴
𝑚

󵄩
󵄩
󵄩
󵄩F𝑈𝑚)

󵄩
󵄩
󵄩
󵄩

‖𝑋‖
𝐹

.

(61)

5.2. The Real Case. In this subsection we consider the real
case. That is, all the coefficient matrices 𝐴

𝑖
, 𝑄 of (1) are

real. In such a case the corresponding solution 𝑋 is also
real. Completely similar arguments as Theorem 11 give the
following theorem.

Theorem 13. Let 𝐴
𝑖
, 𝑄 be real and let 𝑐(𝑋) be the condition

number defined by (54). If ∑𝑚
𝑖=1

‖𝐴
𝑖
‖
2

/𝛽
1−𝑝𝑖

< 1, then 𝑐(𝑋)

has the explicit expression

𝑐 (𝑋) =

1

𝜉

󵄩
󵄩
󵄩
󵄩
(𝜌𝑆
𝑟
, 𝜂
1
𝑈
1
, 𝜂
2
𝑈
2
, . . . , 𝜂

𝑚
𝑈
𝑚
)
󵄩
󵄩
󵄩
󵄩
, (62)

where

𝑆
𝑟
= (𝐼 +

𝑚

∑

𝑖=1

sin𝑝
𝑖
𝜋

𝜋

∫

∞

0

[(𝜆𝐼 + 𝑋)
−1

𝑋
1/2

𝐴
𝑖
]

𝑇

⊗
[

[

(𝜆𝐼 + 𝑋)
−1

𝑋
1/2

𝐴
𝑖

]

]

𝑇

𝜆
𝑝𝑖−1

𝑑𝜆)

−1

𝑈
𝑖
= 𝑆
𝑟
[𝐼 ⊗ (𝐴

𝑇

𝑖
𝑋
𝑝𝑖
) + ((𝐴

𝑇

𝑖
𝑋
𝑝𝑖
) ⊗ 𝐼)Π] ,

𝑖 = 1, 2, . . . , 𝑚.

(63)

Remark 14. In the real case the relative condition number is
given by

𝑐rel (𝑋) =

󵄩
󵄩
󵄩
󵄩
(‖𝑄‖

𝐹
𝑆
𝑟
,
󵄩
󵄩
󵄩
󵄩
𝐴
1

󵄩
󵄩
󵄩
󵄩𝐹
𝑈
1
,
󵄩
󵄩
󵄩
󵄩
𝐴
2

󵄩
󵄩
󵄩
󵄩𝐹
𝑈
2
, . . . ,

󵄩
󵄩
󵄩
󵄩
𝐴
𝑚

󵄩
󵄩
󵄩
󵄩𝐹
𝑈
𝑚
)
󵄩
󵄩
󵄩
󵄩

‖𝑋‖
𝐹

.

(64)

6. Numerical Examples

To illustrate the results of the previous sections, in this section
three simple examples are given, whichwere carried out using
MATLAB 7.1. For the stopping criterion we take 𝜀

𝑘+1
(𝑋) =

‖𝑋
𝑘
− ∑

𝑚

𝑖=1
𝐴
∗

𝑖
𝑋
𝑝𝑖

𝑘
𝐴
𝑖
− 𝑄‖ < 1.0𝑒 − 10.

Example 15. We consider the matrix equation

𝑋 − 𝐴
∗

1
𝑋
1/2

𝐴
1
− 𝐴

∗

2
𝑋
1/3

𝐴
2
= 𝐼, (65)

with

𝐴
1
=

(1/3) + 2 × 10
−2

‖𝐴‖

𝐴,

𝐴
2
=

(1/6) + 3 × 10
−2

‖𝐴‖

𝐴,

𝐴 = (

0 0.95

0 1
) .

(66)
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Table 1: Assumptions check for Example 15 with different values of
𝑗.

𝑗 4 5 6 7
ass
1

1.0749 1.0753 1.0753 1.0753

ass
2

0.9248 0.9247 0.9247 0.9247

ass
3

0.8543 0.8550 0.8550 0.8550

ass
4

0.9999 1.0000 1.0000 1.0000

ass
5

0.7645 0.7648 0.7648 0.7648

Suppose that the coefficient matrices 𝐴
1
and 𝐴

2
are

perturbed to 𝐴
𝑖
= 𝐴

𝑖
+ Δ𝐴

𝑖
, 𝑖 = 1, 2, where

Δ𝐴
1
=

10
−𝑗

󵄩
󵄩
󵄩
󵄩
𝐶
𝑇
+ 𝐶

󵄩
󵄩
󵄩
󵄩

(𝐶
𝑇

+ 𝐶) ,

Δ𝐴
2
=

3 × 10
−𝑗−1

󵄩
󵄩
󵄩
󵄩
𝐶
𝑇
+ 𝐶

󵄩
󵄩
󵄩
󵄩

(𝐶
𝑇

+ 𝐶) ,

(67)

and 𝐶 is a random matrix generated by MATLAB function
randn.

We now consider the corresponding perturbation bounds
for the solution𝑋 in Theorems 5 and 8.

The assumptions inTheorem 5 are

ass
1
= 2 (𝛽 − 𝑠) − 𝑏 > 0,

ass
2
= 𝛽 + ‖Δ𝑄‖ −

𝑚

∑

𝑖=1

𝑝
𝑖
𝛽
𝑝𝑖
󵄩
󵄩
󵄩
󵄩
𝐴
𝑖

󵄩
󵄩
󵄩
󵄩

2

> 0,

ass
3
= 𝑏
2

− 4 (𝛽 − 𝑠) (𝑠 + ‖Δ𝑄‖) ≥ 0.

(68)

The assumptions inTheorem 8 are

ass
4
= 1 − 𝜎 > 0,

ass
5
=

(1 − 𝜎)
2

𝜁 + 𝜎𝜁 + 2𝜃 + 2√((𝜁 + 𝜃) (𝜎𝜁 + 𝜃))

− 𝜖 > 0.

(69)

By computation, we list them in Table 1.
The results listed in Table 1 show that the assumptions of

Theorems 5 and 8 are satisfied.
By Theorems 5 and 8, we can compute the relative

perturbation bounds 𝜉
1
and 𝜉

2
= ]/‖𝑋‖, respectively. These

results averaged as the geometric mean of 10 randomly
perturbed runs. Some results are listed in Table 2.

The results listed in Table 2 show that the perturbation
bound 𝜉

2
given byTheorem 8 is fairly sharp, while the bound

𝜉
1
given by Theorem 5 which does not depend on the exact

solution is conservative.

Example 16. We consider the matrix equation

𝑋 − 𝐴
∗

1
𝑋
0.5

𝐴
1
− 𝐴

∗

2
𝑋
0.25

𝐴
2
= 𝐼, (70)

with

𝐴
1
=

(1/3) + 2 × 10
−2

‖𝐴‖

𝐴,

𝐴
2
=

(1/6) + 3 × 10
−2

‖𝐴‖

𝐴,

𝐴 = (

2 1 0 0 0

1 2 1 0 0

0 1 2 1 0

0 0 1 2 1

0 0 0 1 2

).

(71)

Choose 𝑋
1
= 𝐴, 𝑋

2
= 2𝐴. Let the approximate solution 𝑋

𝑘

of 𝑋 be given with the iterative method (6), where 𝑘 is the
iteration number.

The residual 𝑅(𝑋
𝑘
) ≡ 𝐼 + 𝐴

∗

1
𝑋
0.5

𝑘
𝐴
1
+ 𝐴

∗

2
𝑋
0.25

𝑘
𝐴
2
− 𝑋

𝑘

satisfies the conditions inTheorem 10.
By Theorem 10, we can compute the backward error

bound for𝑋
𝑘
as follows:

󵄩
󵄩
󵄩
󵄩
󵄩
𝑋
𝑘
− 𝑋

󵄩
󵄩
󵄩
󵄩
󵄩
≤ 𝜇

󵄩
󵄩
󵄩
󵄩
󵄩
𝑅 (𝑋

𝑘
)

󵄩
󵄩
󵄩
󵄩
󵄩
, (72)

where

𝜇 =

2

󵄩
󵄩
󵄩
󵄩
󵄩
𝑋
𝑘

󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
𝑋
−1

𝑘

󵄩
󵄩
󵄩
󵄩
󵄩

𝜃
1
+ √𝜃

2

1
− 4

󵄩
󵄩
󵄩
󵄩
󵄩
𝑋
−1

𝑘

󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
𝑅 (𝑋

𝑘
)

󵄩
󵄩
󵄩
󵄩
󵄩

,

𝜃
1
≡ 1 +

󵄩
󵄩
󵄩
󵄩
󵄩
𝑋
−1

𝑘

󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
𝑅 (𝑋

𝑘
)

󵄩
󵄩
󵄩
󵄩
󵄩

− (0.5

󵄩
󵄩
󵄩
󵄩
󵄩
𝑋
1/4

𝑘
𝐴
1
𝑋
−1/2

𝑘

󵄩
󵄩
󵄩
󵄩
󵄩

2

+0.25

󵄩
󵄩
󵄩
󵄩
󵄩
𝑋
1/8

𝑘
𝐴
2
𝑋
−1/2

𝑘

󵄩
󵄩
󵄩
󵄩
󵄩

2

) .

(73)

Some results are listed in Table 3.
The results listed in Table 3 show that the error bound

given byTheorem 10 is fairly sharp.

Example 17. We study the matrix equation

𝑋 − 𝐴
∗

1
𝑋
1/2

𝐴
1
− 𝐴

∗

2
𝑋
1/3

𝐴
2
= 𝑄, (74)

with

𝐴
1
= (

0 0.55 + 10
−𝑘

0 0

) ,

𝐴
2
=

1

2

𝐴
1
,

𝑄 = (

1 1

0 1
) .

(75)

By Remark 14, we can compute the relative condition number
𝑐rel(𝑋). Some results are listed in Table 4.
Table 4 shows that the unique positive definite solution 𝑋 is
well conditioned.
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Table 2: Perturbation bounds for Example 15 with different values of 𝑗.

𝑗 4 5 6 7
󵄩
󵄩
󵄩
󵄩
󵄩
𝑋 − 𝑋

󵄩
󵄩
󵄩
󵄩
󵄩
/ ‖𝑋‖ 2.5627 × 10

−5

3.8447 × 10
−6

5.1681 × 10
−7

2.1776 × 10
−8

𝜉
1

2.1885 × 10
−4

1.9891 × 10
−5

2.4026 × 10
−6

1.8251 × 10
−7

𝜉
2

8.0828 × 10
−5

7.4741 × 10
−6

8.8011 × 10
−7

6.9496 × 10
−8

Table 3: Backward error bound for Example 16 with different values of 𝑘.

𝑘 8 10 12 14
󵄩
󵄩
󵄩
󵄩
󵄩
𝑋
𝑘
− 𝑋

󵄩
󵄩
󵄩
󵄩
󵄩

6.1091 × 10
−4

4.0865 × 10
−5

2.6837 × 10
−6

1.7372 × 10
−7

𝜇

󵄩
󵄩
󵄩
󵄩
󵄩
𝑅(𝑋

𝑘
)

󵄩
󵄩
󵄩
󵄩
󵄩

7.1435 × 10
−4

4.7784 × 10
−5

3.1381 × 10
−6

2.0318 × 10
−7

Table 4: Relative condition number for Example 17 with different
values of 𝑘.

𝑘 1 3 5 7 9
𝑐rel(𝑋) 1.0717 1.0228 1.0225 1.0225 1.0225
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