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We first consider an auxiliary problem for the generalized mixed vector equilibrium problem with a relaxed monotone mapping
and prove the existence and uniqueness of the solution for the auxiliary problem. We then introduce a new iterative scheme
for approximating a common element of the set of solutions of a generalized mixed vector equilibrium problem with a relaxed
monotone mapping and the set of common fixed points of a countable family of nonexpansive mappings. The results presented in
this paper can be considered as a generalization of some known results due to Wang et al. (2010).

1. Introduction

Let 𝐻 be a real Hilbert space with inner product ⟨⋅, ⋅⟩ and
norm ‖ ⋅ ‖, respectively. Let 𝑋 be a nonempty closed convex
subset of 𝐻. Let 𝜑 : 𝑋 × 𝑋 → R = (−∞, +∞) be a
bifunction. The equilibrium problem EP(𝜑) is to find 𝑥 ∈

𝑋 such that

𝜑 (𝑥, 𝑦) ≥ 0, ∀𝑦 ∈ 𝑋. (1)

As pointed out by Blum and Oettli [1], EP(𝜑) provides a
unified model of several problems, such as the optimization
problem, fixed point problem, variational inequality, and
complementarity problem.

A mapping 𝑆 : 𝑋 → 𝐻 is called nonexpansive, if
𝑆𝑧 − 𝑆𝑦

 ≤
𝑧 − 𝑦

 , ∀𝑧, 𝑦 ∈ 𝑋. (2)

We denote the set of all fixed points of 𝑆 by 𝐹(𝑆), that
is, 𝐹(𝑆) = {𝑧 ∈ 𝑋 : 𝑧 = 𝑆𝑧}. It is well known that if 𝑋 ⊂ 𝐻

is bounded, closed, convex and 𝑆 is a nonexpansive mapping
of 𝑋 onto itself, then 𝐹(𝑆) is nonempty (see [2]). A mapping
𝑇 : 𝐶 → 𝐻 is said to be relaxed 𝜂-𝛼monotone if there exist
a mapping 𝜂 : 𝐶 × 𝐶 → 𝐻 and a function 𝛼 : 𝐻 → R

positively homogeneous of degree 𝑝, that is, 𝛼(𝑡𝑧) = 𝑡
𝑝
𝛼(𝑧)

for all 𝑡 > 0 and 𝑧 ∈ 𝐻 such that

⟨𝑇𝑥 − 𝑇𝑦, 𝜂 (𝑥, 𝑦)⟩ ≥ 𝛼 (𝑥 − 𝑦) , ∀𝑥, 𝑦 ∈ 𝐶, (3)

where 𝑝 > 1 is a constant; see [3]. In the case of 𝜂(𝑥, 𝑦) =
𝑥 − 𝑦 for all 𝑥, 𝑦 ∈ 𝐶, 𝑇 is said to be relaxed 𝛼-monotone. In
the case of 𝜂(𝑥, 𝑦) = 𝑥−𝑦 for all 𝑥, 𝑦 ∈ 𝐶 and 𝛼(𝑧) = 𝑘‖𝑧‖𝑝,
where 𝑝 > 1 and 𝑘 > 0, 𝑇 is said to be 𝑝-monotone; see
[4–6]. In fact, in this case, if 𝑝 = 2, then 𝑇 is a 𝑘-strongly
monotone mapping. Moreover, every monotone mapping is
relaxed 𝜂 − 𝛼 monotone with 𝜂(𝑥, 𝑦) = 𝑥 − 𝑦 for all 𝑥, 𝑦 ∈ 𝐶
and 𝛼 = 0.

In 2000, Moudafi [7] introduced an iterative scheme of
finding the solution of nonexpansive mappings and proved a
strong convergence theorem. Recently, Huang et al. [8] intro-
duced the approximate method for solving the equilibrium
problem and proved the strong convergence theorem.

Let 𝜑 : 𝑋 × 𝑋 → R be a bifunction and 𝑇,𝐴 : 𝑋 →

𝐻 nonlinear mappings. In 2010, Wang et al. [9] introduced
the following generalized mixed equilibrium problem with a
relaxed monotone mapping.
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Find 𝑧 ∈ 𝐶 such that

𝜑 (𝑧, 𝑦) + ⟨𝑇𝑧, 𝜂 (𝑦, 𝑧)⟩ + ⟨𝐴𝑧, 𝑦 − 𝑧⟩ ≥ 0,

∀𝑦 ∈ 𝐶.

(4)

Problem (4) is very general setting, and it includes spe-
cial cases of Nash equilibrium problems, complementarity
problems, fixed point problems, optimization problems, and
variational inequalities (see, e.g., [8, 10–13] and the references
therein). Moreover, Wang et al. [9] studied the existence of
solutions for the proposed problem and introduced a new
iterative scheme for finding a common element of the set of
solutions of a generalized equilibrium problemwith a relaxed
monotone mapping and the set of common fixed points of
a countable family of nonexpansive mappings in a Hilbert
space.

It is well known that the vector equilibrium problem
provides a unified model of several problems, for example,
vector optimization, vector variational inequality, vector
complementarity problem, and vector saddle point problem
[14–16]. In recent years, the vector equilibrium problem has
been intensively studied bymany authors (see, e.g., [12, 14–19]
and the references therein).

Recently, Li and Wang [18] first studied the viscosity
approximation methods for strong vector equilibrium prob-
lems and fixed point problems. Very recently, Shan and
Huang [20] studied the problem of finding a common ele-
ment of the set of fixed points of a nonexpansivemapping, the
set of solutions of the generalized mixed vector equilibrium
problem, and the solution set of a variational inequality
problem with a monotone Lipschitz continuous mapping in
Hilbert spaces. They first introduced an auxiliary problem
for the generalized mixed vector equilibrium problem and
proved the existence and uniqueness of the solution for the
auxiliary problem. Furthermore, they introduced an iterative
scheme for finding a common element of the set of fixed
points of a nonexpansive mapping, the set of solutions
of the generalized mixed vector equilibrium problem, and
the solution set of a variational inequality problem with a
monotone Lipschitz continuous mapping.

Let 𝑌 be a Hausdorff topological vector space, and,
let 𝐶 be a closed, convex and pointed cone of 𝑌 with
int 𝐶 ̸= 0. Let 𝜑 : 𝑋×𝑋 → 𝑌 be a vector-valued bifunction.
The strong vector equilibrium problem (for short, SVEP(𝜑))
is to find 𝑧 ∈ 𝑋 such that

𝜑 (𝑧, 𝑦) ∈ 𝐶, ∀𝑦 ∈ 𝑋 (5)

and the weak vector equilibrium problem (for short,
WVEP(𝜑)) is to find 𝑧 ∈ 𝑋 such that

𝜑 (𝑧, 𝑦) ∉ − int𝐶, ∀𝑦 ∈ 𝑋. (6)

In this paper, inspired and motivated by the works
mentioned previously, we consider the following generalized
mixed vector equilibrium problem with a relaxed monotone
mapping (for short, GVEPR(𝜑, 𝑇)): find 𝑧 ∈ 𝑋 such that
𝜑 (𝑧, 𝑦) + 𝑒⟨𝑇𝑧, 𝜂 (𝑦, 𝑧)⟩ + 𝑒⟨𝐴𝑧, 𝑦 − 𝑧⟩ ∈ 𝐶, ∀𝑦 ∈ 𝑋,

(7)

where 𝑒 ∈ int𝐶, 𝜑 : 𝑋 × 𝑋 → 𝑌, and 𝑇,𝐴 : 𝑋 →

𝐻 are themappings.The set of all solutions of the generalized
mixed vector equilibrium problem with a relaxed monotone
mapping is denoted by SGVEPR(𝜑, 𝑇), that is,

SGVEPR (𝜑, 𝑇)

= {𝑧 ∈ 𝑋 : 𝜑 (𝑧, 𝑦) + 𝑒 ⟨𝑇𝑧, 𝜂 (𝑦, 𝑧)⟩

+𝑒⟨𝐴𝑧, 𝑦 − 𝑧⟩ ∈ 𝐶, ∀𝑦 ∈ 𝑋} .

(8)

If 𝐴 = 0, we denote the set ASGVEPR(𝜑, 𝑇) by

ASGVEPR (𝜑, 𝑇)

= {𝑧 ∈ 𝑋 : 𝜑 (𝑧, 𝑦) + 𝑒⟨𝑇𝑧, 𝜂 (𝑦, 𝑧)⟩ ∈ 𝐶, ∀𝑦 ∈ 𝑋} .

(9)

Some special cases of the problem (7) are as follows.

(1) If 𝑌 = R, 𝐶 = R+, and 𝑒 = 1, then GVEPR(𝜑, 𝑇)
(7) reduces to the generalized mixed equilibrium
problem with a relaxed monotone mapping (4).

(2) If 𝑇 = 0 and 𝐴 = 0, then GVEPR(𝜑, 𝑇) (7) reduces
to the classic vector equilibrium problem (5).

We consider the auxiliary problem of GVEPR(𝜑, 𝑇) and
prove the existence and uniqueness of the solutions of auxil-
iary problem of GVEPR(𝜑, 𝑇) under some proper conditions.
By using the result for the auxiliary problem, we introduce a
new iterative scheme for finding a common element of the
set of solutions of a generalized mixed vector equilibrium
problem with a relaxed monotone mapping and the set of
common fixed points of a countable family of nonexpansive
mappings and then obtain a strong convergence theorem.The
results presented in this paper improve and generalize some
known results of Wang et al. [9].

2. Preliminaries

Let 𝐴 : 𝑋 → 𝐻 be a 𝜆-inverse-stronglymonotonemapping
of 𝐻. For all 𝑧, 𝑦 ∈ 𝑋 and 𝑘 > 0, one has [21]

(𝐼 − 𝑘𝐴)𝑧 − (𝐼 − 𝑘𝐴)𝑦


2

≤
𝑧 − 𝑦



2
+ 𝑘 (𝑘 − 2𝜆)

𝐴𝑧 − 𝐴𝑦


2
.

(10)

Hence, if 𝑘 ∈ (0, 2𝜆), then 𝐼 − 𝑘𝐴 is a nonexpansive mapping
of𝑋 into 𝐻.

For each point 𝑧 ∈ 𝐻, there exists a unique nearest point
of𝑋, denoted by 𝑃𝑋𝑧, such that

𝑧 − 𝑃𝑋𝑧
 ≤

𝑧 − 𝑦
 , (11)

for all 𝑦 ∈ 𝑋. Such a 𝑃𝑋 is called the metric projection
from 𝐻 onto 𝑋. Thewell-known Browder’s characterization
of 𝑃𝑋 ensures that 𝑃𝑋 is a firmly nonexpansive mapping
from 𝐻 onto 𝑋, that is,

𝑃𝑋𝑧 − 𝑃𝑋𝑦


2
≤ ⟨𝑃𝑋𝑧 − 𝑃𝑋𝑦, 𝑧 − 𝑦⟩ ,

∀𝑧, 𝑦 ∈ 𝐻.

(12)
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Further, we know that for any 𝑧 ∈ 𝐻 and 𝑥 ∈ 𝑋, 𝑥 = 𝑃𝑋𝑧 if
and only if

⟨𝑧 − 𝑥, 𝑥 − 𝑦⟩ ≥ 0, ∀𝑦 ∈ 𝑋. (13)

Let 𝑆 be a nonexpansive mapping of 𝑋 into itself such that
𝐹(𝑆) ̸= 0. Then we have

𝑥 ∈ 𝐹 (𝑆) ⇐⇒ ‖𝑆𝑥 − 𝑥‖
2
≤ 2⟨𝑥 − 𝑆𝑥, 𝑥 − 𝑥⟩,

∀𝑥 ∈ 𝑋,

(14)

which is obtained directly from the following:

‖𝑥 − 𝑥‖
2

≥ ‖𝑆𝑥 − 𝑆𝑥‖
2
= ‖𝑆𝑥 − 𝑥‖

2
= ‖𝑆𝑥 − 𝑥 + (𝑥 − 𝑥)‖

2

= ‖𝑆𝑥 − 𝑥‖
2
+ ‖𝑥 − 𝑥‖

2
+ 2⟨𝑆𝑥 − 𝑥, 𝑥 − 𝑥⟩.

(15)

This inequality is a very useful characterization of 𝐹(𝑆).
Observe what is more that it immediately yields that Fix(𝑆)
is a convex closed set.

Definition 1 (see [6, 22]). Let 𝑋 and 𝑌 be two Hausdorff
topological vector spaces, 𝐸 a nonempty, convex, subset of
𝑋 and 𝐶 a closed, convex and pointed cone of 𝑌 with
int𝐶 ̸= 0. Let 𝜃 be the zero point of𝑌, U(𝜃) the neighborhood
set of 𝜃, U(𝑥0) be the neighborhood set of 𝑥0, and𝑓 : 𝐸 → 𝑌

a mapping.

(1) If for any 𝑉 ∈ U(𝜃) in 𝑌, and there exists 𝑈 ∈ U(𝑥0)

such that

𝑓 (𝑥) ∈ 𝑓 (𝑥0) + 𝑉 + 𝐶, ∀𝑥 ∈ 𝑈 ∩ 𝐸, (16)

then 𝑓 is called upper 𝐶-continuous on 𝑥0. If 𝑓 is
upper 𝐶-continuous for all 𝑥 ∈ 𝐸, then 𝑓 is called
upper 𝐶-continuous on 𝐸.

(2) If for any 𝑉 ∈ U(𝜃) in 𝑌, and there exists 𝑈 ∈ U(𝑥0)

such that

𝑓 (𝑥) ∈ 𝑓 (𝑥0) + 𝑉 − 𝐶, ∀𝑥 ∈ 𝑈 ∩ 𝐸, (17)

then 𝑓 is called lower 𝐶-continuous on 𝑥0. If 𝑓 is
lower 𝐶-continuous for all 𝑥 ∈ 𝐸, then 𝑓 is called
lower 𝐶-continuous on 𝐸.

(3) 𝑓 is called 𝐶-continuous if 𝑓 is upper 𝐶-continuous
and lower 𝐶-continuous.

(4) If for any 𝑥, 𝑦 ∈ 𝐸 and 𝑡 ∈ [0, 1], and the map-
ping 𝑓 satisfies

𝑓 (𝑥) ∈ 𝑓 (𝑡𝑥 + (1 − 𝑡) 𝑦) + 𝐶

or 𝑓 (𝑦) ∈ 𝑓 (𝑡𝑥 + (1 − 𝑡) 𝑦) + 𝐶,
(18)

then 𝑓 is called proper 𝐶-quasiconvex.
(5) If for any 𝑥1, 𝑥2 ∈ 𝐸 and 𝑡 ∈ [0, 1], and the map-

ping 𝑓 satisfies

𝑡𝑓 (𝑥1) + (1 − 𝑡) 𝑓 (𝑥2) ∈ 𝑓 (𝑡𝑥1 − (1 − 𝑡) 𝑥2) + 𝐶, (19)

then 𝑓 is called 𝐶-convex.

Lemma 2 (see [19]). Let 𝑋 and 𝑌 be two real Hausdorff
topological vector spaces, 𝐸 is a nonempty, compact, convex
subset of 𝑋, and 𝐶 is a closed, convex, and pointed cone
of 𝑌. Assume that 𝑓 : 𝐸 × 𝐸 → 𝑌 and 𝜓 : 𝐸 → 𝑌 are
two vector valued mappings. Suppose that 𝑓 and 𝜓 satisfy the
following:

(i) 𝑓(𝑥, 𝑥) ∈ 𝐶, for all 𝑥 ∈ 𝐸;
(ii) 𝜓 is upper 𝐶-continuous on 𝐸;
(iii) 𝑓(⋅, 𝑦) is lower 𝐶-continuous for all 𝑦 ∈ 𝐸;
(iv) 𝑓(𝑥, ⋅) + 𝜓(⋅) is proper 𝐶-quasiconvex for all 𝑥 ∈ 𝐸.

Then there exists a point 𝑥 ∈ 𝐸 satisfying

𝐹 (𝑥, 𝑦) ∈ 𝐶 \ {0} , ∀𝑦 ∈ 𝐸, (20)

where

𝐹 (𝑥, 𝑦) = 𝑓 (𝑥, 𝑦) + 𝜓 (𝑦) − 𝜓 (𝑥) , ∀𝑥, 𝑦 ∈ 𝐸. (21)

Definition 3 (see [3]). Let 𝐸 be a Banach space with the dual
space 𝐸∗ and let 𝐾 be a nonempty subset of 𝐸. Let 𝑇 : 𝐾 →

𝐸
∗
, and 𝜂 : 𝐾 × 𝐾 → 𝐸 be two mappings. The map-

ping 𝑇 : 𝐾 → 𝐸
∗ is said to be 𝜂-hemicontinuous, if for any

fixed 𝑥, 𝑦 ∈ 𝐾, the function 𝑓 : [0, 1] → (−∞,∞) defined
by

𝑓 (𝑡) = ⟨𝑇 ((1 − 𝑡) 𝑥 + 𝑡𝑦) , 𝜂 (𝑥, 𝑦)⟩ (22)

is continuous at 0+.

3. The Existence of Solutions for
the Generalized Mixed Vector Equilibrium
Problem with a Relaxed Monotone Mapping

For solving the generalized mixed vector equilibrium prob-
lem with a relaxed monotone mapping, we give the following
assumptions. Let 𝐻 be a real Hilbert space with inner ⟨⋅, ⋅⟩
and norm ‖⋅‖, respectively. Assume that 𝑋 ⊆ 𝐻 is nonempty,
compact, convex subset, 𝑌 is real Hausdorff topological
vector space, and𝐶 ⊆ 𝑌 is a closed, convex, and pointed cone.
Let 𝜑 : 𝑋 × 𝑋 → 𝑌, 𝑇 : 𝑋 → 𝐻 be two mappings. For any
𝑥 ∈ 𝐻, define a mapping Φ𝑥 : 𝑋 × 𝑋 → 𝑌 as follows:

Φ𝑥 (𝑧, 𝑦) = 𝜑 (𝑧, 𝑦) + 𝑒⟨𝑇𝑧, 𝜂 (𝑦, 𝑧)⟩

+
𝑒

𝑟
⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩,

(23)

where 𝑟 is a positive number inR and 𝑒 ∈ 𝐶 \ {0}. Let Φ𝑥, 𝜑,
and 𝑇 satisfy the following conditions:

(𝐴1) for all 𝑧 ∈ 𝑋, 𝜑(𝑧, 𝑧) = 𝜃;
(𝐴2) 𝜑 is monotone, that is, 𝜑(𝑧, 𝑦) + 𝜑(𝑦, 𝑧) ∈ −𝐶 for all

𝑧, 𝑦 ∈ 𝑋;

(𝐴3) 𝜑(⋅, 𝑦) is 𝐶-continuous for all 𝑦 ∈ 𝑋;
(𝐴4) 𝜑(𝑧, ⋅) is 𝐶-convex, that is,

𝑡𝜑 (𝑧, 𝑦1) + (1 − 𝑡) 𝜑 (𝑧, 𝑦2) ∈ 𝜑 (𝑧, 𝑡𝑦1 + (1 − 𝑡) 𝑦2) + 𝐶,

∀𝑧, 𝑦1, 𝑦2 ∈ 𝑋, ∀𝑡 ∈ [0, 1] ,

(24)
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(𝐴5) for all 𝑦 ∈ 𝑋, 𝑧 → ⟨𝑇𝑧, 𝜂(𝑦, 𝑧)⟩ is continuous, and
for any 𝑢, V ∈ 𝑋,

𝑦 → ⟨𝑇𝑢, 𝜂 (𝑦, V)⟩ is convex and lower semicontinuous;
(25)

(𝐴6) Φ𝑥(𝑧, ⋅) is proper 𝐶-quasiconvex for all 𝑧 ∈ 𝑋 and
𝑥 ∈ 𝐻.

Remark 4. Let 𝑌 = R, 𝐶 = R+, and 𝑒 = 1. For any 𝑦 ∈

𝑋, if 𝜑(⋅, 𝑦) is upper semicontinuous and 𝑧 → ⟨𝑇𝑧, 𝜂(𝑦, 𝑧)⟩

is continuous, then Φ𝑥(⋅, 𝑦) is lower 𝐶-continuous. In fact,
since 𝜑(⋅, 𝑦) is upper semicontinuous and 𝑧 → ⟨𝑇𝑧, 𝜂(𝑦, 𝑧)⟩

is continuous, for any 𝜖 > 0, there exists a 𝛿 > 0 such that, for
all 𝑧 ∈ {𝑧 ∈ 𝑋, ‖𝑧 − 𝑧0‖ < 𝛿}, we have

Φ𝑥 (𝑧, 𝑦) < Φ𝑥 (𝑧0, 𝑦) + 𝜖, (26)

where 𝑧0 is a point in 𝑋. This means that Φ𝑥(⋅, 𝑦) is low-
er 𝐶-continuous.

Remark 5. Let 𝑌 = R, 𝐶 = R+ and 𝑒 = 1. Assume that
𝜑(𝑧, ⋅) is a convex mapping for all 𝑧 ∈ 𝑋. Then for any
𝑦1, 𝑦2 ∈ 𝑋 and 𝑡 ∈ [0, 1], we have

Φ𝑥 (𝑧, 𝑡𝑦1 + (1 − 𝑡) 𝑦2)

= 𝜑 (𝑧, 𝑡𝑦1 + (1 − 𝑡) 𝑦2)

+ ⟨𝑇𝑧, 𝜂 (𝑡𝑦1 + (1 − 𝑡) 𝑦2, 𝑧)⟩

+
1

𝑟
⟨𝑡𝑦1 + (1 − 𝑡) 𝑦2 − 𝑧, 𝑧 − 𝑥⟩

≤ 𝑡𝜑 (𝑧, 𝑦1) + (1 − 𝑡) 𝜑 (𝑧, 𝑦2)

+ 𝑡 ⟨𝑇𝑧, 𝜂 (𝑦1, 𝑧)⟩ + (1 − 𝑡) ⟨𝑇𝑧, 𝜂 (𝑦2, 𝑧)⟩

+
𝑡

𝑟
⟨𝑦1 − 𝑧, 𝑧 − 𝑥⟩ +

1 − 𝑡

𝑟
⟨𝑦2 − 𝑧, 𝑧 − 𝑥⟩

= 𝑡 (𝜑 (𝑧, 𝑦1) + ⟨𝑇𝑧, 𝜂 (𝑦1, 𝑧)⟩ +
1

𝑟
⟨𝑦1 − 𝑧, 𝑧 − 𝑥⟩)

+ (1 − 𝑡) (𝜑 (𝑧, 𝑦2) + ⟨𝑇𝑧, 𝜂 (𝑦2, 𝑧)⟩

+
1

𝑟
⟨𝑦2 − 𝑧, 𝑧 − 𝑥⟩)

= 𝑡Φ𝑥 (𝑧, 𝑦1) + (1 − 𝑡)Φ𝑥 (𝑧, 𝑦2)

≤ max {Φ𝑥 (𝑧, 𝑦1) , Φ𝑥 (𝑧, 𝑦2)} ,

(27)

which implies that Φ𝑥(𝑧, ⋅) is proper 𝐶-quasiconvex.

Nowwe are in the position to state and prove the existence
of solutions for the generalized mixed vector equilibrium
problem with a relaxed monotone mapping.

Theorem 6. Let 𝑋 be a nonempty, compact, convex subset of
a real Hilbert space 𝐻. Let 𝐶 be a closed, convex, and pointed
cone of a Hausdorff topological vector space𝑌. Let𝑇 : 𝑋 → 𝐻

be an 𝜂-hemicontinuous and relaxed 𝜂-𝛼-monotone mapping.
Let 𝜑 : 𝑋 × 𝑋 → 𝑌 be a vector-valued bifunction. Suppose
that all the conditions (𝐴1)–(𝐴6) are satisfied. Let 𝑟 > 0 and
define a mapping 𝐵𝑟 : 𝐻 → 𝑋 as follows:

𝐵𝑟 (𝑥) = {𝑧 ∈ 𝑋 : 𝜑 (𝑧, 𝑦) + 𝑒 ⟨𝑇𝑧, 𝜂 (𝑦, 𝑧)⟩

+
𝑒

𝑟
⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩ ∈ 𝐶, ∀𝑦 ∈ 𝑋}

(28)

for all 𝑥 ∈ 𝐻. Assume that

(i) 𝜂(𝑥, 𝑦) + 𝜂(𝑦, 𝑥) = 0, for all 𝑥, 𝑦 ∈ 𝑋;
(ii) for any 𝑥, 𝑦 ∈ 𝑋, 𝛼(𝑥 − 𝑦) + 𝛼(𝑦 − 𝑥) ≥ 0.

Then, the following holds.

(1) 𝐵𝑟(𝑧) ̸= 0 for all 𝑧 ∈ 𝑋.
(2) 𝐵𝑟 is single-value.
(3) 𝐵𝑟 is a firmly nonexpansive mapping, that is, for

all 𝑥, 𝑦 ∈ 𝑋,

𝐵𝑟𝑥 − 𝐵𝑟𝑦


2
≤ ⟨𝐵𝑟𝑥 − 𝐵𝑟𝑦, 𝑥 − 𝑦⟩ , (29)

(4) 𝐹(𝐵𝑟) = ASGVEPR(𝜑, 𝑇),
(5) ASGVEPR(𝜑, 𝑇) is closed and convex.

Proof. (1) In Lemma 2, let 𝑓(𝑧, 𝑦) = Φ𝑥(𝑧, 𝑦), and, let 𝜓(𝑧) =
𝜃 for all 𝑧, 𝑦 ∈ 𝑋 and 𝑥 ∈ 𝐻. Then it is easy to check
that 𝑓 and Φ satisfy all the conditions of Lemma 2. Thus,
there exists a point 𝑧 ∈ 𝑋 such that

𝑓 (𝑧, 𝑦) + 𝜓 (𝑧) − 𝜓 (𝑦) ∈ 𝐶, ∀𝑦 ∈ 𝑋, 𝑥 ∈ 𝐻, (30)

which gives that, for any 𝑥 ∈ 𝐻,

𝜑 (𝑧, 𝑦) + 𝑒 ⟨𝑇𝑧, 𝜂 (𝑦, 𝑧)⟩ +
𝑒

𝑟
⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩ ∈ 𝐶, ∀𝑦 ∈ 𝑋.

(31)

Therefor we conclude that 𝐵𝑟(𝑥) ̸= 0 for all 𝑥 ∈ 𝐻.
(2) For 𝑥 ∈ 𝐻 and 𝑟 > 0, let 𝑧1, 𝑧2 ∈ 𝐵𝑟(𝑥). Then

𝜑 (𝑧1, 𝑦) + 𝑒 ⟨𝑇𝑧1, 𝜂 (𝑦, 𝑧1)⟩

+
𝑒

𝑟
⟨𝑦 − 𝑧1, 𝑧1 − 𝑥⟩ ∈ 𝐶, ∀𝑦 ∈ 𝑋,

(32)

𝜑 (𝑧2, 𝑦) + 𝑒 ⟨𝑇𝑧2, 𝜂 (𝑦, 𝑧2)⟩

+
𝑒

𝑟
⟨𝑦 − 𝑧2, 𝑧2 − 𝑥⟩ ∈ 𝐶, ∀𝑦 ∈ 𝑋.

(33)

Letting 𝑦 = 𝑧2 in (32) and 𝑦 = 𝑧1 in (33), adding (32) and
(33), we have

𝜑 (𝑧2, 𝑧1) + 𝜑 (𝑧1, 𝑧2) + 𝑒 ⟨𝑇𝑧1 − 𝑇𝑧2, 𝜂 (𝑧2, 𝑧1)⟩

+
𝑒

𝑟
⟨𝑧1 − 𝑧2, 𝑧2 − 𝑧1⟩ ∈ 𝐶.

(34)
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By the monotonicity of 𝜑, we have

𝑒 ⟨𝑇𝑧1 − 𝑇𝑧2, 𝜂 (𝑧2, 𝑧1)⟩ +
𝑒

𝑟
⟨𝑧1 − 𝑧2, 𝑧2 − 𝑧1⟩ ∈ 𝐶. (35)

Thus
𝑒

𝑟
⟨𝑧1 − 𝑧2, 𝑧2 − 𝑧1⟩ − 𝑒 ⟨𝑇𝑧2 − 𝑇𝑧1, 𝜂 (𝑧2, 𝑧1)⟩ ∈ 𝐶. (36)

Since 𝑇 is relaxed 𝜂-𝛼-monotone and 𝑟 > 0 and the property
of 𝐶, one has

𝑒 ⟨𝑧1 − 𝑧2, 𝑧2 − 𝑧1⟩ − 𝑒𝑟𝛼 (𝑧2 − 𝑧1) ∈ 𝐶. (37)

In (36) exchanging the position of 𝑧1 and 𝑧2, we get

𝑒

𝑟
⟨𝑧2 − 𝑧1, 𝑧1 − 𝑧2⟩ − 𝑒𝛼 (𝑧1 − 𝑧2) ∈ 𝐶, (38)

that is,

𝑒 ⟨𝑧2 − 𝑧1, 𝑧1 − 𝑧2⟩ − 𝑒𝑟𝛼 (𝑧1 − 𝑧2) ∈ 𝐶. (39)

Now, adding the inequalities (37) and (39),

𝑒 ⟨𝑧1 − 𝑧2, 𝑧2 − 𝑧1⟩ − 𝑒𝑟𝛼 (𝑧2 − 𝑧1)

+ 𝑒 ⟨𝑧2 − 𝑧1, 𝑧1 − 𝑧2⟩ − 𝑒𝑟𝛼 (𝑧1 − 𝑧2) ∈ 𝐶.

(40)

By using (iv), we have

2𝑒 ⟨𝑧2 − 𝑧1, 𝑧1 − 𝑧2⟩ ∈ 𝐶. (41)

If ⟨𝑧2 − 𝑧1, 𝑧1 − 𝑧2⟩ < 0, then

−2 ⟨𝑧2 − 𝑧1, 𝑧1 − 𝑧2⟩ > 0. (42)

This implies that

−2𝑒 ⟨𝑧2 − 𝑧1, 𝑧1 − 𝑧2⟩ ∈ 𝐶. (43)

From (41) and (43), we have 𝑧1 = 𝑧2 which is a contradiction.
Thus

⟨𝑧2 − 𝑧1, 𝑧1 − 𝑧2⟩ ≥ 0, (44)

so

−
𝑧1 − 𝑧2
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= ⟨𝑧1 − 𝑧2, 𝑧2 − 𝑧1⟩ ≥ 0. (45)

Hence 𝑧1 = 𝑧2. Therefore 𝐵𝑟 is single value.
(3) For any 𝑥1, 𝑥2 ∈ 𝐻, let 𝑧1 = 𝐵𝑟(𝑥1) and 𝑧2 = 𝐵𝑟(𝑥2).

Then

𝜑 (𝑧1, 𝑦) + 𝑒 ⟨𝑇𝑧1, 𝜂 (𝑦, 𝑧1)⟩

+
𝑒

𝑟
⟨𝑦 − 𝑧1, 𝑧1 − 𝑥1⟩ ∈ 𝐶, ∀𝑦 ∈ 𝑋,

(46)

𝜑 (𝑧2, 𝑦) + 𝑒 ⟨𝑇𝑧2, 𝜂 (𝑦, 𝑧2)⟩

+
𝑒

𝑟
⟨𝑦 − 𝑧2, 𝑧2 − 𝑥2⟩ ∈ 𝐶, ∀𝑦 ∈ 𝑋.

(47)

Letting 𝑦 = 𝑧2 in (46) and 𝑦 = 𝑧1 in (47), adding (46) and
(47), we have

𝜑 (𝑧1, 𝑧2) + 𝜑 (𝑧2, 𝑧1) + 𝑒 ⟨𝑇𝑧1, 𝜂 (𝑧2, 𝑧1)⟩

+ 𝑒 ⟨𝑇𝑧2, 𝜂 (𝑧1, 𝑧2)⟩

+
𝑒

𝑟
⟨𝑧2 − 𝑧1, 𝑧1 − 𝑧2 − (𝑥1 − 𝑥2)⟩ ∈ 𝐶.

(48)

Since 𝜑 is monotone and 𝐶 is closed convex cone, we get

⟨𝑇𝑧1 − 𝑇𝑧2, 𝜂 (𝑧2, 𝑧1)⟩

+
1

𝑟
⟨𝑧2 − 𝑧1, 𝑧1 − 𝑧2 − 𝑥1 + 𝑥2⟩ ≥ 0,

(49)

that is,
1

𝑟
⟨𝑧2 − 𝑧1, 𝑧1 − 𝑧2 − 𝑥1 + 𝑥2⟩

≥ ⟨𝑇𝑧2 − 𝑇𝑧1, 𝜂 (𝑧2, 𝑧1)⟩

≥ 𝛼 (𝑧2 − 𝑧1) .

(50)

In (50) exchanging the position of 𝑧1 and 𝑧2, we get

1

𝑟
⟨𝑧1 − 𝑧2, 𝑧2 − 𝑧1 − 𝑥2 + 𝑥1⟩

≥ 𝛼 (𝑧1 − 𝑧2) .

(51)

Adding the inequalities (50) and (51), we have

2 ⟨𝑧1 − 𝑧2, 𝑧2 − 𝑧1 − 𝑥2 + 𝑥1⟩

≥ 𝑟 (𝛼 (𝑧1 − 𝑧2) + 𝛼 (𝑧2 − 𝑧1)) .

(52)

It follows from (iv) that

⟨𝑧1 − 𝑧2, 𝑧2 − 𝑧1 − 𝑥2 + 𝑥1⟩ ≥ 0. (53)

This implies that
𝐵𝑟𝑥1 − 𝐵𝑟𝑥2
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≤ ⟨𝐵𝑟𝑥1 − 𝐵𝑟𝑥2, 𝑥1 − 𝑥2⟩ . (54)

This shows that 𝐵𝑟 is firmly nonexpansive.
(4) We claim that 𝐹(𝐵𝑟) = ASGVEPR(𝜑, 𝑇). Indeed, we

have the following:

𝑥 ∈ 𝐹 (𝐵𝑟) ⇐⇒ 𝑥 = 𝐵𝑟𝑥

⇐⇒ 𝜑 (𝑥, 𝑦) + 𝑒 ⟨𝑇𝑥, 𝜂 (𝑦, 𝑥)⟩

+
𝑒

𝑟
⟨𝑦 − 𝑥, 𝑥 − 𝑥⟩ ∈ 𝐶, ∀𝑦 ∈ 𝑋

⇐⇒ 𝜑 (𝑥, 𝑦) + 𝑒 ⟨𝑇𝑥, 𝜂 (𝑦, 𝑥)⟩ ∈ 𝐶, ∀𝑦 ∈ 𝑋

⇐⇒ 𝑥 ∈ ASGVEPR (𝜑, 𝑇) .
(55)

(5) Since every firmly nonexpansive mapping is non-
expansive, we see that 𝐵𝑟 is nonexpansive. Since the set of
fixed point of every nonexpansive mapping is closed and
convex, we have that ASGVEPR(𝜑, 𝑇) is closed and convex.
This completes the proof.
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4. Convergence Analysis

In this section, we prove a strong convergence theoremwhich
is one of our main results.

Theorem 7. Let 𝑋 be a nonempty, compact, convex subset of
a real Hilbert space 𝐻. Let 𝐶 be a closed, convex cone of a
real Hausdorff topological vector space 𝑌 and 𝑒 ∈ 𝐶 \ {0}.
Let 𝜑 : 𝑋 × 𝑋 → 𝑌 satisfy (𝐴1)–(𝐴6). Let 𝑇 : 𝑋 → 𝐻 be
an 𝜂-hemicontinuous and relaxed 𝜂-𝛼-monotone mapping. Let
𝐴 : 𝑋 → 𝐻 be a 𝜆-inverse-strongly monotone mapping, and
let {𝑆𝑛}

∞

𝑛=1
be a countable family of nonexpansive mappings

from𝑋 onto itself such that

𝐹 := ∩
∞

𝑛=1
𝐹𝑖𝑥 (𝑆𝑛) ∩ SGVEPR (𝜑, 𝑇) ̸= 0. (56)

Assume that the conditions (i)-(ii) of Theorem 6 are satisfied.
Put 𝛼0 = 1 and assume that {𝛼𝑛}

∞

𝑛=1
⊂ (0, 1) is a strictly

decreasing sequence. Assume that {𝛽𝑛}
∞

𝑛=1
⊂ (𝑐, 𝑑) with some

𝑐, 𝑑 ∈ (0, 1) and {𝜆𝑛}
∞

𝑛=1
⊂ [𝑎, 𝑏] with some 𝑎, 𝑏 ∈ (0, 2𝜆).

Then, for any 𝑥1 ∈ 𝑋, the sequence {𝑥𝑛}, generated by

𝜑 (𝑢𝑛, 𝑦) + 𝑒 ⟨𝑇𝑢𝑛, 𝜂 (𝑦, 𝑢𝑛)⟩ + 𝑒 ⟨𝐴𝑥𝑛, 𝑦 − 𝑢𝑛⟩

+
𝑒

𝜆𝑛

⟨𝑦 − 𝑢𝑛, 𝑢𝑛 − 𝑥𝑛⟩ ∈ 𝐶, ∀𝑦 ∈ 𝑋,

𝑦𝑛 = 𝛼𝑛𝑥𝑛 +

𝑛

∑

𝑖=1

(𝛼𝑖−1 − 𝛼𝑖) 𝛽𝑛𝑆𝑖𝑥𝑛

+ (1 − 𝛼𝑛) (1 − 𝛽𝑛) 𝑢𝑛,

𝐶𝑛 = {𝑧 ∈ 𝑋 :
𝑦𝑛 − 𝑧

 ≤
𝑥𝑛 − 𝑧

} ,

𝐷𝑛 = ∩
𝑛

𝑗=1
𝐶𝑗,

𝑥𝑛+1 = 𝑃𝐷
𝑛

𝑥1, 𝑛 ≥ 1,

(57)

converges strongly to 𝑥∗ ∈ 𝑃𝐹𝑥1. In particular, if 𝑋 contains
the origin 0 and taking 𝑥1 = 0, then the sequence {𝑥𝑛}
generated by (57) converges strongly to the minimum norm
element in 𝐹, that is 𝑥∗ = 𝑃𝐹0.

Proof. We divide the proof into several steps.

Step 1.Wewill show that 𝐹 is closed and convex, the sequence
{𝑥𝑛} generated by (57) is well defined, and 𝐹 ⊂ 𝐷𝑛, for all 𝑛 ≥
1.

First, we prove that 𝐹 is closed and convex. It suffices to
prove that SGVEPR(𝜑, 𝑇) is closed and convex. Indeed, it is
easy to prove the conclusion by the following fact:

∀𝑝 ∈ SGVEPR (𝜑, 𝑇) ⇐⇒ 𝜑 (𝑝, 𝑦) + 𝑒 ⟨𝑇𝑝, 𝜂 (𝑦, 𝑝)⟩

+
𝑒

𝜆𝑛

⟨𝑦 − 𝑝, 𝜆𝑛𝐴𝑝⟩ ∈ 𝐶

∀𝑦 ∈ 𝑋

⇐⇒ 𝜑(𝑝, 𝑦) + 𝑒 ⟨𝑇𝑝, 𝜂 (𝑦, 𝑝)⟩ +
𝑒

𝜆𝑛

× ⟨𝑦 − 𝑝, 𝑝 − (𝑝 − 𝜆𝑛𝐴𝑝)⟩ ∈ 𝐶

∀𝑦 ∈ 𝑋

⇐⇒ 𝑝 = 𝐵𝜆
𝑛

(𝐼 − 𝜆𝑛𝐴)𝑝.

(58)

This implies that

SGVEPR (𝜑, 𝑇) = Fix [𝐵𝜆
𝑛

(𝐼 − 𝜆𝑛𝐴)] . (59)

Since 𝐵𝜆
𝑛

(𝐼 − 𝜆𝑛𝐴) is a nonexpansive mapping for 𝜆𝑛 <

2𝜆 and the set of fixed points of a nonexpansive mapping is
closed and convex, we have that SGVEPR(𝜑, 𝑇) is closed and
convex.

Next, we prove that the sequence {𝑥𝑛} generated by (57)
is well defined and 𝐹 ⊂ 𝐷𝑛 for all 𝑛 ≥ 1. ByDefinition of 𝐶𝑛,
for all 𝑧 ∈ 𝑋, the inequality

𝑦𝑛 − 𝑧
 ≤

𝑥𝑛 − 𝑧
 (60)

is equivalent to

⟨𝑦𝑛 − 𝑥𝑛, 𝑦𝑛 + 𝑥𝑛⟩ − 2 ⟨𝑦𝑛 − 𝑥𝑛, 𝑧⟩ ≤ 0. (61)

It is easy to see that 𝐶𝑛 is closed and convex for all 𝑛 ∈ N.
Hence 𝐷𝑛 is closed and convex for all 𝑛 ∈ N. For any 𝑝 ∈ 𝐹,
and since 𝑢𝑛 = 𝐵𝜆

𝑛

(𝑥𝑛−𝜆𝑛𝐴𝑥𝑛) and 𝐼−𝜆𝑛𝐴 is nonexpansive,
we have

𝑦𝑛 − 𝑝
 =



𝛼𝑛 (𝑥𝑛 − 𝑝) +

𝑛

∑

𝑖=1

(𝛼𝑖−1 − 𝛼𝑖) 𝛽𝑛 (𝑆𝑖𝑥𝑛 − 𝑝)

+ (1 − 𝛼𝑛) (1 − 𝛽𝑛) (𝑢𝑛 − 𝑝)



≤ 𝛼𝑛
𝑥𝑛 − 𝑝

 +

𝑛

∑

𝑖=1

(𝛼𝑖−1 − 𝛼𝑖) 𝛽𝑛
𝑆𝑖𝑥𝑛 − 𝑝



+ (1 − 𝛼𝑛) (1 − 𝛽𝑛)
𝑢𝑛 − 𝑝



≤ 𝛼𝑛
𝑥𝑛 − 𝑝

 +

𝑛

∑

𝑖=1

(𝛼𝑖−1 − 𝛼𝑖) 𝛽𝑛
𝑥𝑛 − 𝑝



+ (1 − 𝛼𝑛) (1 − 𝛽𝑛)

×

𝐵𝜆
𝑛

(𝑥𝑛 − 𝜆𝑛𝐴𝑥𝑛) − 𝐵𝜆
𝑛

(𝑝 − 𝜆𝑛𝐴𝑝)


≤ 𝛼𝑛
𝑥𝑛 − 𝑝

 + (1 − 𝛼𝑛) 𝛽𝑛
𝑥𝑛 − 𝑝



+ (1 − 𝛼𝑛) (1 − 𝛽𝑛)

×
(𝑥𝑛 − 𝜆𝑛𝐴𝑥𝑛) − (𝑝 − 𝜆𝑛𝐴𝑝)



≤ 𝛼𝑛
𝑥𝑛 − 𝑝

 + (1 − 𝛼𝑛) 𝛽𝑛
𝑥𝑛 − 𝑝



+ (1 − 𝛼𝑛) (1 − 𝛽𝑛)
𝑥𝑛 − 𝑝



=
𝑥𝑛 − 𝑝

 .

(62)
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This implies that 𝐹 ⊂ 𝐶𝑛 for all 𝑛 ∈ N. Hence 𝐹 ⊂ ∩
𝑛

𝑗=1
𝐶𝑗.

That is

𝐹 ⊂ 𝐷𝑛, ∀𝑛 ∈ N. (63)

Since 𝐷𝑛 is nonempty closed convex, we get that the se-
quence {𝑥𝑛} is well defined. This completes the proof of Step
1.

Step 2. We shall show that ‖𝑥𝑛+1 − 𝑥𝑛‖ → 0 as 𝑛 → ∞ and
there is 𝑥∗ ∈ 𝐶 such that lim𝑛→∞‖𝑥𝑛 − 𝑥

∗
‖ = 0.

It easy to see that 𝐷𝑛+1 ⊂ 𝐷𝑛 for all 𝑛 ∈ N from the
construction of 𝐷𝑛. Hence

𝑥𝑛+2 = 𝑃𝐷
𝑛+1

𝑥1 ∈ 𝐷𝑛+1 ⊂ 𝐷𝑛. (64)

Since 𝑥𝑛+1 = 𝑃𝐷
𝑛

𝑥1, we have
𝑥𝑛+1 − 𝑥1

 ≤
𝑥𝑛+2 − 𝑥1

 , (65)

for all 𝑛 ≥ 1. This implies that {‖𝑥𝑛 − 𝑥1‖} is increasing. Note
that 𝐶 is bounded, we get that {‖𝑥𝑛 − 𝑥1‖} is bounded. This
shows that lim𝑛→∞‖𝑥𝑛 − 𝑥1‖ exists.

Since 𝑥𝑛+1 = 𝑃𝐷
𝑛

𝑥1 and 𝑥𝑚+1 = 𝑃𝐷
𝑚

𝑥1 ∈ 𝐷𝑚 ⊂ 𝐷𝑛 for all
𝑚 ≥ 𝑛, we have

⟨𝑥𝑛+1 − 𝑥1, 𝑥𝑚+1 − 𝑥𝑛+1⟩ ≥ 0. (66)

It follows from (66) that
𝑥𝑚+1 − 𝑥𝑛+1



2

=
𝑥𝑚+1 − 𝑥1 − (𝑥𝑛+1 − 𝑥1)



2

=
𝑥𝑚+1 − 𝑥1



2
+
𝑥𝑛+1 − 𝑥1



2

− 2 ⟨𝑥𝑚+1 − 𝑥1, 𝑥𝑛+1 − 𝑥1⟩

=
𝑥𝑚+1 − 𝑥1



2
+
𝑥𝑛+1 − 𝑥1



2

− 2 ⟨𝑥𝑛+1 − 𝑥1, 𝑥𝑚+1 − 𝑥𝑛+1 + 𝑥𝑛+1 − 𝑥1⟩

=
𝑥𝑚+1 − 𝑥1



2
+
𝑥𝑛+1 − 𝑥1



2

− 2 ⟨𝑥𝑛+1 − 𝑥1, 𝑥𝑚+1 − 𝑥𝑛+1⟩

≤
𝑥𝑚+1 − 𝑥1



2
−
𝑥𝑛+1 − 𝑥1



2
.

(67)

By taking 𝑚 = 𝑛 + 1 in (67), we have

𝑥𝑛+2 − 𝑥𝑛+1


2
≤
𝑥𝑛+2 − 𝑥1



2
−
𝑥𝑛+1 − 𝑥1



2
. (68)

Since the limits of ‖ 𝑥𝑛 − 𝑥1 ‖ exist, we get that
𝑥𝑛+2 − 𝑥𝑛+1

 → 0, as 𝑛 → ∞. (69)

This implies that

lim
𝑛→∞

𝑥𝑛+1 − 𝑥𝑛
 = 0. (70)

Moreover, from (67), we also have

lim
𝑚,𝑛→∞

𝑥𝑚+1 − 𝑥𝑛+1
 = 0. (71)

This shows that the sequence {𝑥𝑛} is a Cauchy sequence.
Hence there is 𝑥∗ ∈ 𝐶 such that

𝑥𝑛 → 𝑥
∗
∈ 𝐶, as 𝑛 → ∞. (72)

Step 3. We shall show that ‖𝑥𝑛 − 𝑢𝑛‖ → 0 as 𝑛 → ∞.

Since 𝑥𝑛+1 ∈ 𝐶𝑛 and lim𝑛→∞ ‖ 𝑥𝑛 − 𝑥𝑛+1 ‖= 0, we have
𝑦 − 𝑥𝑛+1

 ≤
𝑥𝑛 − 𝑥𝑛+1

 → 0 as 𝑛 → ∞, (73)

and hence
𝑦𝑛 − 𝑥𝑛

 ≤
𝑦𝑛 − 𝑥𝑛+1

 +
𝑥𝑛 − 𝑥𝑛+1

 → 0 as 𝑛 → ∞.

(74)

Note that 𝑢𝑛 can be rewritten as 𝑢𝑛 = 𝐵𝜆
𝑛

(𝑥𝑛 − 𝜆𝑛𝐴𝑥𝑛) for
all 𝑛 ≥ 1. We take 𝑝 ∈ 𝐹 thus we have 𝑝 = 𝐵𝜆

𝑛

(𝑝 − 𝜆𝑛𝐴𝑝).
Since 𝐴 is 𝜆-inverse-strongly monotone, and 0 < 𝜆𝑛 < 2𝜆,
we know that, for all 𝑛 ∈ N,

𝑢𝑛 − 𝑝


2

=

𝐵𝜆
𝑛

(𝑥𝑛 − 𝜆𝑛𝐴𝑥𝑛) − 𝐵𝜆
𝑛

(𝑝 − 𝜆𝑛𝐴𝑝)


2

≤
𝑥𝑛 − 𝜆𝑛𝐴𝑥𝑛 − 𝑝 + 𝜆𝑛𝐴𝑝



2

=
(𝑥𝑛 − 𝑝) − 𝜆𝑛(𝐴𝑥𝑛 − 𝐴𝑝)



2

=
𝑥𝑛 − 𝑝



2
− 2𝜆𝑛 ⟨𝑥𝑛 − 𝑝, 𝐴𝑥𝑛 − 𝐴𝑝⟩

+ 𝜆
2

𝑛

𝐴𝑥𝑛 − 𝐴𝑝


2

≤
𝑥𝑛 − 𝑝



2
− 2𝜆𝑛𝜆

𝐴𝑥𝑛 − 𝐴𝑝


2

+ 𝜆
2

𝑛

𝐴𝑥𝑛 − 𝐴𝑝


2

=
𝑥𝑛 − 𝑝



2
+ 𝜆𝑛 (𝜆𝑛 − 2𝜆)

𝐴𝑥𝑛 − 𝐴𝑝


2

≤
𝑥𝑛 − 𝑝



2
.

(75)

Using (57) and (75), we have

𝑦𝑛 − 𝑝


2

=



𝛼𝑛 (𝑥𝑛 − 𝑝)

+

𝑛

∑

𝑖=1

(𝛼𝑖−1 − 𝛼𝑖) 𝛽𝑛 (𝑆𝑖𝑥𝑛 − 𝑝)

+ (1 − 𝛼𝑛) (1 − 𝛽𝑛) (𝑢𝑛 − 𝑝)



2

≤ 𝛼𝑛
𝑥𝑛 − 𝑝



2

+

𝑛

∑

𝑖=1

(𝛼𝑖−1 − 𝛼𝑖) 𝛽𝑛
𝑆𝑖𝑥𝑛 − 𝑝



2

+ (1 − 𝛼𝑛) (1 − 𝛽𝑛)
𝑢𝑛 − 𝑝



2
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≤ 𝛼𝑛
𝑥𝑛 − 𝑝



2
+

𝑛

∑

𝑖=1

(𝛼𝑖−1 − 𝛼𝑖) 𝛽𝑛
𝑥𝑛 − 𝑝



2

+ (1 − 𝛼𝑛) (1 − 𝛽𝑛)

× (
𝑥𝑛 − 𝑝



2
+ 𝜆𝑛 (𝜆𝑛 − 2𝜆)

𝐴𝑥𝑛 − 𝐴𝑝


2
)

=
𝑥𝑛 − 𝑝



2
+ (1 − 𝛼𝑛)

× (1 − 𝛽𝑛) 𝜆𝑛 (𝜆𝑛 − 2𝜆)
𝐴𝑥𝑛 − 𝐴𝑝



2
,

(76)

and hence

(1 − 𝛼𝑛) (1 − 𝑑) 𝑎 (2𝜆 − 𝑏)
𝐴𝑥𝑛 − 𝐴𝑝



2

≤ (1 − 𝛼𝑛) (1 − 𝛽𝑛) 𝜆𝑛 (2𝜆 − 𝜆𝑛)
𝐴𝑥𝑛 − 𝐴𝑝



2

≤
𝑥𝑛 − 𝑝



2
−
𝑦𝑛 − 𝑝



2

≤
𝑥𝑛 − 𝑦𝑛

 (
𝑥𝑛 − 𝑝

 +
𝑦𝑛 − 𝑝

) .

(77)

Note that {𝑥𝑛} and {𝑦𝑛} are bounded, 𝛼𝑛 → 0, and 𝑥𝑛 −
𝑦𝑛 converges to 0, we get that

lim
𝑛→∞

𝐴𝑥𝑛 − 𝐴𝑝
 → 0. (78)

UsingTheorem 6, we have

𝑢𝑛 − 𝑝


2

=

𝐵𝜆
𝑛

(𝑥𝑛 − 𝜆𝑛𝐴𝑥𝑛) − 𝐵𝜆
𝑛

(𝑝 − 𝜆𝑛𝐴𝑝)


2

≤ ⟨𝑥𝑛 − 𝜆𝑛𝐴𝑥𝑛 − (𝑝 − 𝜆𝑛𝐴𝑝) , 𝑢𝑛 − 𝑝⟩

=
1

2
(
𝑥𝑛 − 𝜆𝑛𝐴𝑥𝑛 − (𝑝 − 𝜆𝑛𝐴𝑝)



2
+
𝑢𝑛 − 𝑝



2

−
𝑥𝑛 − 𝜆𝑛𝐴𝑥𝑛 − (𝑝 − 𝜆𝑛𝐴𝑝) − (𝑢𝑛 − 𝑝)



2
)

≤
1

2
(
𝑥𝑛 − 𝑝



2
+
𝑢𝑛 − 𝑝



2

−
𝑥𝑛 − 𝑢𝑛 − 𝜆𝑛 (𝐴𝑥𝑛 − 𝐴𝑝)



2
)

=
1

2
(
𝑥𝑛 − 𝑝



2
+
𝑢𝑛 − 𝑝



2
−
𝑥𝑛 − 𝑢𝑛



2

+2𝜆𝑛⟨𝑥𝑛 − 𝑢𝑛, 𝐴𝑥𝑛 − 𝐴𝑝⟩ − 𝜆
2

𝑛

𝐴𝑥𝑛 − 𝐴𝑝


2
) .

(79)

This implies that

𝑢𝑛 − 𝑝


2

≤
𝑥𝑛 − 𝑝



2
−
𝑥𝑛 − 𝑢𝑛



2

+ 2𝜆𝑛⟨𝑥𝑛 − 𝑢𝑛, 𝐴𝑥𝑛 − 𝐴𝑝⟩ − 𝜆
2

𝑛

𝐴𝑥𝑛 − 𝐴𝑝


2
.

(80)

From (80), we have
𝑦𝑛 − 𝑝



2

=



𝛼𝑛 (𝑥𝑛 − 𝑝) +

𝑛

∑

𝑖=1

(𝛼𝑖−1 − 𝛼𝑖) 𝛽𝑛 (𝑆𝑖𝑥𝑛 − 𝑝)

+ (1 − 𝛼𝑛)(1 − 𝛽𝑛)(𝑢𝑛 − 𝑝)



2

≤ 𝛼𝑛
𝑥𝑛 − 𝑝



2
+

𝑛

∑

𝑖=1

(𝛼𝑖−1 − 𝛼𝑖) 𝛽𝑛
𝑆𝑖𝑥𝑛 − 𝑝



2

+ (1 − 𝛼𝑛) (1 − 𝛽𝑛)
𝑢𝑛 − 𝑝



2

≤ 𝛼𝑛
𝑥𝑛 − 𝑝



2
+ (1 − 𝛼𝑛) 𝛽𝑛

𝑥𝑛 − 𝑝


2

+ (1 − 𝛼𝑛) (1 − 𝛽𝑛)

× (
𝑥𝑛 − 𝑝



2
−
𝑥𝑛 − 𝑢𝑛



2

+2𝜆𝑛⟨𝑥𝑛 − 𝑢𝑛, 𝐴𝑥𝑛 − 𝐴𝑝⟩ − 𝜆
2

𝑛

𝐴𝑥𝑛 − 𝐴𝑝


2
)

≤
𝑥𝑛 − 𝑝



2
− (1 − 𝛼𝑛) (1 − 𝛽𝑛)

𝑥𝑛 − 𝑢𝑛


2

+ 2 (1 − 𝛼𝑛) (1 − 𝛽𝑛) 𝜆𝑛 ⟨𝑥𝑛 − 𝑢𝑛, 𝐴𝑥𝑛 − 𝐴𝑝⟩ ,

(81)

and hence

(1 − 𝑑) (1 − 𝛼𝑛)
𝑥𝑛 − 𝑢𝑛



2

≤ (1 − 𝛽𝑛) (1 − 𝛼𝑛)
𝑥𝑛 − 𝑢𝑛



2

≤
𝑥𝑛 − 𝑦𝑛

 (
𝑥𝑛 − 𝑝

 +
𝑦𝑛 − 𝑝

)

+ 2 (1 − 𝛼𝑛) (1 − 𝛽𝑛) 𝜆𝑛

×
𝑥𝑛 − 𝑢𝑛




𝐴𝑥𝑛 − 𝐴𝑝


.

(82)

From (78) and lim𝑛→∞‖𝑥𝑛 − 𝑦𝑛‖ = 0, we have

lim
𝑛→∞

𝑥𝑛 − 𝑢𝑛
 = 0. (83)

Step 4. We show that lim𝑛→∞‖𝑥𝑛 − 𝑆𝑖𝑥𝑛‖ = 0, for all 𝑖 =
0, 1, . . ..

It follows from definition of scheme (57) that

𝑦𝑛 +

𝑛

∑

𝑖=1

(𝛼𝑖−1 − 𝛼𝑖) 𝛽𝑛 (𝑥𝑛 − 𝑆𝑖𝑥𝑛) − (1 − 𝛼𝑛) 𝛽𝑛𝑥𝑛

= 𝛼𝑛𝑥𝑛 + (1 − 𝛼𝑛) (1 − 𝛽𝑛) 𝑢𝑛,

(84)

that is,
𝑛

∑

𝑖=1

(𝛼𝑖−1 − 𝛼𝑖) 𝛽𝑛 (𝑥𝑛 − 𝑆𝑖𝑥𝑛)

= 𝑥𝑛 − 𝑦𝑛 − 𝑥𝑛 + 𝛼𝑛𝑥𝑛 + (1 − 𝛼𝑛) 𝛽𝑛𝑥𝑛

+ (1 − 𝛼𝑛) (1 − 𝛽𝑛) 𝑢𝑛
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= 𝑥𝑛 − 𝑦𝑛 + (1 − 𝛼𝑛) (𝛽𝑛 − 1) 𝑥𝑛

+ (1 − 𝛼𝑛) (1 − 𝛽𝑛) 𝑢𝑛

= 𝑥𝑛 − 𝑦𝑛 + (1 − 𝛼𝑛) (1 − 𝛽𝑛) (𝑢𝑛 − 𝑥𝑛) .

(85)

Hence, for any 𝑝 ∈ 𝐹, one has
𝑛

∑

𝑖=1

(𝛼𝑖−1 − 𝛼𝑖) 𝛽𝑛 ⟨𝑥𝑛 − 𝑆𝑖𝑥𝑛, 𝑥𝑛 − 𝑝⟩

= (1 − 𝛼𝑛) (1 − 𝛽𝑛) ⟨𝑢𝑛 − 𝑥𝑛, 𝑥𝑛 − 𝑝⟩

(86)

+ ⟨𝑥𝑛 − 𝑦𝑛, 𝑥𝑛 − 𝑝⟩ . (87)

Since each 𝑆𝑖 is nonexpansive and by (36) we get that
𝑆𝑖𝑥𝑛 − 𝑥𝑛



2
≤ ⟨𝑥𝑛 − 𝑆𝑖𝑥𝑛, 𝑥𝑛 − 𝑝⟩ . (88)

Hence, combining this inequality with (86), we have

1

2

𝑛

∑

𝑖=1

(𝛼𝑖−1 − 𝛼𝑖) 𝛽𝑛
𝑆𝑖𝑥𝑛 − 𝑥𝑛



2

≤ (1 − 𝛼𝑛) (1 − 𝛽𝑛) ⟨𝑢𝑛 − 𝑥𝑛, 𝑥𝑛 − 𝑝⟩

+ ⟨𝑥𝑛 − 𝑦𝑛, 𝑥𝑛 − 𝑝⟩ ,

(89)

that is,

𝑆𝑖𝑥𝑛 − 𝑥𝑛


2
≤
2 (1 − 𝛼𝑛) (1 − 𝛽𝑛)

(𝛼𝑖−1 − 𝛼𝑖) 𝛽𝑛

⟨𝑢𝑛 − 𝑥𝑛, 𝑥𝑛 − 𝑝⟩

+
2

(𝛼𝑖−1 − 𝛼𝑖) 𝛽𝑛

⟨𝑥𝑛 − 𝑦𝑛, 𝑥𝑛 − 𝑝⟩

≤
2 (1 − 𝛼𝑛) (1 − 𝛽𝑛)

(𝛼𝑖−1 − 𝛼𝑖) 𝛽𝑛

𝑢𝑛 − 𝑥𝑛


𝑥𝑛 − 𝑝


+
2

(𝛼𝑖−1 − 𝛼𝑖) 𝛽𝑛

𝑥𝑛 − 𝑦𝑛


𝑥𝑛 − 𝑝
 .

(90)

Since ‖𝑢𝑛 − 𝑥𝑛‖ → 0 and ‖𝑥𝑛 − 𝑦𝑛‖ → 0, we have

lim
𝑛→∞

𝑆𝑖𝑥𝑛 − 𝑥𝑛
 = 0, ∀𝑖 = 1, 2, . . . . (91)

Step 5. We show that 𝑥𝑛 → 𝑥
∗
= 𝑃𝐹𝑥1.

First, we show that 𝑥∗ ∈ ∩∞
𝑖=1

Fix(𝑆𝑖). Since

lim
𝑛→∞

𝑥𝑛 = 𝑥
∗
, lim

𝑛→∞

𝑆𝑖𝑥𝑛 − 𝑥𝑛
 = 0, (92)

we have

𝑥
∗
∈ Fix (𝑆𝑖) for each 𝑖 = 1, 2, . . . . (93)

Hence 𝑥
∗

∈ ∩
∞

𝑖=1
Fix(𝑆𝑖). Next, we show that 𝑥∗ ∈

SGVEPR(𝜑, 𝑇). Noting that 𝑢𝑛 = 𝐵𝜆
𝑛

(𝑥𝑛 − 𝜆𝑛𝐴𝑥𝑛), one
obtains

𝜑 (𝑢𝑛, 𝑦) + 𝑒 ⟨𝑇𝑢𝑛, 𝜂 (𝑦, 𝑢𝑛)⟩

+ 𝑒 ⟨𝐴𝑥𝑛, 𝑦 − 𝑢𝑛⟩ +
𝑒

𝜆𝑛

⟨𝑦 − 𝑢𝑛, 𝑢𝑛 − 𝑥𝑛⟩ ∈ 𝐶,

∀𝑦 ∈ 𝑋,

(94)

which implies that

0 ∈ 𝜑 (𝑦, 𝑢𝑛) − {𝑒 ⟨𝑇𝑢𝑛, 𝜂 (𝑦, 𝑢𝑛)⟩

+ 𝑒 ⟨𝐴𝑥𝑛, 𝑦 − 𝑢𝑛⟩

+
𝑒

𝜆𝑛

⟨𝑦 − 𝑢𝑛, 𝑢𝑛 − 𝑥𝑛} + 𝐶,

∀𝑦 ∈ 𝑋.

(95)

Put V𝑡 = 𝑡𝑦 + (1 − 𝑡)𝑥
∗, for all 𝑡 ∈ (0, 1) and 𝑦 ∈ 𝑋. Then, we

have V𝑡 ∈ 𝑋. So, from (95), we have

𝑒 ⟨V𝑡 − 𝑢𝑛, 𝐴V𝑡⟩

∈ 𝑒 ⟨V𝑡 − 𝑢𝑛, 𝐴V𝑡⟩

− 𝑒 ⟨V𝑡 − 𝑢𝑛, 𝐴𝑥𝑛⟩ − 𝑒⟨V𝑡 − 𝑢𝑛,
𝑢𝑛 − 𝑥𝑛

𝜆𝑛

⟩

+ 𝜑 (V𝑡, 𝑢𝑛) + 𝑒 ⟨𝑇𝑢𝑛, 𝜂 (𝑢𝑛, V𝑡)⟩ + 𝐶.

= 𝑒 ⟨V𝑡 − 𝑢𝑛, 𝐴V𝑡 − 𝐴𝑢𝑛⟩

+ 𝑒 ⟨V𝑡 − 𝑢𝑛, 𝐴𝑢𝑛 − 𝐴𝑥𝑛⟩

− 𝑒⟨V𝑡 − 𝑢𝑛,
𝑢𝑛 − 𝑥𝑛

𝜆𝑛

⟩ + 𝜑 (V𝑡, 𝑢𝑛)

+ 𝑒 ⟨𝑇𝑢𝑛, 𝜂 (𝑢𝑛, V𝑡)⟩ + 𝐶.

(96)

Since ‖𝑥𝑛 − 𝑢𝑛‖ → 0 and the properties of 𝑇, we have
𝐴𝑢𝑛 − 𝐴𝑥𝑛

 → 0,

𝑢𝑛 − 𝑥𝑛

𝜆𝑛

→ 0,

⟨V𝑡 − 𝑢𝑛, 𝐴𝑢𝑛 − 𝐴𝑥𝑛⟩ → 0.

(97)

From the monotonicity of 𝐴, we have

⟨V𝑡 − 𝑢𝑛, 𝐴V𝑡 − 𝐴𝑢𝑛⟩ ≥ 0. (98)

Thus

𝑒 ⟨V𝑡 − 𝑢𝑛, 𝐴V𝑡 − 𝐴𝑢𝑛⟩ ∈ 𝐶. (99)

So, from (96)–(99) and 𝜂-hemicontinuity of 𝑇, we have

𝑒 ⟨V𝑡 − 𝑥
∗
, 𝐴V𝑡⟩ ∈ 𝜑 (V𝑡, 𝑥

∗
) + 𝑒 ⟨𝑇𝑥

∗
, 𝜂 (𝑥
∗
, V𝑡)⟩ + 𝐶.

(100)

Since 𝜑 is 𝐶-convex, we have

𝑡𝜑 (V𝑡, 𝑦) + (1 − 𝑡) 𝜑 (V𝑡, 𝑥
∗
) ∈ 𝜑 (V𝑡, V𝑡) + 𝐶. (101)

Since for any 𝑢, V ∈ 𝑋, and the mapping 𝑥 → ⟨𝑇V, 𝜂(𝑥, 𝑢)⟩ is
convex, we have

⟨𝑇𝑥
∗
, 𝜂 (V𝑡, V𝑡)⟩ ≤ 𝑡 ⟨𝑇𝑥

∗
, 𝜂 (𝑦, V𝑡)⟩

+ (1 − 𝑡) ⟨𝑇𝑥
∗
, 𝜂 (𝑥
∗
, V𝑡)⟩ .

(102)
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This implies that

𝑒𝑡⟨𝑇𝑥
∗
, 𝜂 (𝑦, V𝑡)⟩ + 𝑒 (1 − 𝑡) ⟨𝑇𝑥

∗
, 𝜂 (𝑥
∗
, V𝑡)⟩

∈ 𝑒⟨𝑇𝑥
∗
, 𝜂 (V𝑡, V𝑡)⟩ + 𝐶.

(103)

From (101) and (103), we get that

𝑡𝜑 (V𝑡, 𝑦) + (1 − 𝑡) 𝜑 (V𝑡, 𝑥
∗
)

+ 𝑒𝑡⟨𝑇𝑥
∗
, 𝜂 (𝑦, V𝑡)⟩ + 𝑒 (1 − 𝑡) ⟨𝑇𝑥

∗
, 𝜂 (𝑥
∗
, V𝑡)⟩

∈ 𝑒⟨𝑇𝑥
∗
, 𝜂 (V𝑡, V𝑡)⟩ + 𝜑 (V𝑡, V𝑡) + 𝐶 = 𝐶,

(104)

which implies that

− 𝑡 (𝜑 (V𝑡, 𝑦) + 𝑒⟨𝑇𝑥
∗
, 𝜂 (𝑦, V𝑡)⟩)

− (1 − 𝑡) (𝜑 (V𝑡, 𝑥
∗
) + 𝑒⟨𝑇𝑥

∗
, 𝜂 (𝑥
∗
, V𝑡)⟩) ∈ −𝐶.

(105)

From (100) and (105), we have

− 𝑡 (𝜑 (V𝑡, 𝑦) + 𝑒⟨𝑇𝑥
∗
, 𝜂 (𝑦, V𝑡)⟩)

∈ (1 − 𝑡) (𝜑 (V𝑡, 𝑥
∗
) + 𝑒⟨𝑇𝑥

∗
, 𝜂 (𝑥
∗
, V𝑡)⟩) − 𝐶

∈ (1 − 𝑡) 𝑒⟨V𝑡 − 𝑥
∗
, 𝐴V𝑡⟩ − 𝐶.

(106)

This implies that

− 𝑡 (𝜑 (V𝑡, 𝑦) + 𝑒⟨𝑇𝑥
∗
, 𝜂 (𝑦, V𝑡)⟩)

− 𝑒 (1 − 𝑡) 𝑡⟨𝑦 − 𝑥
∗
, 𝐴V𝑡⟩ ∈ −𝐶.

(107)

It follows that
(𝜑 (V𝑡, 𝑦) + 𝑒⟨𝑇𝑥

∗
, 𝜂 (𝑦, V𝑡)⟩)

+ 𝑒 (1 − 𝑡) ⟨𝑦 − 𝑥
∗
, 𝐴V𝑡⟩ ∈ 𝐶.

(108)

As 𝑡 → 0, we obtain that for each 𝑦 ∈ 𝑋,

(𝜑 (𝑥
∗
, 𝑦) + 𝑒⟨𝑇𝑥

∗
, 𝜂 (𝑦, 𝑥

∗
)⟩)

+ 𝑒 (1 − 𝑡) ⟨𝑦 − 𝑥
∗
, 𝐴𝑥
∗
⟩ ∈ 𝐶.

(109)

Hence 𝑥∗ ∈ SGVEPR(𝜑, 𝑇). Finally, we prove that 𝑥∗ = 𝑃𝐹𝑥.
From 𝑥𝑛+1 = 𝑃𝐷

𝑛

𝑥 and 𝐹 ⊂ 𝐷𝑛, we have

⟨𝑥 − 𝑥𝑛+1, 𝑥𝑛+1 − V⟩ ≥ 0, ∀V ∈ 𝐹. (110)

Note that lim𝑛→∞𝑥𝑛 = 𝑥
∗; we take the limit in (110), and then

we have

⟨𝑥 − 𝑥
∗
, 𝑥
∗
− V⟩ ≥ 0, ∀V ∈ 𝐹. (111)

We see that 𝑥∗ = 𝑃𝐹𝑥 by (33). This completes the proof.

Remark 8. If 𝑌 = R, 𝐶 = R+, and 𝑒 = 1, then Theorem 7
extends and improves Theorem 3.1 of Wang et al. [9].
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