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Approximate calculation of channel log-likelihood ratio (LLR) for wireless channels using Padé approximation is presented. LLR
is used as an input of iterative decoding for powerful error-correcting codes such as low-density parity-check (LDPC) codes or
turbo codes. Due to the lack of knowledge of the channel state information of a wireless fading channel, such as uncorrelated fiat
Rayleigh fading channels, calculations of exact LLR for these channels are quite complicated for a practical implementation. The
previous work, an LLR calculation using the Taylor approximation, quickly becomes inaccurate as the channel output leaves some
derivative point.This becomes a big problemwhen higher order modulation scheme is employed. To overcome this problem, a new
LLR approximation using Padé approximation, which expresses the original function by a rational form of two polynomials with
the same total number of coefficients of the Taylor series and can accelerate the Taylor approximation, is devised. By applying the
proposed approximation to the iterative decoding and the LDPC codes with some modulation schemes, we show the effectiveness
of the proposed methods by simulation results and analysis based on the density evolution.

1. Introduction

In recent years, iterative decoding techniques based on
message passing algorithm such as turbo decoding [1] or
belief-propagation (BP) decoding [2–4] have been attracted
by their significant performance which attain close to the
Shannon limit. The BP decoding algorithm, a well-known
iterative decoding algorithm for LDPC codes [2, 3], has been
widely studied for the binary erasure channel or the additive
whiteGaussian noise (AWGN) channel [2–8].The algorithms
firstly derive channel log-likelihood ratios (LLR) where the
messages in the decoder are initialized to these LLR values.
To exhibit good performance with BP decoding, this channel
LLR should be obtained with high accuracy, but it becomes
complicated for some channel models such as wireless fading
channel [9].

In this study, we focus on a calculation of channel LLR
over the uncorrelated flat Rayleigh fading channels where the
discrete-time component transmitted signal is input to a
band-limited channel; that is, 𝑦

𝑡
= 𝑟
𝑡
𝑤
𝑡
+ 𝑧
𝑡
[10]. Here 𝑦

𝑡
, 𝑟
𝑡
,

𝑤
𝑡
, and 𝑧

𝑡
denote a channel output, a fading gain, a channel

input, and an additive white Gaussian noise (AWGN) 𝑧
𝑡
∼

N(0, 𝜎2) with variance 𝜎2 at time 𝑡, respectively. Hereinafter
we drop the subscript 𝑡. If 𝑟 at each received bit position
is known to the receiver, we call this case known channel
state information (CSI). If 𝑟 at each received bit position is
unknown to the receiver, we call this case unknown CSI. For a
known CSI case, channel LLR ℓ can be easily calculated using
the channel outputs 𝑦, 𝜎2, and 𝑟. However, for an unknown
CSI case which is more practical than known CSI and is our
main interest, a calculation of the channel LLR ℓ is rather
complex due to an integration of 𝑟.

The studies of wireless fading channels with the LDPC
codes or turbo codes were presented in [11–20] with several
modulation schemes [9, 10, 21] such as binary modulation
(binary phase shift keying (BPSK)) or nonbinary modula-
tions. In [14] for BPSK, Hou et al. have studied designing
irregular LDPC codes [6] using density evolution [7, 8] and
have shown that these codes can approach the Shannon limit.
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But they have used the following simple linear approximation
ℓ̂ex for a calculation of the channel LLR:

ℓ̂ex =
2

𝜎2
⋅ 𝐸 (𝑟) ⋅ 𝑦, (1)

where 𝐸(𝑟) denotes the expectation of the channel gain 𝑟.
Although the previous approximation is simple and is easy to
implement, it is inaccurate that degradation in the decoding
performance compared with the true LLR [19] can be seen.
Yazdani and Ardakani [19, 20] have also proposed a linear
LLR approximation whose performance is almost identical to
the true LLR:

ℓ̂opt = �̂�𝑦, (2)

where �̂� is obtained by maximizing

�̂� = argmax
𝛼
(1 − ∫

∞

−∞

log
2
(1 + exp (−ℓ)) 𝑓

𝛼
(ℓ) 𝑑ℓ ) . (3)

Here 𝑓
𝛼
(ℓ) is given by

𝑓
𝛼
(ℓ)

=
√2Δ
2

√𝜋𝛼𝜎
exp(−(Δℓ

𝛼𝜎
)

2

)

× [exp(−( Δℓ

√2𝛼𝜎2
)

2

) +
Δ√𝜋ℓ

√2𝛼𝜎2
⋅ erfc(− Δℓ

√2𝛼𝜎2
)] ,

(4)

where Δ = √𝜎2/(2𝜎2 + 1) and erfc(⋅) denotes the comple-
mentary error function [9]. However, an optimization of �̂�
using (3) and (4) requires for each channel parameter 𝜎, so
that it needs large complexity to implement.

Recently Asvadi et al. [11] have applied Taylor approxima-
tion of order 𝑛 to the true LLR function such that

ℓ̂T𝑛 =
𝑛

∑

𝑖=0

𝑐
𝑖
𝑦
𝑖
, (5)

where 𝑐
𝑖
denotes the coefficient of Taylor series of order 𝑖.

They have derived both linear and nonlinear approximations
with small orders. For a linear approximation (Taylor series
of order 𝑛 = 1), it is given by

ℓ̂T1 = 𝑐1𝑦. (6)

For a nonlinear approximation (Taylor series of order 𝑛 = 3),
it is given by

ℓ̂T3 = 𝑐1𝑦 + 𝑐3𝑦
3
. (7)

From the previous approximations, one can obtain accurate
LLRwithout optimizing complicated functions such as in [19,
20].

Tomove our attentions to nonbinarymodulations, which
is more practical case, the LLR calculations are performed
bitwise [15, 21]. The previous work by Yazdani and Ardakani
[20], which is an extension of [19], has devised the LLR

approximation method, but it becomes complex to evaluate
LLR due to the increment of the number of parameters for
the optimization. To fit the true LLR functions, the authors
in [11] have modified the approximation functions of Taylor
series of order 3.Thismodification is not easy to replicate and
is required for each parameter of the channels. Moreover it is
well known that the Taylor approximation quickly becomes
inaccurate as the variable 𝑦 leaves the derivative point.

To overcome these problems, we devise a new LLR
approximation using Padé approximation [22] on the uncor-
related flat Rayleigh fading channels with unknown CSI
for BPSK and 8-PAM. Padé approximation expresses the
original function by rational form of two polynomials with
the same total number of coefficients of the Taylor series,
and it can accelerate the Taylor approximation. Generally
Padé approximation is accurate not only at the derivative
point but also at the wide range of intervals of variables. We
show by simulation results and analysis based on the density
evolution that our method can approximate LLR function
with high accuracy and can yield almost the same decoding
performance as the true LLR. The Padé approximation is a
generalization of the Taylor approximation, and the proposed
method exhibits slightly better performance than themethod
using Taylor approximation [11]. Moreover we design irregu-
lar LDPC codes based on our LLR approximation function.

This paper is organized as follows: Section 2 gives the
channelmodel, LLR calculationmethod, and LDPC codes. In
Section 3, we briefly review Taylor and Padé approximations,
and then we present the proposed LLR calculation by Padé
approximation.Numerical results are shown in Section 4, and
Section 5 concludes the paper.

2. Preliminaries

2.1. Channel Model and LLR Calculation. We here consider
the following discrete-time channel model:

𝑦 = 𝑟𝑤 + 𝑧, (8)

where 𝑤 ∈ 𝜒 and 𝑦, 𝑧 ∈ R represent the channel input,
output, and noise, respectively, and 𝜒, R denote a set of
transmitted symbols and that of real numbers, respectively.
(As mentioned in Section 1, we drop a time subscript for
𝑦, 𝑟, 𝑤, and 𝑧.) Moreover 𝑟 ≥ 0 is the channel gain with
an uncorrelated flat Rayleigh distribution by its probability
density function (pdf) 𝑃(𝑟) = 2𝑟𝑒−𝑟

2

, and 𝑧 is the white
Gaussian noise with mean 0 and variance 𝜎2.

Using the bit-interleaved coded modulation (BICM)
scheme [10, 15, 21] for a transmission, an information bit
sequence is mapped to the codeword (bit sequence) of length
𝑁 by error-correcting codes, and then it is partitioned into
𝑁/𝑞 blocks denoted by b

𝑘
= {𝑏

(1)

𝑘
, 𝑏
(2)

𝑘
, . . . , 𝑏

(𝑞)

𝑘
}, 𝑘 =

1, 2, . . . , 𝑁/𝑞, of length 𝑞. Hereinafter we drop the subscript
𝑘 of both b

𝑘
and 𝑏(𝑖)
𝑘

to simplify discussions. This block b is
mapped to transmit a signal 𝑤 ∈ 𝜒 in a Gray-labeled 𝑄-ary
signal constellation 𝜒 of size 𝑄 = 2𝑞. The signal constellation
for BSPK and 8-PAM is depicted in Figure 1.

For the fading channel, two cases can be consideredwhich
depends on the knowledge of 𝑟 at the receiver.
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Figure 1: Signal constellations for BPSKand 8-PAMwithGray label-
ing.

2.1.1. Known CSI. For a known CSI case, we can use channel
fading gain 𝑟 for each bit position 𝑖 = 1, 2, . . . , 𝑞. The channel
LLR is given by

ℓ
(𝑖)

CSI = log
𝑃 (𝑦 | 𝑏

(𝑖)
(𝑤) = 0, 𝑟)

𝑃 (𝑦 | 𝑏(𝑖) (𝑤) = 1, 𝑟)

= log
∑
𝑤∈𝜒
(𝑖)

0

𝑃 (𝑦 | 𝑤, 𝑟)

∑
𝑤∈𝜒
(𝑖)

1

𝑃 (𝑦 | 𝑤, 𝑟)
,

(9)

where 𝑏(𝑖)(𝑤) denotes the 𝑖th bit of block b which is mapped
to 𝑤 and 𝜒(𝑖)

𝑗
is a set of blocks b which satisfies 𝑏(𝑖)(𝑤) = 𝑗 for

𝑗 = 0, 1. Moreover a base of logarithm takes a natural number
𝑒, and 𝑃(𝑦 | 𝑤, 𝑟) is given by

𝑃 (𝑦 | 𝑤, 𝑟) =
1

√2𝜋𝜎2
⋅ exp(−

(𝑦 − 𝑟𝑤)
2

2𝜎2
) . (10)

For BPSK, (9) is reduced to

ℓ
(1)

CSI =
2𝑟𝑦

𝜎2
. (11)

The calculation of the previous equation is not a difficult task.

2.1.2. Unknown CSI. For an unknown CSI case, we cannot
use channel fading gain 𝑟 for each received bit position. The
channel LLR is given by

ℓ
(𝑖)

NSI = log
𝑃 (𝑦 | 𝑏

(𝑖)
(𝑤) = 0)

𝑃 (𝑦 | 𝑏(𝑖) (𝑤) = 1)

= log
∑
𝑥∈𝜒
(𝑖)

0

𝑃 (𝑦 | 𝑤)

∑
𝑤∈𝜒
(𝑖)

1

𝑃 (𝑦 | 𝑤)
,

(12)

where 𝑃(𝑦 | 𝑤) is given by

𝑃 (𝑦 | 𝑤)

= ∫

∞

0

𝑃 (𝑦 | 𝑤, 𝑟) 𝑃 (𝑟) 𝑑𝑟

= ∫

∞

0

1

√2𝜋𝜎2
⋅ exp(−

(𝑦 − 𝑟𝑤)
2

2𝜎2
) × 2𝑟 exp (−𝑟2) 𝑑𝑟.

(13)

For BPSK, (12) is given by

ℓ
(1)

NSI = log
Ψ(𝑦/√2�̃�)

Ψ (−𝑦/√2�̃�)
, (14)

where �̃� = 𝜎2(1+2𝜎2) andΨ(𝑥) = 1+√𝜋𝑥 exp(𝑥2) erfc(−𝑥).
The calculation of (12) is so complicated that several works
have tried to reduce the computational complexity by approx-
imations [11, 13, 14, 19, 20].

For the 𝑄-ary PAM, 𝑃(𝑦 | 𝑤) in (13) becomes

𝑃 (𝑦 | 𝑤)

=
exp (−𝑦2/�̃�2

1
)

√𝜋�̃�
3

1

×(erfc(−
𝑤𝑦

√2𝜎�̃�
1

)×√𝜋𝑤𝑦+√2𝜎�̃�
1
exp(−

𝑤
2
𝑦
2

2𝜎2�̃�2
1

)),

(15)

where �̃�
1
= √𝑤2 + 2𝜎2. Using (15), the LLR in (12) can

be evaluated. The previous equations are so complicated to
implement that several works have tried to reduce the com-
putational complexity by approximations.

Notice that for the fading channels with some modula-
tions, the log-sum approximation was used for bitwise linear
approximation. This approximation is only efficient for a
known CSI case, since an integration of fading factor 𝑟 for
a calculation of LLR is not needed. But for an unknown CSI
case, an integration of fading factor 𝑟 is needed.Moreover it is
effective only for a high signal-to-noise (SNR) region, where
the sum in (9) is dominated by a single large term.

2.2. LDPC Codes. We here consider binary LDPC codes.
An LDPC code is represented by the Tanner graph which
consists of the variable nodes and the check nodes. These
nodes are incident with the edges. Let 𝑑V and 𝑑𝑐 denote the
maximumnumber of edges incident to the variable nodes and
check nodes, respectively. Let 𝜆(𝑥) = ∑𝑑V

𝑖=2
𝜆
𝑖
𝑥
𝑖−1 and 𝜌(𝑥) =

∑
𝑑
𝑐

𝑖=2
𝜌
𝑖
𝑥
𝑖−1 be variable node degree distribution and check

node degree distribution where 𝜆
𝑖
and 𝜌

𝑖
denote fractions

of the number of edges incident to the variable node and
check node of degrees 𝑖 in the Tanner graph of the code,
respectively. An LDPC code is specified by𝑁, 𝜆(𝑥), and 𝜌(𝑥).
The rate of the codes is given by 𝑅 (= 1 − 𝑀/𝑁) where 𝑀
denotes the number of check nodes and is given by 𝑀 =

𝑁∫
1

0
𝜌(𝑥)𝑑𝑥/ ∫

1

0
𝜆(𝑥)𝑑𝑥.
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An ensemble of LDPC codes [2] is denoted by C𝑁(𝜆(𝑥),
𝜌(𝑥)). Combined with the BP decoding algorithm, LDPC
codes with optimized (𝜆(𝑥), 𝜌(𝑥)) by density evolution [5,
7, 8] can attain high performance which is close to the
theoretical limit (Shannon limit). The iterative threshold 𝜎⋆
of an ensemble of LDPC codes C∞(𝜆(𝑥), 𝜌(𝑥)) is defined as
the maximum standard deviation 𝜎 on the channel in (8)
such that lim

𝑡→∞
𝑃
𝑒
(𝑡) = 0 where 𝑃

𝑒
(𝑡) denotes the message

error probability in iteration 𝑡 of the BP decoding algorithm.
𝑃
𝑒
(𝑡) is calculated recursively by the density evolution [5, 7, 8]

which keeps track the message error probability of the BP
decoding algorithm from the pdf of channel LLR. Iterative
threshold is sometimesmeasured by𝐸

𝑏
/𝑁
0
or signal-to-noise

ratio (SNR) such that (𝐸
𝑏
/𝑁
0
)
⋆
= 1/2𝑅(𝜎

⋆
)
2 (for BPSK)

or 21/2(𝜎⋆)2 (for 8-PAM), respectively, where 𝐸
𝑏
and 𝑁

0

denote the average energy per information bit and one-sided
power spectral density of the additive white Gaussian noise
(AWGN).

3. LLR Approximation Based on
Padé Approximation

Before approximating the true LLR function in (12), we briefly
explain the Taylor approximation and then describe the Padé
approximation.

3.1. Brief Review of Taylor and Padé Approximations. Let𝑓(𝑦)
be the original function, and let 𝑓(𝑛)(𝑦) be 𝑛th derivative of
𝑓(𝑦). Let [𝑠

1
, 𝑠
2
] and (𝑠

1
, 𝑠
2
) be closed and open intervals

between 𝑠
1
and 𝑠
2
, 𝑠
2
≥ 𝑠
1
, respectively.

Definition 1. Suppose that 𝑓(𝑦) has 𝑛 derivatives at point
𝑦
0
∈ [𝑠
1
, 𝑠
2
] and 𝑓(𝑛+1)(𝜉) has a derivative at (𝑠

1
, 𝑠
2
) where

𝜉 = 𝑠
1
+ 𝜃(𝑠
2
− 𝑠
1
), 0 < 𝜃 < 1. Assume that 𝑓(1)(𝑦

0
),

𝑓
(2)
(𝑦
0
), . . . , 𝑓

(𝑛)
(𝑦
0
) are required to be continuous on [𝑠

1
, 𝑠
2
]

and 𝑓(𝑛+1)(𝜉) is required to exist on (𝑠
1
, 𝑠
2
). The Taylor

polynomial of order 𝑛 for 𝑓(𝑦) at point 𝑦
0
is then defined by

𝑃
𝑛
(𝑦) = 𝑓 (𝑦

0
) + 𝑓
(1)
(𝑦
0
) (𝑦 − 𝑦

0
) + ⋅ ⋅ ⋅

+
𝑓
(𝑛)
(𝑦
0
)

𝑛!
(𝑦 − 𝑦

0
)
𝑛

=

𝑛

∑

𝑘=0

𝑓
(𝑘)
(𝑦
0
)

𝑘!
(𝑦 − 𝑦

0
)
𝑘

.

(16)

The remainder term, which is a difference between true value
of the function and its Taylor series of polynomial, is given by

𝑓
(𝑛+1)
(𝜉)

(𝑛 + 1)!
(𝑦 − 𝑦

0
)
𝑛+1

. (17)

For some 𝑛 and 𝑦
0
, one can approximate the original function

by 𝑃
𝑛
(𝑦) in (16). However, this function quickly becomes

inaccurate as 𝑦 leaves 𝑦
0
, even though 𝑛 is large.

The approximation in (16) can often be accelerated by
rearranging it into a ratio of two series using Padé approxima-
tion. It generalized the Taylor approximation with the same

total number of coefficients of two series. Before describing
the Padé approximation, we rewrite (16) as follows:

𝑃
𝑛
(𝑦) =

𝑛

∑

𝑘=0

𝑓
(𝑘)
(𝑦
0
)

𝑘!
(𝑦 − 𝑦

0
)
𝑘

=

𝑛

∑

𝑘=0

𝑐
𝑘
𝑦
𝑘
.

(18)

Definition 2. Suppose that𝑓(𝑦) is approximated by theTaylor
series in (18). The Padé approximation of order (𝑚, 𝑛), 𝑛 =
𝑚

+ 𝑛
,𝑚, 𝑛 ≥ 0, is given by

𝑃
𝑛


𝑚
 (𝑦) =

∑
𝑛


𝑘=0
𝑎
𝑘
𝑦
𝑘

∑
𝑚


𝑘=0
𝑏
𝑘
𝑦𝑘
, (19)

where 𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑛
 and 𝑏

0
, 𝑏
1
, . . . , 𝑏

𝑚
 are determined, so that

the coefficients of the terms 𝑦0, 𝑦1, . . . , 𝑦𝑛 of𝑃𝑛


𝑚
(𝑦) in (19) are

equal to those of 𝑃
𝑛
(𝑦) in (18).

FromDefinition 2, the polynomials∑𝑛


𝑘=0
𝑎
𝑘
𝑦
𝑘,∑𝑚



𝑘=0
𝑏
𝑘
𝑦
𝑘,

and ∑𝑛
𝑘=0
𝑐
𝑘
𝑦
𝑘 satisfy the equation

𝑛


∑

𝑘=0

𝑎
𝑘
𝑦
𝑘
− (

𝑚


∑

𝑘=0

𝑏
𝑘
𝑦
𝑘
) ⋅ (

𝑛

∑

𝑘=0

𝑐
𝑘
𝑦
𝑘
) = 𝑂(𝑦

𝑛+1
) . (20)

Equation (20) tells that all the coefficients of 𝑦0, 𝑦1, . . . , 𝑦𝑛

of ∑𝑛


𝑘=0
𝑎
𝑘
𝑦
𝑘 and (∑𝑚



𝑘=0
𝑏
𝑘
𝑦
𝑘
) (∑
𝑛

𝑘=0
𝑐
𝑘
𝑦
𝑘
) in left-hand side of

(20) are equal.We can express these relations by the following
simultaneous equation for 𝑖 = 0, 1, . . . , 𝑛:

𝑖

∑

𝑗=max(𝑖−𝑚 ,0)
𝑐
𝑗
𝑏
𝑖−𝑗
= {
𝑎
𝑖
, 𝑖 = 0, 1, . . . , 𝑛


,

0, 𝑖 = 𝑛

+ 1, 𝑛

+ 2, . . . , 𝑛.

(21)

Notice that the terms 𝑦𝑛+1, 𝑦𝑛+2, . . . , 𝑦𝑛+𝑚


in left-hand side
of (20) are included in 𝑂(𝑦𝑛+1) in right-hand side of the
equation. These terms are not necessary for the evaluation of
𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑛
 and 𝑏

0
, 𝑏
1
, . . . , 𝑏

𝑚
 .

We have already evaluated the coefficients 𝑐
0
, 𝑐
1
, . . . , 𝑐

𝑛
in

(18) by Taylor series. Moreover we assume that 𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑛


and 𝑏
0
, 𝑏
1
, . . . , 𝑏

𝑚
 are normalized, so we set 𝑏

0
= 1. This

normalization is valid since the Padé approximation in (19)
is of a rational form. Substituting 𝑐

0
, 𝑐
1
, . . . , 𝑐

𝑛
and 𝑏

0
=

1 into (20), we can obtain coefficients 𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑛
 and

𝑏
0
, 𝑏
1
, . . . , 𝑏

𝑚
 . Note that the Taylor approximation and the

Padé approximation are equivalent to each other if 𝑚 =
0. Therefore we can see that the Padé approximation is a
generalization of the Taylor series approximation.

3.2. Applying Padé Approximation to LLR Function

3.2.1. LLR Calculation for BPSK. By applying the Padé
approximation to the true LLR function for BPSK in (14), we
can obtain the approximated function. To fit the true LLR
function, we have searched the approximated function for
several pairs of (𝑚, 𝑛) and found that Padé approximation of
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Figure 2: Comparison of true LLR and approximated LLRs (Taylor3, Taylor5, and Pade23) for the uncorrelated flat Rayleigh fading channel
with unknown CSI and 𝜎 = 0.6449. From (a), Pade23 gives nearly the same values as the true function for various channel output 𝑦, and
Taylor5 shows inaccurate as |𝑦| becomes large. From (b), accuracy of Pade23 and Taylor5 is good especially for small |𝑦|. But accuracy of
them is different for large |𝑦|; that is, Pade23 shows the best accuracy in three methods, but Taylor5 shows the worst accuracy.

order (𝑚, 𝑛) = (2, 3) is more accurate than Taylor series of
order 𝑛 = 3 around 0 in (7) which is previously known as the
best approximated one [11].TheproposedLLR approximation
is given as follows:

ℓ̂P23 =
𝑎
0
+ 𝑎
1
𝑦 + 𝑎
2
𝑦
2
+ 𝑎
3
𝑦
3

𝑏
0
+ 𝑏
1
𝑦 + 𝑏
2
𝑦2

, (22)

where 𝑎
0
= 0, 𝑎

2
= 0, 𝑏
0
= 1, and 𝑏

1
= 0,

𝑎
1
= √
2𝜋

�̃�
, 𝑏

2
=
−35 + 30𝜋 − 6𝜋

2

20 (−3 + 𝜋) �̃�
,

𝑎
3
= −√

𝜋

2
⋅
15 − 30𝜋 + 8𝜋

2

30 (−3 + 𝜋) �̃�√�̃�
.

(23)

The previous approximation is obtained by the Taylor series
of order 𝑛 = 5:

ℓ̂T5 = 𝑐1𝑦 + 𝑐3𝑦
3
+ 𝑐
5
𝑦
5
, (24)

where

𝑐
1
= √
2𝜋

�̃�
, 𝑐

3
=
√𝜋 (−3 + 𝜋)

3�̃�√2�̃�
,

𝑐
5
=

√2𝜋 (35 − 30𝜋 + 6𝜋
2
)

120�̃�2√�̃�
.

(25)

Then (21) becomes

𝑐
0
𝑏
0
= 𝑎
0
,

𝑐
0
𝑏
1
+ 𝑐
1
𝑏
0
= 𝑎
1
,

𝑐
0
𝑏
2
+ 𝑐
1
𝑏
1
+ 𝑐
2
𝑏
0
= 𝑎
2
,

𝑐
1
𝑏
2
+ 𝑐
2
𝑏
1
+ 𝑐
3
𝑏
0
= 𝑎
3
,

𝑐
2
𝑏
2
+ 𝑐
3
𝑏
1
+ 𝑐
4
𝑏
0
= 0,

𝑐
3
𝑏
2
+ 𝑐
4
𝑏
1
+ 𝑐
5
𝑏
0
= 0.

(26)

Substituting 𝑐
0
, 𝑐
1
, . . . , 𝑐

5
in (24) and 𝑏

0
= 1 into (26), we get

𝑎
0
, 𝑎
1
, 𝑎
2
, 𝑎
3
, and 𝑏

1
, 𝑏
2
.

We then compare the accuracy of the approximated LLR
functions. Figures 2(a) and 3(a) show LLR values for the
uncorrelated flat Rayleigh fading channel with unknown CSI
for 𝜎 = 0.6449 and 1.0264, respectively. LLR values in these
figures are evaluated by the true LLR in (14), Taylor series
of orders 𝑛 = 3 and 𝑛 = 5 (“Taylor3” and “Taylor5”) in
(7) and (24), respectively, the Padé approximation of order
(𝑚

, 𝑛

) = (2, 3) (“Pade23”) in (22), and linear approximation

(“Ex”) in (1). From these figures, Padé approximation is
almost identical to the true LLR for various channel output
𝑦. This may be contributory to the fact that the order 𝑛 (=
𝑚

+ 𝑛

= 5) of Pade23 is larger than that of Taylor3 (𝑛 = 3).

However, we can see that Taylor5 (𝑛 = 5) is inaccurate as
|𝑦| becomes large. Therefore large 𝑛 is not an answer for an
accurate LLR approximation, especially for using the Taylor
approximation.

To compare the LLR approximations in detail, Figures
2(b) and 3(b) show the absolute differences between true LLR
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Figure 3: Comparison of true LLR and approximated LLRs (Taylor3, Taylor5, and Pade23) for the uncorrelated flat Rayleigh fading channel
with unknown CSI and 𝜎 = 1.0264. Pade23 also gives almost the same values as the true function.

and approximated LLRs (Taylor3, Taylor5, and Pade23). We
only show the case of 𝑦 ≥ 0, since the true LLR function
is odd symmetric; that is, 𝑓(𝑦) = −𝑓(−𝑦). From Figures 2
and 3, accuracy of Pade23 and Taylor5 are good especially for
small |𝑦|. But accuracy of them are quite different for large |𝑦|,
that is, Pade23 shows the best accuracy, but Taylor5 shows the
worst accuracy.

Next we consider analysis based on the density evolution
for different LLR calculation methods. We derive the pdf of
LLR assuming that𝑤 = +1 is transmitted. From (10), we have

𝑃 (𝑦 | 𝑤 = +1, 𝑟) =
1

√2𝜋𝜎2
⋅ exp(−

(𝑦 − 𝑟)
2

2𝜎2
) . (27)

Averaging (27) over 𝑟 by an integration, we obtain

𝑃 (𝑦 | 𝑤 = +1)

=
√2

√𝜋 (1 + 2𝜎2)
⋅ exp(−

𝑦
2

1 + 2𝜎2
)

× (𝜎 ⋅ exp(−
𝑦
2

2�̃�
) +
𝑦

2
√
2𝜋

1 + 2𝜎2
⋅ erfc(−

𝑦

√2�̃�
)) .

(28)

Then the density of the LLR function can be expressed in a
parametric form [4]. For ℓ̂P23 in (22), this is given by

(ℓ̂P23,
𝑃 (𝑦 | 𝑤 = +1)

ℓ̂P23
) , (29)

where ℓ̂P23 denotes a derivative of the function ℓ̂P23 with
𝑦. Equation (29) is a case of the proposed approximation
function, but one can obtain the pdf of the other LLR

functions. For example, replacing ℓ̂P23 with ℓ
(1)

NSI in (14), we
can obtain the pdf of the true LLR function ℓ(1)NSI.

3.2.2. LLR Calculation for 8-PAM. We demonstrate Padé
approximation for bitwise LLR of 8-PAM constellation with
Gray labeling on the Rayleigh fading channel without CSI
(SNR = 7.91 (dB) (𝜎 = 1.699)) in Figure 4. The coefficients
of LLR approximation functions of Taylor3 and Padé approx-
imation are listed in Table 1. The derivative points 𝑦

0
for each

bit LLR are chosen where these functions take ℓ(𝑖)NSI = 0 for
𝑖 = 1, 2, 3. Notice that we can omit the coefficients for the
case 𝑦

0
< 0 (bits 2 and 3), since these LLR functions are even

functions; that is, we can derive from𝑓(𝑦) = 𝑓(−𝑦) for𝑦 < 0.
The orders of Padé approximation for each bit are different
since each bit LLR function is distinct.

For bit 1, this point is 𝑦
0
= 0. For bit 2, these

points are 𝑦
0
= ±3.3449 (2 points). So we have two LLR

approximation functions for bit 2. We chose the order pairs
of Padé approximation (4, 7) and (2, 4) (denoted by “Pade47”
and “Pade24”) for 𝑖 = 1 and 2, respectively. The true
LLR function for bit 2 is an even function, so we switch
two LLR approximation functions on 𝑦 = 0. Since these
approximation functions intersect on 𝑦 = 0, the resulting
function becomes continuous.

For bit 3, these points are 𝑦
0
= ±1.8848, ±6.9832 (4

points). For 𝑦
0
= ±1.8848 and 𝑦

0
= ±6.9832, we use

Padé approximation of orders (4, 1) and (3, 4) (denoted by
“Pade41” and “Pade34”), respectively. The true LLR function
for bit 3 is also an even function, so we switch two LLR
approximation functions, whose derivative points are 𝑦

0
=

±1.8848 (bit 3 (a) in Table 1), on the intersection point 𝑦 = 0.
But two LLR approximation functions (bit 3 (a) and (b) in
Table 1) do not intersect on any 𝑦. Therefore we searched two
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Figure 4: Comparison of bitwise True LLR and approximated LLRs for the 8-PAM with Gray labeling (SNR = 7.91 (𝜎 = 1.699)).
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Table 1: The coefficients of LLR approximation functions for 8-PAM at SNR = 7.91 (𝜎 = 1.699).

(a) Taylor series of order 𝑛 = 3

𝑦
0

𝑐
0

𝑐
1

𝑐
2

𝑐
3

bit 1 0.0 0.0 1.2135 0.0 0.0241
bit 2 3.3449 2.3273 −0.7706 0.0205 0.0006
bit 3 (a) 1.8848 −0.7855 0.0544 0.2848 −0.0491
bit 3 (b) 6.9832 2.2528 −0.2497 −0.0181 0.0011

(b) Padé approximation of numerator

𝑦
0

𝑎
0

𝑎
1

𝑎
2

𝑎
3

𝑎
4

𝑎
5

𝑎
6

𝑎
7

bit 1 0.0 0.0 1.2135 0.0 0.0334 0.0 0.0025 0.0 2.61𝐸 − 05

bit 2 3.3449 3.3382 −1.5496 0.1836 0.0039 −0.0028 — — —
bit 3 (a) 1.8848 −1.1396 0.6046 — — — — — —
bit 3 (b) 6.9832 5.6135 −3.1331 0.5963 −0.0481 0.0017 — — —

(c) Padé approximation of denominator

𝑦
0

𝑏
0

𝑏
1

𝑏
2

𝑏
3

𝑏
4

bit 1 0.0000 1.0000 0.0000 0.0076 0.0000 0.0016
bit 2 3.3449 1.6585 −0.3831 0.0557 — —
bit 3 (a) 1.8848 1.4533 −0.6204 0.3220 −0.0852 0.0113
bit 3 (b) 6.9832 1.3191 −0.5502 0.0496 −0.0026 —

switch points between the interval of 𝑦 ∈ [1.8848, 6.9832]
to minimize the loss of accuracy, and we set these points
for Taylor approximation on 4.52504, 4.85671. We take the
function (bit 3 (a)) for 𝑦 < 4.52504 and take the function (bit
3 (b)) for 𝑦 > 4.85671. Between 𝑦 ∈ [4.52504, 4.85671], we
take weightedmean of two approximation functions (bit 3 (a)
and (b)) which is shown in Figure 4(d). Likewise, we switch
LLR functions for Padé approximation on 4.81638, 4.94772
as shown in Figure 4(e). From Figure 4(c), we can easily see
switch points for Taylor3, but for Padé approximation we
cannot see these points explicitly. This is because accuracy of
Padé approximation is higher than that of Taylor3 for wide
range of variables.

Notice that for bit 3, it is not necessary to consider
weighted mean of two approximation functions if we use
Padé approximation of higher order pairs. In this case, we
found that Padé approximation of orders (4, 5) at point
𝑦
0
= ± argmax

𝑦≥0
ℓ
(3)

NSI provides almost the same accuracy
as the combination of (3, 4) and (4, 1) which is shown in
Figure 4(f) (denoted by “Pade45”). But the accuracy of Padé
approximation of (4, 5) for large |𝑦| is not so good compared
with the combination of Padé approximations (3, 4) and
(4, 1). Also note that the previous work in [11] have modified
Taylor3 functions to fit the true LLR for 𝑖 = 2 and 3. But this
is not easy to replicate, so we only show the original form of
Taylor3.

4. Numerical Results and Discussion

In order to compare the proposed LLR approximations, we
use LDPC codes with BP decoding and show results by
simulations and analysis based on the density evolution. We
only show the case where CSI is unknown to the receiver.

Table 2: Comparison between the iterative thresholds for LDPC
code ensembles using different LLR calculation methods.

(a) C∞(𝑥2, 𝑥5) LDPC code ensemble

True LLR Taylor3 Pade23
𝜎
⋆ 0.644755 0.644754 0.644755
(𝐸
𝑏
/𝑁
0
)
⋆ [dB] 3.810759 3.810772 3.810759

(b) C∞(𝑥3, 𝑥15) LDPC code ensemble

True LLR Taylor3 Pade23
𝜎
⋆ 0.36770 0.36766 0.36770
(𝐸
𝑏
/𝑁
0
)
⋆ [dB] 6.929215 6.930160 6.929215

(c) C∞(𝑥2, 𝑥3) LDPC code ensemble

True LLR Taylor3 Pade23
𝜎
⋆ 1.0263757 1.0263752 1.0263757
(𝐸
𝑏
/𝑁
0
)
⋆ [dB] 2.784088 2.784092 2.784088

4.1. Results for BPSK. By using the density evolution [5, 7, 8],
Table 2 shows iterative thresholds of C∞(𝑥2, 𝑥5), C∞(𝑥3,
𝑥
15
), and C∞(𝑥2, 𝑥3) LDPC code ensembles whose rates 𝑅

are, respectively, 𝑅 = 0.5, 0.75, and 0.25 for different LLR
calculation methods. Evaluating preciously, the thresholds of
three methods are almost identical especially for true LLR
and Pade23, but there exists a little gap between Taylor3 and
the other methods.

Table 3 shows degree distribution profiles and their iter-
ative thresholds for (a) threshold optimized and (b) rate
optimized irregular LDPC codes. These profiles and their
corresponding thresholds are evaluated based on the true
LLR, Taylor3, and Pade23, respectively. From Table 3(a) for
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Table 3: Degree distribution profiles and their iterative thresholds
for the uncorrelated flat Rayleigh fading channel with unknown CSI
by the density evolution. These profiles are (a) threshold optimized
and (b) rate optimized codes. The Shannon limit for rate half code
is 𝜎 = 0.7436 (𝐸

𝑏
/𝑁
0
= 2.572 dB).

(a) Threshold optimized

True LLR Taylor3 Pade23
𝜆
2

0.200284000 0.200283000 0.200284000
𝜆
3

0.228588000 0.228591000 0.228588000
𝜆
7

0.067795000 0.067777920 0.067794487
𝜆
8

0.210231000 0.210246680 0.210231613
𝜆
30

0.292602000 0.292601400 0.292601850
𝜌
9

1.000000000 1.000000000 1.000000000
Rate 0.500000 0.500000 0.500000
𝜎
⋆ 0.7232423 0.7232385 0.7232422
(𝐸
𝑏
/𝑁
0
)
⋆ [dB] 2.7068537 2.7069429 2.7068549

(b) Rate optimized

True LLR Taylor3 Pade23
𝜆
2

0.202860 0.202758 0.202860
𝜆
3

0.214366 0.214369 0.214366
𝜆
7

0.157257 0.157244 0.157258
𝜆
8

0.112911 0.112922 0.112859
𝜆
30

0.312606 0.312607 0.312607
𝜌
9

1.000000 1.000000 1.000000
Rate 0.4946847 0.4946836 0.4946845
𝜎
⋆ 0.740167 0.740167 0.740167
(𝐸
𝑏
/𝑁
0
)
⋆ [dB] 2.613406 2.613406 2.613406

fixed rate, the threshold of Pade23 is almost the same as that
of true LLR and is slightly better than that of Taylor3. From
Table 3(b) for fixed threshold, the rate of the code by Pade23
is almost the same as that by true LLR and is slightly higher
than that by Taylor3. From these thresholds, they are close to
the Shannon limit; that is, for rate half code, it is 𝜎 = 0.7436
(𝐸𝑏/𝑁

0
= 2.572 [dB]).

4.2. Results for 8-PAM. Figure 5 shows bit error rate (BER) of
(𝜆(𝑥), 𝜌(𝑥)) = (𝑥

2
, 𝑥
3
) LDPC codes with 𝑁 = 15000 for the

uncorrelated flat Rayleigh fading channel with 8-PAM. The
number of transmitted codewords is 5 × 105. BERs of true
LLR and two Padé approximations (combination of orders (4,
1) and (3, 4) and orders (4, 5)) are almost the same, and that
of Taylor3 is slightly higher than those of three methods.

Table 4 shows iterative thresholds of C∞(𝑥2, 𝑥3) LDPC
code ensemble for different LLR calculation methods with
8-PAM. The threshold of Padé approximation is almost
identical to that of true LLR (inferior to 0.02 dB), and it is
better than that of Taylor3. Notice that threshold of Taylor3
in [11] was SNR = 7.86 (dB) and it is better than that of Padé
approximation. But the method in [11] performed several
modifications to fit the true functions for the LLR functions
of bits 2 and 3, it is not easy to replicate the approximations.
Padé approximation is better than linear approximation in
[20] (SNR = 7.88 (dB)). The threshold of Padé approximation

 7.8  8  8.2  8.4  8.6  8.8  9  9.2  9.4

BE
R

SNR (dB)

True LLR
Taylor3

Pade41 and 34
Pade45

1.0e − 006

1.0e − 005

1.0e − 004

1.0e − 003

1.0e − 002

1.0e − 001

1.0e + 000

Figure 5: Comparison of BER of (𝑥2, 𝑥3) LDPC codes with 𝑁 =
15000 for the uncorrelated flat Rayleigh fading channel with 8-PAM.

Table 4: Comparison between the iterative threshold of C∞(𝑥2, 𝑥3)
LDPC code ensembles using different LLR calculation methods on
8-PAM.

True LLR Taylor3 Pade41 & Pade34
SNR⋆ 7.85 8.05 7.87

of orders (4, 5) for bit 3 LLR function is SNR= 7.88 (dB)which
is the same as the linear approximation.

5. Conclusion

In this paper, we apply the Padé approximation, which is
a generalization of the Taylor approximation, to the LLR
function on the uncorrelated flat Rayleigh fading channels
with unknown CSI. Using Padé approximation, we can
accelerate the accuracy of the LLR function that it is accurate
not only around the derivative point but also at the other
intervals of the variable. From the simulation results and
analysis based on the density evolution, our method can
yield almost the same decoding performance as the true
LLR function and is slightly better than the conventional
approximation method (Taylor approximation of order 𝑛 =
3). Moreover we derive some irregular LDPC code profiles
whose iterative thresholds are close to the Shannon limit.

To apply Padé approximation, other modulations (e.g.,
16-QAM) or other channels (Rician fading) are remained for
further works.
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