
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2013, Article ID 961568, 6 pages
http://dx.doi.org/10.1155/2013/961568

Research Article
The Optimization on Ranks and Inertias of a Quadratic
Hermitian Matrix Function and Its Applications

Yirong Yao

Department of Mathematics, Shanghai University, Shanghai 200444, China

Correspondence should be addressed to Yirong Yao; yryao@staff.shu.edu.cn

Received 3 December 2012; Accepted 9 January 2013

Academic Editor: Yang Zhang

Copyright © 2013 Yirong Yao. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We solve optimization problems on the ranks and inertias of the quadratic Hermitian matrix function 𝑄 − 𝑋𝑃𝑋
∗ subject to a

consistent system of matrix equations 𝐴𝑋 = 𝐶 and 𝑋𝐵 = 𝐷. As applications, we derive necessary and sufficient conditions for the
solvability to the systems of matrix equations and matrix inequalities 𝐴𝑋 = 𝐶,𝑋𝐵 = 𝐷, and 𝑋𝑃𝑋∗ = (>, <, ≥, ≤)𝑄 in the Löwner
partial ordering to be feasible, respectively. The findings of this paper widely extend the known results in the literature.

1. Introduction

Throughout this paper, we denote the complex number field
by C. The notations C𝑚×𝑛 and C𝑚×𝑚

ℎ
stand for the sets

of all 𝑚 × 𝑛 complex matrices and all 𝑚 × 𝑚 complex
Hermitian matrices, respectively.The identity matrix with an
appropriate size is denoted by 𝐼. For a complex matrix 𝐴,
the symbols 𝐴∗ and 𝑟(𝐴) stand for the conjugate transpose
and the rank of𝐴, respectively.TheMoore-Penrose inverse of
𝐴 ∈ C𝑚×𝑛, denoted by𝐴†, is defined to be the unique solution
𝑋 to the following four matrix equations

(1) 𝐴𝑋𝐴 = 𝐴, (2) 𝑋𝐴𝑋 = 𝑋,

(3) (𝐴𝑋)
∗

= 𝐴𝑋, (4) (𝑋𝐴)
∗

= 𝑋𝐴.
(1)

Furthermore, 𝐿
𝐴
and 𝑅

𝐴
stand for the two projectors 𝐿

𝐴
=

𝐼 − 𝐴
†

𝐴 and 𝑅
𝐴
= 𝐼 − 𝐴𝐴

† induced by 𝐴, respectively. It is
known that 𝐿

𝐴
= 𝐿
∗

𝐴
and 𝑅

𝐴
= 𝑅
∗

𝐴
. For 𝐴 ∈ C𝑚×𝑚

ℎ
, its inertia

I
𝑛
(𝐴) = (𝑖

+
(𝐴) , 𝑖
−
(𝐴) , 𝑖
0
(𝐴)) (2)

is the triple consisting of the numbers of the positive, nega-
tive, and zero eigenvalues of 𝐴, counted with multiplicities,
respectively. It is easy to see that 𝑖

+
(𝐴) + 𝑖

−
(𝐴) = 𝑟(𝐴). For

two Hermitian matrices 𝐴 and 𝐵 of the same sizes, we say
𝐴 > 𝐵 (𝐴 ≥ 𝐵) in the Löwner partial ordering if 𝐴 − 𝐵 is
positive (nonnegative) definite.

The investigation on maximal and minimal ranks and
inertias of linear and quadratic matrix function is active
in recent years (see, e.g., [1–24]). Tian [21] considered the
maximal and minimal ranks and inertias of the Hermitian
quadratic matrix function

ℎ (𝑋) = 𝐴𝑋𝐵𝑋
∗

𝐴
∗

+ 𝐴𝑋𝐶 + 𝐶
∗

𝑋
∗

𝐴
∗

+ 𝐷, (3)

where 𝐵 and 𝐷 are Hermitian matrices. Moreover, Tian [22]
investigated the maximal and minimal ranks and inertias of
the quadratic Hermitian matrix function

𝑓 (𝑋) = 𝑄 − 𝑋𝑃𝑋
∗ (4)

such that 𝐴𝑋 = 𝐶.
The goal of this paper is to give the maximal andminimal

ranks and inertias of the matrix function (4) subject to the
consistent system of matrix equations

𝐴𝑋 = 𝐶, 𝑋𝐵 = 𝐷, (5)

where 𝑄 ∈ C𝑛×𝑛
ℎ

, 𝑃 ∈ C
𝑝×𝑝

ℎ
are given complex matrices.

As applications, we consider the necessary and sufficient
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conditions for the solvability to the systems of matrix equa-
tions and inequality

𝐴𝑋 = 𝐶, 𝑋𝐵 = 𝐷, 𝑋𝑃𝑋
∗

= 𝑄,

𝐴𝑋 = 𝐶, 𝑋𝐵 = 𝐷, 𝑋𝑃𝑋
∗

> 𝑄,

𝐴𝑋 = 𝐶, 𝑋𝐵 = 𝐷, 𝑋𝑃𝑋
∗

< 𝑄,

𝐴𝑋 = 𝐶, 𝑋𝐵 = 𝐷, 𝑋𝑃𝑋
∗

≥ 𝑄,

𝐴𝑋 = 𝐶, 𝑋𝐵 = 𝐷, 𝑋𝑃𝑋
∗

≤ 𝑄,

(6)

in the Löwner partial ordering to be feasible, respectively.

2. The Optimization on Ranks and Inertias
of (4) Subject to (5)

In this section, we consider the maximal and minimal ranks
and inertias of the quadratic Hermitian matrix function (4)
subject to (5). We begin with the following lemmas.

Lemma 1 (see [3]). Let 𝐴 ∈ C𝑚×𝑚
ℎ

, 𝐵 ∈ C𝑚×𝑝, and 𝐶 ∈ C𝑞×𝑚

be given and denote

𝑃
1
= [

𝐴 𝐵

𝐵
∗

0
] , 𝑃

2
= [

𝐴 𝐶
∗

𝐶 0
] ,

𝑃
3
= [

𝐴 𝐵 𝐶
∗

𝐵
∗

0 0
] , 𝑃

4
= [

𝐴 𝐵 𝐶
∗

𝐶 0 0
] .

(7)

Then

max
𝑌∈C𝑝×𝑞

𝑟 [𝐴 − 𝐵𝑌𝐶 − (𝐵𝑌𝐶)
∗

]

= min {𝑟 [𝐴 𝐵 𝐶
∗

] , 𝑟 (𝑃
1
) , 𝑟 (𝑃

2
)} ,

min
𝑌∈C𝑝×𝑞

𝑟 [𝐴 − 𝐵𝑌𝐶 − (𝐵𝑌𝐶)
∗

]

= 2𝑟 [𝐴 𝐵 𝐶
∗

]

+max {𝑤
+
+ 𝑤
−
, 𝑔
+
+ 𝑔
−
, 𝑤
+
+ 𝑔
−
, 𝑤
−
+ 𝑔
+
} ,

max
𝑌∈C𝑝×𝑞

𝑖
±
[𝐴 − 𝐵𝑌𝐶 − (𝐵𝑌𝐶)

∗

] = min {𝑖
±
(𝑃
1
) , 𝑖
±
(𝑃
2
)} ,

min
𝑌∈C𝑝×𝑞

𝑖
±
[𝐴 − 𝐵𝑌𝐶 − (𝐵𝑌𝐶)

∗

]

= 𝑟 [𝐴 𝐵 𝐶
∗

] +max {𝑖
±
(𝑃
1
) − 𝑟 (𝑃

3
) , 𝑖
±
(𝑃
2
) − 𝑟 (𝑃

4
)} ,

(8)

where

𝑤
±
= 𝑖
±
(𝑃
1
) − 𝑟 (𝑃

3
) , 𝑔

±
= 𝑖
±
(𝑃
2
) − 𝑟 (𝑃

4
) . (9)

Lemma 2 (see [4]). Let 𝐴 ∈ C𝑚×𝑛, 𝐵 ∈ C𝑚×𝑘, 𝐶 ∈ C𝑙×𝑛, 𝐷 ∈

C𝑚×𝑝, 𝐸 ∈ C𝑞×𝑛, 𝑄 ∈ C𝑚1×𝑘, and 𝑃 ∈ C𝑙×𝑛1 be given. Then

(1) 𝑟 (𝐴) + 𝑟 (𝑅
𝐴
𝐵) = 𝑟 (𝐵) + 𝑟 (𝑅

𝐵
𝐴) = 𝑟 [𝐴 𝐵] ,

(2) 𝑟 (𝐴) + 𝑟 (𝐶𝐿
𝐴
) = 𝑟 (𝐶) + 𝑟 (𝐴𝐿

𝐶
) = 𝑟 [

𝐴

𝐶
] ,

(3) 𝑟 (𝐵) + 𝑟 (𝐶) + 𝑟 (𝑅
𝐵
𝐴𝐿
𝐶
) = 𝑟 [

𝐴 𝐵

𝐶 0
] ,

(4) 𝑟 (𝑃) + 𝑟 (𝑄) + 𝑟 [
𝐴 𝐵𝐿

𝑄

𝑅
𝑃
𝐶 0

] = 𝑟[

[

𝐴 𝐵 0

𝐶 0 𝑃

0 𝑄 0

]

]

,

(5) 𝑟 [
𝑅
𝐵
𝐴𝐿
𝐶
𝑅
𝐵
𝐷

𝐸𝐿
𝐶

0
] + 𝑟 (𝐵) + 𝑟 (𝐶) = 𝑟[

[

𝐴 𝐷 𝐵

𝐸 0 0

𝐶 0 0

]

]

.

(10)

Lemma 3 (see [23]). Let 𝐴 ∈ C𝑚×𝑚
ℎ

, 𝐵 ∈ C𝑚×𝑛, 𝐶 ∈ C𝑛×𝑛
ℎ

,
𝑄 ∈ C𝑚×𝑛, and 𝑃 ∈ C𝑝×𝑛 be given, and, 𝑇 ∈ C𝑚×𝑚 be
nonsingular. Then

(1) 𝑖
±
(𝑇𝐴𝑇

∗

) = 𝑖
±
(𝐴) ,

(2) 𝑖
±
[
𝐴 0

0 𝐶
] = 𝑖
±
(𝐴) + 𝑖

±
(𝐶) ,

(3) 𝑖
±
[
0 𝑄

𝑄
∗

0
] = 𝑟 (𝑄) ,

(4) 𝑖
±
[

𝐴 𝐵𝐿
𝑃

𝐿
𝑃
𝐵
∗

0
] + 𝑟 (𝑃) = 𝑖

±

[

[

𝐴 𝐵 0

𝐵
∗

0 𝑃
∗

0 𝑃 0

]

]

.

(11)

Lemma 4. Let 𝐴, 𝐶, 𝐵, and 𝐷 be given. Then the following
statements are equivalent.

(1) System (5) is consistent.

(2) Let

𝑟 [𝐴 𝐶] = 𝑟 (𝐴) , [
𝐷

𝐵
] = 𝑟 (𝐵) , 𝐴𝐷 = 𝐶𝐵. (12)

In this case, the general solution can be written as

𝑋 = 𝐴
†

𝐶 + 𝐿
𝐴
𝐷𝐵
†

+ 𝐿
𝐴
𝑉𝑅
𝐵
, (13)

where 𝑉 is an arbitrary matrix over C with appropriate size.

Now we give the fundamental theorem of this paper.
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Theorem5. Let𝑓(𝑋) be as given in (4) and assume that𝐴𝑋 =

𝐶 and 𝑋𝐵 = 𝐷 in (5) is consistent. Then

max
𝐴𝑋=𝐶,𝑋𝐵=𝐷

𝑟 (𝑄 − 𝑋𝑃𝑋
∗

)

= min
{

{

{

𝑛 + 𝑟[

[

0 𝑃 𝑃

𝐴𝑄 𝐶𝑃 0

−𝐷
∗

0 𝐵
∗

]

]

− 𝑟 (𝐴) − 𝑟 (𝐵)

− 𝑟 (𝑃) , 2𝑛 + 𝑟 (𝐴𝑄𝐴
∗

− 𝐶𝑃𝐶
∗

)

−2𝑟 (𝐴) , 𝑟 [

[

𝑄 0 𝐷

0 −𝑃 𝐵

𝐷
∗

𝐵
∗

0

]

]

− 2𝑟 (𝐵)
}

}

}

,

min
𝐴𝑋=𝐶,𝑋𝐵=𝐷

𝑟 (𝑄 − 𝑋𝑃𝑋
∗

)

= 2𝑛 + 2𝑟[

[

0 𝑃 𝑃

𝐴𝑄 𝐶𝑃 0

−𝐷
∗

0 𝐵
∗

]

]

− 2𝑟 (𝐴) − 2𝑟 (𝐵) − 𝑟 (𝑃)

+max {𝑠
+
+ 𝑠
−
, 𝑡
+
+ 𝑡
−
, 𝑠
+
+ 𝑡
−
, 𝑠
−
+ 𝑡
+
} ,

max
𝐴𝑋=𝐶,𝑋𝐵=𝐷

𝑖
±
(𝑄 − 𝑋𝑃𝑋

∗

)

= min
{

{

{

𝑛 + 𝑖
±
(𝐴𝑄𝐴

∗

− 𝐶𝑃𝐶
∗

)

−𝑟 (𝐴) , 𝑖
±

[

[

𝑄 0 𝐷

0 −𝑃 𝐵

𝐷
∗

𝐵
∗

0

]

]

− 𝑟 (𝐵)
}

}

}

,

(14)

min
𝐴𝑋=𝐶,𝑋𝐵=𝐷

𝑖
±
(𝑄 − 𝑋𝑃𝑋

∗

)

= 𝑛 + 𝑟[

[

0 𝑃 𝑃

𝐴𝑄 𝐶𝑃 0

−𝐷
∗

0 𝐵
∗

]

]

− 𝑟 (𝐴) − 𝑟 (𝐵)

− 𝑖
±
(𝑃) +max {𝑠

±
, 𝑡
±
} ,

(15)

where

𝑠
±
=−𝑛+𝑟 (𝐴)−𝑖

∓
(𝑃)+𝑖

±
(𝐴𝑄𝐴

∗

−𝐶𝑃𝐶
∗

)−𝑟 [
𝐶𝑃 𝐴𝑄𝐴

∗

𝐵
∗

𝐷
∗

𝐴
∗] ,

𝑡
±
=−𝑛+𝑟 (𝐴)−𝑖

∓
(𝑃)+𝑖

±

[

[

𝑄 0 𝐷

0 −𝑃 𝐵

𝐷
∗

𝐵
∗

0

]

]

−[

[

0 𝑃 𝐵

𝐴𝑄 𝐶𝑃 0

𝐷
∗

𝐵
∗

0

]

]

.

(16)

Proof. It follows from Lemma 4 that the general solution of
(4) can be expressed as

𝑋 = 𝑋
0
+ 𝐿
𝐴
𝑉𝑅
𝐵
, (17)

where 𝑉 is an arbitrary matrix over C and 𝑋
0
is a special

solution of (5). Then

𝑄 − 𝑋𝑃𝑋
∗

= 𝑄 − (𝑋
0
+ 𝐿
𝐴
𝑉𝑅
𝐵
) 𝑃(𝑋

0
+ 𝐿
𝐴
𝑉𝑅
𝐵
)
∗

. (18)

Note that

𝑟 [𝑄 − (𝑋
0
+ 𝐿
𝐴
𝑉𝑅
𝐵
) 𝑃(𝑋

0
+ 𝐿
𝐴
𝑉𝑅
𝐵
)
∗

]

= 𝑟 [
𝑄 (𝑋

0
+ 𝐿
𝐴
𝑉𝑅
𝐵
) 𝑃

𝑃(𝑋
0
+ 𝐿
𝐴
𝑉𝑅
𝐵
)
∗

𝑃
] − 𝑟 (𝑃)

= 𝑟 [[
𝑄 𝑋

0
𝑃

𝑃𝑋
∗

0
𝑃
] + [

𝐿
𝐴

0
]𝑉 [0 𝑅

𝐵
𝑃]

+([
𝐿
𝐴

0
]𝑉 [0 𝑅

𝐵
𝑃])

∗

] − 𝑟 (𝑃) ,

(19)

𝑖
±
[𝑄 − (𝑋

0
+ 𝐿
𝐴
𝑉𝑅
𝐵
) 𝑃(𝑋

0
+ 𝐿
𝐴
𝑉𝑅
𝐵
)
∗

]

= 𝑖
±
[

𝑄 (𝑋
0
+ 𝐿
𝐴
𝑉𝑅
𝐵
) 𝑃

𝑃(𝑋
0
+ 𝐿
𝐴
𝑉𝑅
𝐵
)
∗

𝑃
] − 𝑖
±
(𝑃)

= 𝑖
±
[[

𝑄 𝑋
0
𝑃

𝑃𝑋
∗

0
𝑃
] + [

𝐿
𝐴

0
]𝑉 [0 𝑅

𝐵
𝑃]

+([
𝐿
𝐴

0
]𝑉 [0 𝑅

𝐵
𝑃])

∗

] − 𝑖
±
(𝑃) .

(20)

Let

𝑞 (𝑉) = [
𝑄 𝑋

0
𝑃

𝑃𝑋
∗

0
𝑃
] + [

𝐿
𝐴

0
]𝑉 [0 𝑅

𝐵
𝑃]

+ ([
𝐿
𝐴

0
]𝑉 [0 𝑅

𝐵
𝑃])

∗

.

(21)

Applying Lemma 1 to (19) and (20) yields

max
𝑉

𝑟 [𝑞 (𝑉)] = min {𝑟 (𝑀) , 𝑟 (𝑀
1
) , 𝑟 (𝑀

2
)} ,

min
𝑉

𝑟 [𝑞 (𝑉)]

= 2𝑟 (𝑀) +max {𝑠
+
+ 𝑠
−
, 𝑡
+
+ 𝑡
−
, 𝑠
+
+ 𝑡
−
, 𝑠
−
+ 𝑡
+
} ,

max
𝑉

𝑖
±
[𝑞 (𝑉)] = min {𝑖

±
(𝑀
1
) , 𝑖
±
(𝑀
2
)} ,

min
𝑉

𝑖
±
[𝑞 (𝑉)] = 𝑟 (𝑀) +max {𝑠

±
, 𝑡
±
} ,

(22)

where

𝑀=[
𝑄 𝑋

0
𝑃 𝐿
𝐴

0

𝑃𝑋
∗

0
𝑃 0 𝑃𝑅

𝐵

] , 𝑀
1
=[

[

𝑄 𝑋
0
𝑃 𝐿
𝐴

𝑃𝑋
∗

0
𝑃 0

𝐿
𝐴

0 0

]

]

,

𝑀
2
=[

[

𝑄 𝑋
0
𝑃 0

𝑃𝑋
∗

0
𝑃 𝑃𝑅

𝐵

0 𝑅
𝐵
𝑃 0

]

]

, 𝑀
3
=[

[

𝑄 𝑋
0
𝑃 𝐿
𝐴

0

𝑃𝑋
∗

0
𝑃 0 𝑃𝑅

𝐵

𝐿
𝐴

0 0 0

]

]

,

𝑀
4
= [

[

𝑄 𝑋
0
𝑃 𝐿
𝐴

0

𝑃𝑋
∗

0
𝑃 0 𝑃𝑅

𝐵

0 𝑅
𝐵
𝑃 0 0

]

]

,

𝑠
±
= 𝑖
±
(𝑀
1
) − 𝑟 (𝑀

3
) , 𝑡

±
= 𝑖
±
(𝑀
2
) − 𝑟 (𝑀

4
) .

(23)
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Applying Lemmas 2 and 3, elementary matrix operations and
congruence matrix operations, we obtain

𝑟 (𝑀) = 𝑛 + 𝑟[

[

0 𝑃 𝑃

𝐴𝑄 𝐶𝑃 0

−𝐷
∗

0 𝐵
∗

]

]

− 𝑟 (𝐴) − 𝑟 (𝐵) ,

𝑟 (𝑀
1
) = 2𝑛 + 𝑟 (𝐴𝑄𝐴

∗

− 𝐶𝑃𝐶
∗

) − 2𝑟 (𝐴) + 𝑟 (𝑃) ,

𝑖
±
(𝑀
1
) = 𝑛 + 𝑖

±
(𝐴𝑄𝐴

∗

− 𝐶𝑃𝐶
∗

) − 𝑟 (𝐴) + 𝑖
±
(𝑃) ,

𝑟 (𝑀
2
) = 𝑟[

[

𝑄 0 𝐷

0 −𝑃 𝐵

𝐷
∗

𝐵
∗

0

]

]

− 2𝑟 (𝐵) + 𝑟 (𝑃) ,

𝑖
±
(𝑀
2
) = 𝑖
±

[

[

𝑄 0 𝐷

0 −𝑃 𝐵

𝐷
∗

𝐵
∗

0

]

]

− 𝑟 (𝐵) + 𝑖
±
(𝑃) ,

𝑟 (𝑀
3
) = 2𝑛 + 𝑟 (𝑃) − 2𝑟 (𝐴) − 𝑟 (𝐵) + 𝑟 [

𝐶𝑃 𝐴𝑄𝐴
∗

𝐵
∗

𝐷
∗

𝐴
∗] ,

𝑟 (𝑀
4
) = 𝑛 + 𝑟 (𝑃) + 𝑟[

[

0 𝑃 𝐵

𝐴𝑄 𝐶𝑃 0

𝐷
∗

𝐵
∗

0

]

]

− 2𝑟 (𝐵) − 𝑟 (𝐴) .

(24)

Substituting (24) into (22), we obtain the results.

Using immediately Theorem 5, we can easily get the
following.

Theorem 6. Let 𝑓(𝑋) be as given in (4), 𝑠
±
and let 𝑡

±
be as

given in Theorem 5 and assume that 𝐴𝑋 = 𝐶 and 𝑋𝐵 = 𝐷 in
(5) are consistent. Then we have the following.

(a) 𝐴𝑋 = 𝐶 and 𝑋𝐵 = 𝐷 have a common solution such
that 𝑄 − 𝑋𝑃𝑋

∗

≥ 0 if and only if

𝑛 + 𝑟[

[

0 𝑃 𝑃

𝐴𝑄 𝐶𝑃 0

−𝐷
∗

0 𝐵
∗

]

]

− 𝑟 (𝐴) − 𝑟 (𝐵) − 𝑖
−
(𝑃) + 𝑠

−
≤ 0,

𝑛 + 𝑟[

[

0 𝑃 𝑃

𝐴𝑄 𝐶𝑃 0

−𝐷
∗

0 𝐵
∗

]

]

− 𝑟 (𝐴) − 𝑟 (𝐵) − 𝑖
−
(𝑃) + 𝑡

−
≤ 0.

(25)

(b) 𝐴𝑋 = 𝐶 and 𝑋𝐵 = 𝐷 have a common solution such
that 𝑄 − 𝑋𝑃𝑋

∗

≤ 0 if and only if

𝑛 + 𝑟[

[

0 𝑃 𝑃

𝐴𝑄 𝐶𝑃 0

−𝐷
∗

0 𝐵
∗

]

]

− 𝑟 (𝐴) − 𝑟 (𝐵) − 𝑖
+
(𝑃) + 𝑠

+
≤ 0,

𝑛 + 𝑟[

[

0 𝑃 𝑃

𝐴𝑄 𝐶𝑃 0

−𝐷
∗

0 𝐵
∗

]

]

− 𝑟 (𝐴) − 𝑟 (𝐵) − 𝑖
+
(𝑃) + 𝑡

+
≤ 0.

(26)

(c) 𝐴𝑋 = 𝐶 and 𝑋𝐵 = 𝐷 have a common solution such
that 𝑄 − 𝑋𝑃𝑋

∗

> 0 if and only if

𝑖
+
(𝐴𝑄𝐴

∗

− 𝐶𝑃𝐶
∗

) − 𝑟 (𝐴) ≥ 0,

𝑖
+

[

[

𝑄 0 𝐷

0 −𝑃 𝐵

𝐷
∗

𝐵
∗

0

]

]

− 𝑟 (𝐵) ≥ 𝑛.
(27)

(d) 𝐴𝑋 = 𝐶 and 𝑋𝐵 = 𝐷 have a common solution such
that 𝑄 − 𝑋𝑃𝑋

∗

< 0 if and only if

𝑖
−
(𝐴𝑄𝐴

∗

− 𝐶𝑃𝐶
∗

) − 𝑟 (𝐴) ≥ 0,

𝑖
−

[

[

𝑄 0 𝐷

0 −𝑃 𝐵

𝐷
∗

𝐵
∗

0

]

]

− 𝑟 (𝐵) ≥ 𝑛.
(28)

(e) All common solutions of 𝐴𝑋 = 𝐶 and 𝑋𝐵 = 𝐷 satisfy
𝑄 − 𝑋𝑃𝑋

∗

≥ 0 if and only if

𝑛 + 𝑖
−
(𝐴𝑄𝐴

∗

− 𝐶𝑃𝐶
∗

) − 𝑟 (𝐴) = 0,

or, 𝑖
−

[

[

𝑄 0 𝐷

0 −𝑃 𝐵

𝐷
∗

𝐵
∗

0

]

]

− 𝑟 (𝐵) = 0.
(29)

(f) All common solutions of 𝐴𝑋 = 𝐶 and 𝑋𝐵 = 𝐷 satisfy
𝑄 − 𝑋𝑃𝑋

∗

≤ 0 if and only if

𝑛 + 𝑖
+
(𝐴𝑄𝐴

∗

− 𝐶𝑃𝐶
∗

) − 𝑟 (𝐴) = 0,

or, 𝑖
+

[

[

𝑄 0 𝐷

0 −𝑃 𝐵

𝐷
∗

𝐵
∗

0

]

]

− 𝑟 (𝐵) = 0.
(30)

(g) All common solutions of 𝐴𝑋 = 𝐶 and 𝑋𝐵 = 𝐷 satisfy
𝑄 − 𝑋𝑃𝑋

∗

> 0 if and only if

𝑛 + 𝑟[

[

0 𝑃 𝑃

𝐴𝑄 𝐶𝑃 0

−𝐷
∗

0 𝐵
∗

]

]

− 𝑟 (𝐴) − 𝑟 (𝐵) − 𝑖
+
(𝑃) + 𝑠

+
= 𝑛,

(31)
or

𝑛 + 𝑟[

[

0 𝑃 𝑃

𝐴𝑄 𝐶𝑃 0

−𝐷
∗

0 𝐵
∗

]

]

− 𝑟 (𝐴) − 𝑟 (𝐵) − 𝑖
+
(𝑃) + 𝑡

+
= 𝑛.

(32)

(h) All common solutions of 𝐴𝑋 = 𝐶 and 𝑋𝐵 = 𝐷 satisfy
𝑄 − 𝑋𝑃𝑋

∗

< 0 if and only if

𝑛 + 𝑟[

[

0 𝑃 𝑃

𝐴𝑄 𝐶𝑃 0

−𝐷
∗

0 𝐵
∗

]

]

− 𝑟 (𝐴) − 𝑟 (𝐵) − 𝑖
−
(𝑃) + 𝑠

−
= 𝑛,

(33)
or

𝑛 + 𝑟[

[

0 𝑃 𝑃

𝐴𝑄 𝐶𝑃 0

−𝐷
∗

0 𝐵
∗

]

]

− 𝑟 (𝐴) − 𝑟 (𝐵) − 𝑖
−
(𝑃) + 𝑡

−
= 𝑛.

(34)
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(i) 𝐴𝑋 = 𝐶, 𝑋𝐵 = 𝐷, and 𝑄 = 𝑋𝑃𝑋
∗ have a common

solution if and only if

2𝑛+2𝑟[

[

0 𝑃 𝑃

𝐴𝑄 𝐶𝑃 0

−𝐷
∗

0 𝐵
∗

]

]

−2𝑟 (𝐴)−2𝑟 (𝐵)−𝑟 (𝑃)+𝑠
+
+𝑠
−
≤0,

2𝑛+2𝑟[

[

0 𝑃 𝑃

𝐴𝑄 𝐶𝑃 0

−𝐷
∗

0 𝐵
∗

]

]

−2𝑟 (𝐴)−2𝑟 (𝐵)−𝑟 (𝑃)+𝑡
+
+𝑡
−
≤0,

2𝑛+2𝑟[

[

0 𝑃 𝑃

𝐴𝑄 𝐶𝑃 0

−𝐷
∗

0 𝐵
∗

]

]

−2𝑟 (𝐴)−2𝑟 (𝐵)−𝑟 (𝑃) + 𝑠
+
+𝑡
−
≤0,

2𝑛+2𝑟[

[

0 𝑃 𝑃

𝐴𝑄 𝐶𝑃 0

−𝐷
∗

0 𝐵
∗

]

]

−2𝑟 (𝐴)−2𝑟 (𝐵)−𝑟 (𝑃) + 𝑠
−
+𝑡
+
≤0.

(35)

Let 𝑃 = 𝐼 in Theorem 5, we get the following corollary.

Corollary 7. Let 𝑄 ∈ C𝑛×𝑛, 𝐴, 𝐵, 𝐶, and𝐷 be given. Assume
that (5) is consistent. Denote

𝑇
1
= [

𝐶 𝐴𝑄

𝐵
∗

𝐷
∗] , 𝑇

2
= 𝐴𝑄𝐴

∗

− 𝐶𝐶
∗

,

𝑇
3
= [

𝑄 𝐷

𝐷
∗

𝐵
∗

𝐵
] , 𝑇

4
= [

𝐶 𝐴𝑄𝐴
∗

𝐵
∗

𝐷
∗

𝐴
∗] ,

𝑇
5
= [

𝐶𝐵 𝐴𝑄

𝐵
∗

𝐵 𝐷
∗] .

(36)

Then,

max
𝐴𝑋=𝐶,𝑋𝐵=𝐷

𝑟 (𝑄 − 𝑋𝑋
∗

)

= min {𝑛 + 𝑟 (𝑇
1
) − 𝑟 (𝐴) − 𝑟 (𝐵) , 2𝑛 + 𝑟 (𝑇

2
)

−2𝑟 (𝐴) , 𝑛 + 𝑟 (𝑇
3
) − 2𝑟 (𝐵)} ,

min
𝐴𝑋=𝐶,𝑋𝐵=𝐷

𝑟 (𝑄 − 𝑋𝑋
∗

)

= 2𝑟 (𝑇
1
) +max {𝑟 (𝑇

2
) − 2𝑟 (𝑇

4
) , −𝑛 + 𝑟 (𝑇

3
)

− 2𝑟 (𝑇
5
) , 𝑖
+
(𝑇
2
) + 𝑖
−
(𝑇
3
)

− 𝑟 (𝑇
4
) − 𝑟 (𝑇

5
) , −𝑛 + 𝑖

−
(𝑇
2
)

+𝑖
+
(𝑇
3
) − 𝑟 (𝑇

4
) − 𝑟 (𝑇

5
)}

max
𝐴𝑋=𝐶,𝑋𝐵=𝐷

𝑖
+
(𝑄 − 𝑋𝑋

∗

)

= min {𝑛 + 𝑖
+
(𝑇
2
) − 𝑟 (𝐴) , 𝑖

+
(𝑇
3
) − 𝑟 (𝐵)} ,

max
𝐴𝑋=𝐶,𝑋𝐵=𝐷

𝑖
−
(𝑄 − 𝑋𝑋

∗

)

= min {𝑛 + 𝑖
−
(𝑇
2
) − 𝑟 (𝐴) , 𝑛 + 𝑖

−
(𝑇
3
) − 𝑟 (𝐵)} ,

min
𝐴𝑋=𝐶,𝑋𝐵=𝐷

𝑖
+
(𝑄 − 𝑋𝑋

∗

)

= 𝑟 (𝑇
1
) +max {𝑖

+
(𝑇
2
) − 𝑟 (𝑇

4
) , 𝑖
+
(𝑇
3
) − 𝑛 − 𝑟 (𝑇

5
)} ,

min
𝐴𝑋=𝐶,𝑋𝐵=𝐷

𝑖
−
(𝑄 − 𝑋𝑋

∗

)

= 𝑟 (𝑇
1
) +max {𝑖

−
(𝑇
2
) − 𝑟 (𝑇

4
) , 𝑖
−
(𝑇
3
) − 𝑟 (𝑇

5
)} .

(37)

Remark 8. Corollary 7 is one of the results in [24].

Let 𝐵 and 𝐷 vanish in Theorem 5, then we can obtain
the maximal and minimal ranks and inertias of (4) subject
to 𝐴𝑋 = 𝐶.

Corollary 9. Let 𝑓(𝑋) be as given in (4) and assume that
𝐴𝑋 = 𝐶 is consistent. Then

max
𝐴𝑋=𝐶

𝑟 (𝑄 − 𝑋𝑃𝑋
∗

)

= min {𝑛 + 𝑟 [𝐴𝑄 𝐶𝑃] − 𝑟 (𝐴) − 𝑟 (𝐵) ,

2𝑛 + 𝑟 (𝐴𝑄𝐴
∗

− 𝐶𝑃𝐶
∗

) − 2𝑟 (𝐴) , 𝑟 (𝑄) + 𝑟 (𝑃)}

min
𝐴𝑋=𝐶

𝑟 (𝑄 − 𝑋𝑃𝑋
∗

)

= 2𝑛 + 2𝑟 [𝐴𝑄 𝐶𝑃] − 2𝑟 (𝐴)

+max {𝑠
+
+ 𝑠
−
, 𝑡
+
+ 𝑡
−
, 𝑠
+
+ 𝑡
−
, 𝑠
−
+ 𝑡
+
} ,

max
𝐴𝑋=𝐶

𝑖
±
(𝑄 − 𝑋𝑃𝑋

∗

)

= min {𝑛 + 𝑖
±
(𝐴𝑄𝐴

∗

− 𝐶𝑃𝐶
∗

) − 𝑟 (𝐴) , 𝑖
±
(𝑄) + 𝑖

∓
(𝑃)} ,

min
𝐴𝑋=𝐶

𝑖
±
(𝑄 − 𝑋𝑃𝑋

∗

)

= 𝑛 + 𝑟 [𝐴𝑄 𝐶𝑃] − 𝑟 (𝐴) + 𝑖
∓
(𝑃) +max {𝑠

±
, 𝑡
±
} ,

(38)

where

𝑠
±
= − 𝑛 + 𝑟 (𝐴) − 𝑖

∓
(𝑃)

+ 𝑖
±
(𝐴𝑄𝐴

∗

− 𝐶𝑃𝐶
∗

) − 𝑟 [𝐶𝑃 𝐴𝑄𝐴
∗

] ,

𝑡
±
= −𝑛 + 𝑟 (𝐴) + 𝑖

±
(𝑄) − 𝑟 (𝑃) − [𝐴𝑄 𝐶𝑃] .

(39)

Remark 10. Corollary 9 is one of the results in [22].
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