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This work presents an analysis methodology based on the use of the Finite ElementMethod (FEM) nowadays considered one of the
main numerical tools for solving Boundary Value Problems (BVPs).The proposed methodology, so-called cg-FEM (Cartesian grid
FEM), has been implemented for fast and accurate numerical analysis of 2D linear elasticity problems. The traditional FEM uses
geometry-conforming meshes; however, in cg-FEM the analysis mesh is not conformal to the geometry. This allows for defining
very efficient mesh generation techniques and using a robust integration procedure, to accurately integrate the domain’s geometry.
The hierarchical data structure used in cg-FEM together with the Cartesian meshes allow for trivial data sharing between similar
entities.The cg-FEMmethodology uses advanced recovery techniques to obtain an improved solution of the displacement and stress
fields (for which a discretization error estimator in energy norm is available) that will be the output of the analysis. All this results
in a substantial increase in accuracy and computational efficiency with respect to the standard FEM. cg-FEM has been applied in
structural shape optimization showing robustness and computational efficiency in comparison with FEM solutions obtained with
a commercial code, despite the fact that cg-FEM has been fully implemented in MATLAB.

1. Introduction

Researchers have devoted many efforts to solve Boundary
Value Problems (BVPs) that in one way or another are rele-
vant to different disciplines.The advent of computers allowed
the researchers to develop methods to obtain numerical
solutions of this type of problems. One of the most common
methods used to solve BVPs is the Finite Element Method
(FEM) which, nowadays, is broadly used for industrial appli-
cations. In the FEM the BVP is discretized subdividing
(meshing) the problem domain Ω into small subdomains
(elements) of simple geometry. The original FEM strongly
relies on a mesh that must conform the geometry of the
domain to be analyzed and must be adapted to the solution
of the problem, for example, using ℎ-adapted meshes where
elements of smaller size are used in regionswhere the solution
is less smooth. According to [1], a study at Sandia National
Laboratories revealed that the process of creating an analysis-
suitable geometry and the meshing of that geometry require
about 80% of overall analysis time, whereas only 20% of
overall time is devoted to the analysis itself. One way to

decrease this 80% of overall time prior to the analysis is
to make the geometry of the mesh used for the analysis
independent of the domain to be analyzed.This approach can
considerably reduce the time devoted to prepare an analysis-
suitable model and mesh the domain and is especially useful
in applications that would require continuous remeshings
during the analysis: structural shape optimization problems,
wear modelling, and so forth.

There have been several variations of the original FEM
that followed this path to improve the efficiency of the FEM.
Two of these improvements of the original FEM are the
Extended Finite ElementMethod (XFEM) [2, 3] developed by
Belytschko and his group at Northwestern University (USA)
and the Generalized Finite Element Method (GFEM) [4, 5]
developed by Melenk and Babuška at the University of Texas
at Austin (USA). XFEM is mainly devoted to the analysis of
inclusions or cracks. It uses the Partition of Unity Method
(PUM) [6] to introduce enrichment functions to represent
the displacement discontinuity between the crack faces, the
singular fields around the crack tip, and the geometrical
description of the crack by means of the Level Set Method
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(LSM) [7]. The method improves the accuracy of the results
and is particularly interesting in crack growing problems as
the mesh can remain unchanged when the crack evolves.
GFEM [4] follows a similar approach also based in the PUM
to include enrichment functions to describe the known
behavior of the solution. In GFEM the mesh used for the
analysis can be independent of the geometry. For example, a
Cartesian grid is used in the GFEM III implementation
described in [4]. Both XFEM andGFEM require the use of an
integration mesh, purely for integration purposes, in the ele-
ments cut by the boundary to take into account the part of the
element actually lying within the domain. Another approach
to represent the geometry for nonconforming meshes is to
use the LSM for boundary representation [8]. Other authors
also combine the LSM for boundary representation with the
XFEM to represent a solution with gradient discontinuities
into an element containing more than one material [9, 10].

Another variation of the FEM, developed to improve its
performance, consists of using an auxiliary domainΩ

𝐸
which

embeds the problem domain Ω. In this approach, the dis-
cretized domain is Ω

𝐸
instead of the problem domain.

Generally Ω
𝐸
is a domain with a simple geometry that can

be easilymeshed.This technique is therefore closely related to
the GFEM.The analysis methodology presented in this paper
is based on this idea. In our implementation for 2D problems
Ω
𝐸
is a squarewhose discretization into squared quadrilateral

elements of uniform size is trivial. These techniques have
been used both in the Finite Volume Method (FVM) and in
the FEM. According to [11] the literature of these techniques
starts in the 60s when VK Saul’ev published, in Russian, the
paper. Solution of certain boundary-value problems on high-
speed computers by the fictitious-domain method (Sibirsk.
Mat. Z. 1963.4: 912-925). Subsequently it has been applied in
various fields, such as acoustics [12–14], fluid dynamics and
fluid-structure interaction [15, 16], biomedical problems [17,
18], convection-diffusion [19], and optimization [20–23].The
present work will only focus on the FEM framework.

These techniques have several names in the literature,
such as Fictitious Domain [11, 12, 19, 20, 24], Implicit Meshing
[25], Immersed FEM [26], Immersed Boundary Method [15,
27], and Fixed grid FEM [28, 29]. They have been described
in [30] under the name Finite Elements in Ambient Space.

Since the mesh is not conforming with the geometry,
these methods require the information of the problem do-
main to be available during the evaluation of element inte-
grals.The accuracy of the results provided by these techniques
depends on the accuracy of the integration process. Hence,
the methodology proposed in this paper includes an efficient
integration procedure which would be even able to consider
the actual boundary providing the exact element integrals (up
to the accuracy of the numerical integration and round-off
errors).

One major difference of these methodologies with the
standard FEM is the consideration of the Dirichlet boundary
conditions as in the proposed methodology; in the general
case, there are no nodes lying on these boundaries. A pro-
cedure based on the use of the Lagrangemultipliers technique
has been used to apply these boundary conditions.

All these previous approaches are mainly interested in
decoupling the geometry representation from the FE mesh
where the solution is interpolated. Generally, in these last
techniques, the computational cost is concentrated along the
elements falling on the boundary. The same occurs in the
Boundary Element Method (BEM) where only the external
boundary is considered for the analysis. In this framework,
recent works of Simpson et al. [31] and Scott et al. [32] where
the Isogeometric Analysis IGA [33] with NURBS and T-
Splines, respectively, have been adapted to the BEM. Thus,
the geometry and the BEMmesh are strongly coupled in this
approach.

In this paper we will consider the FE solution of linear
elasticity problems, where the Zienkiewicz and Zhu [34] (ZZ)
error estimator in energy norm is commonly used to quantify
the accuracy of the numerical solution.The information pro-
vided by the ZZ error estimator at element level can be used to
improve the model by means of ℎ-adaptive procedures. The
ZZ error estimator is widely used due to its robustness, accu-
racy, and easy implementation but also because it requires the
evaluation of a recovered stress solution 𝜎∗, more accurate
than the raw FE solution 𝜎ℎ, that can be used instead of 𝜎ℎ.
From all recovery techniques we can highlight those based
on the Superconvergent Patch Recovery (SPR) technique
[35] also developed by Zienkiewicz and Zhu. The publica-
tion of the original SPR technique was followed by several
works aimed at improving its quality [36–38]. Ródenas and
coworkers also proposed several improvements [39–42] of
the original SPR in order to yield a highly accurate recovered
field which locally fulfills the equilibrium and compatibility
equations. These techniques allowed us to obtain the first
procedures to get practical upper error bounds for FEM and
XFEMbased on recovery techniques [40, 42] instead of using
the traditional residual-based error estimators [43].

Reference [25] indicates the following: “Unfortunately,
for an implicit mesh it would be very difficult to implement
such a superconvergent recovery scheme of the stress field for
elements that intersect the boundary.” However in the XFEM
framework, where the mesh is independent of the crack,
efficient recovery techniques have been already proposed
based on theMoving Least Squares (MLS) technique [44–47]
and some on the SPR technique [42, 48], which introduce
worthy improvements to the solution specially along the
boundaries, even in elements trimmed by the crack. These
SPR-based techniques have been adapted in this work to the
context of Cartesian grids.

According to some authors [11, 25, 27, 28], themain draw-
back of the use of the techniques under the large umbrella of
finite elements in ambient space is the low accuracy along the
boundaries since they are not explicitly represented. In the
proposed methodology, the recovery techniques developed
by Ródenas and coworkers [39, 40, 42, 48] have been specially
adapted both to be used in the Zienkiewicz and Zhu error
estimator [34] that will guide the ℎ-adaptive refinement pro-
cess to improve the quality of the solution and to neutralize
the possible lack of accuracy along the boundaries in the cg-
FEM framework providing an enhanced solution (for which
an error estimator is available) that will be used instead of the
FE solution.
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In this contribution we have applied cg-FEM to a struc-
tural shape optimization analysis. This type of processes will
benefit from the computational efficiency and accuracy of
cg-FEM but also from the data structure that will allow for
sharing information between different geometries analyzed
during the process, further improving the behavior of the
optimization process.

The paper is organized as follows. The problem to be
solved is defined in Section 2. The main characteristics of
the proposed cg-FEMmethodology are presented in Sections
3 and 4, respectively, devoted to the use of Cartesian grids
independent of the geometry for the FE analysis and to the ℎ-
adaptive procedures specially adapted to the use of Cartesian
grids. Numerical examples will be used in Section 5 to
evaluate the performance of the cg-FEMmethodology.

2. Problem Statement

Let us consider the 2D linear elastic problem. Let u be the
displacement field defined in Ω ⊂ R2, the solution of the
boundary value problem:

−∇ ⋅ 𝜎 (u) = b in Ω,

𝜎 (u)n = t in Γ
𝑁
,

u = ũ in Γ
𝐷
,

(1)

where Γ
𝑁
and Γ
𝐷
, with 𝜕Ω = Γ

𝑁
∪Γ
𝐷
and Γ
𝑁
∩Γ
𝐷
= 0, are two

disjoint boundary parts where the Neumann and Dirichlet
boundary conditions are applied. b are the body loads, t are
the tractions along Γ

𝑁
, and ũ are the prescribed displacements

along Γ
𝐷
. The weak formulation of this problem reads as

follow: find u ∈ (𝑉 + ũ) such that

𝑎 (u, k) = 𝑙 (k) ∀k ∈ 𝑉, (2)

where𝑉 is the standard test space for the linear elasticity pro-
blem and

𝑎 (u, k) := ∫
Ω

𝜎(u)𝑇𝜖 (k) 𝑑Ω = ∫
Ω

𝜎(u)𝑇D−1𝜎 (k) 𝑑Ω,

𝑙 (k) := ∫
Ω

b𝑇k𝑑Ω + ∫
Γ𝑁

t𝑇k𝑑Γ,
(3)

where D is the Hook’s tensor and 𝜎 and 𝜖 are the stress and
strain operators, respectively.

This problem will be solved numerically by means of the
cg-FEMmethodology described in this paper, which includes
ℎ-adaptive refinement capabilities.The use of Cartesian grids
and a hierarchical data structure [49] improves the manipu-
lation information and reduces the computational cost of the
analysis.

3. On the Use of Cartesian Grids for
Efficient FE Structural Analysis

In the standard FEM themeshmust conform to the boundary
of the domain. This requirement, together with the need to

adequately refine the mesh in order to accurately represent
the behavior of interest whilst maintaining the geometry of
the elements as undistorted as possible, is the origin of the
high cost (both in terms of computing time and analyst’sman-
hours) of the process required to generate an adequate FE
model. In cg-FEM the mesh does not need to conform the
geometry. In other words, we will deal with two different
domains, Ω

𝐸
which is the domain to be meshed, a square in

our case, and the domain of the problem to be solved Ω. The
only requirement between these domains is thatΩ ⊂ Ω

𝐸
.

3.1. Generation of the Analysis Mesh. cg-FEM is based on
the use of a sequence of uniformly refined Cartesian meshes
where hierarchical relations between the different mesh
levels have been defined. This sequence of meshes used to
discretizeΩ

𝐸
is called the Cartesian grid pile (see Figure 1(a))

which embeds all the problem domain Ω and it is formed
by bilinear (Q4) or biquadratic (Q8) squared elements of
uniform size. A hierarchical data structure for ℎ-adaptive FE
analysis based on element splittingwas presented in [49].This
data structure took into account the hierarchical relations
between the elements of different levels, obtained during the
element splitting process, to speed up FE computations. The
data structure has been adapted to the particular case of a
sequence of meshes given by the Cartesian grid pile where
all elements are geometrically similar to the element used in
the coarsest level (level 0) of the Cartesian grid pile, called
the reference element. One of the main benefits of the data
structure is that, as described later in Section 3.3.1, in the
linear elastic case all elements of the Cartesian grid pile will
have the same stiffness matrix that will be evaluated only for
the reference element and shared with the rest of elements in
the pile, making the evaluation of element stiffness matrices
trivial. This and other hierarchical relations considered in
the data structure allow for a simplification of the mesh
refinement process and the preevaluation of most of the
information used by the FE code, remarkably influencing the
efficiency of the code.

The code uses functions that directly provide the nodal
coordinates, mesh topology, hierarchical relations, neighbor-
hood relations, and so forth, in an efficient manner, when re-
quired. Therefore, there is no need to store this information
in memory, considerably reducing memory usage.

The first step of the analysis consists of creating the anal-
ysis mesh used to obtain the FE solution of the problem.
This mesh is built taking a set of nonoverlapped elements
of different sizes (see Figure 1(b)) taken from the different
levels of the Cartesian grid pile. A maximum difference of
1 refinement level is allowed between adjacent elements in
the analysis mesh. Multipoint constraints (MPCs) [50, 51] are
used to enforce 𝐶0 continuity between adjacent elements of
different levels.

3.2. Geometry-Mesh Intersection: Integration. The analysis
mesh is formed by three element types (see Figure 2):

(i) boundary elements: elements placed along the do-
main boundary, 𝜕Ω. Only a part of each of these
elements remains into the problem domain Ω. The
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(a) Cartesian grid pile (b) Analysis mesh. ∘ nodes with multipoint constraints for 𝐶0
continuity

Figure 1: Difference between the Cartesian grid pile and the analysis mesh.

External

Internal

Boundary

Figure 2: Element types according to their relationwith the problem
boundary: internal elements, external elements, and boundary
elements.

evaluation of the stiffness matrix of these elements
requires evaluating the intersection between the
geometry and the sides of the elements. These inter-
section points will later be used in order to detect the
element area situated into the domain,

(ii) internal elements: elements fully located into the do-
main. These are treated as standard FE elements.
These elements have the same stiffness matrix as the
reference element as all of them are geometrically
similar to this element,

(iii) external elements: elements fully located outside of
the domain and therefore not considered in the ana-
lysis.

The bibliography shows several methods to evaluate the
intersection between the domain and the boundary elements
and to perform the domain integrals in these elements [16, 28,
29, 52].The process used in this work is similar to that shown
in [29] and consists of three steps:

(i) intersection of boundary with element edges:
Figure 3(a) shows the intersections of the curves that
define the boundary of the domain with the Cartesian
Grid element edges. The colored zone represents the
problem domain,

(ii) addition of intermediate points: as shown in
Figure 3(b) we will identify some extra points placed
on the curves that define the boundary. The number
of these extra points is related with the curvature
of the boundary. This set of points together with
the vertex nodes of the element are used to create
a Delaunay tessellation that defines integration
subdomains at each boundary element,

(iii) selection of internal triangular subdomains:
Figure 3(c) represents the integration subdomains
selected to evaluate the domain integral.

For each boundary element this process generates (a)
a discretization of the element for domain integration and
(b) a discretization of the boundary useful for boundary
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𝑡1

𝑡2 𝑡4

𝑡3
(a) Geometry and problem domain, intersec-
tion with elements

𝑡1

𝑡2 𝑡4

𝑡3
(b) Intermediate point addition and Delau-
nay’s tessellation

𝑡1

𝑡2 𝑡4

𝑡3

(c) Integration subdomain generation

Figure 3: Intersection and subdomain generation process in boundary elements.

integration.Thereby, the integration in those elements will be
performed using these integration subdomains by means of

∫
Ω
𝑒
⋂Ω

𝑓 (x) 𝑑Ω =
𝑛𝑡𝑠𝑒

∑

𝑖=1

∫
Ω
𝑒

𝑖

𝑓 (x) 𝑑Ω, (4)

whereΩ
𝑒
is the domain of element 𝑒, 𝑛𝑡𝑠

𝑒
is the number of tri-

angular integration subdomains in 𝑒 placed into the problem
domain, and Ω𝑒

𝑖
is each of the integration subdomains. The

curved boundaries can be approximated with straight line
segments in these triangular subdomains when Q4 elements
are used. Higher order elements would require higher order
approximations to the boundary to avoid modeling errors
that would reduce the theoretical convergence rate of the FE
analysis. Alternatively it is also possible to use the transfinite
mapping techniques commonly used in 𝑝-adaptive analysis
[53] to consider the exact geometry to increase the accuracy
of the results.The use of this mapping increases the computa-
tion cost per subdomain but reduces the number of triangular
subdomains. Our numerical experience shows that in order
to maintain the theoretical convergence rate for elements
of order 𝑝, at least 𝑝-order polynomials must be used to
approximate the boundary.

Boundary integration will be performed using a similar
procedure, discretizing the boundary Γ within element 𝑒 into
𝑛𝑙𝑠
𝑒
integration subdomains. The parametric definition of

the boundary provides the exact boundary representation
of Γ𝑒
𝑖
which is used for boundary integration instead of

approximations like the straight line segments represented in
Figure 3:

∫
Ω
𝑒
⋂Γ

𝑓 (x) 𝑑Γ =
𝑛𝑙𝑠𝑒

∑

𝑖=1

∫
Γ
𝑒

𝑖

𝑓 (x) 𝑑Γ. (5)

3.3. Element Data Sharing. The use of Cartesian grids
together with the data structure used in the implementation
of the cg-FEM methodology allows for simple and efficient
information data sharing between elements that considerably
reduces the total amount of calculations thus improving
the computatcional efficiency of the FE code. This section

describes, for the internal and boundary elements, how infor-
mation is shared between elements during the analysis.

3.3.1. Internal Elements. Reference [49] showed that, in linear
elasticity, the terms used to evaluate the stiffness matrix (B
matrix of derivatives of shape functions and Jacobian matrix
J) of geometrically similar elements are related by a constant
value evaluated as a function of the scaling factor 𝜆 between
the elements. In fact, the stiffness matrices of geometrically
similar elements are simply related by a factor 𝜆𝑑−2 where 𝑑 is
the number of spatial dimensions. Therefore the evaluation
of the stiffness matrices of all the internal elements of the
analysis mesh is trivial as, for constant material properties,
all these elements share the same stiffness matrix, which will
be evaluated only for the reference element (element used to
define the coarsest level, level 0) and then shared with the
rest of the internal elements through the hierarchical data
structure. This implies a major increase in efficiency of the
generation of the system of equations to be solved by the FE
code.

3.3.2. Boundary Elements. The hierarchical data structure
used enables the use on boundary elements of the so-called
vertical data sharing and horizontal data sharing described
next.

ℎ-Adaptive Refinement Process: Vertical Data Sharing. As
previously explained, the evaluation of the stiffness matrix
of all internal elements of the analysis mesh is trivial. As
each boundary element is trimmed differently, each of these
elements will require a particular evaluation of the element
matrices, following the procedure exposed in Section 3.2. It
could be said that the computational cost of the generation of
the FE model for the analysis is a function of the number of
boundary elements, that is, (𝑑 − 1)-dimensional.

In many ℎ-adaptive FE codes the previous meshes are
discarded and completely new meshes are created as the ℎ-
adaptive analysis evolves, thus preventing the reuse of infor-
mation evaluated in previous meshes. In our case, the use of
Cartesian grids together with the hierarchical data structure
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(a) Coarse mesh (b) Fine mesh

Figure 4: Vertical data sharing in two consecutive meshes of the ℎ-adaptive analysis of a gravity dam.The data structure relates the stiffness
matrices of internal elements (yellow) to that of the reference element. The calculations for boundary element colored in blue are reused.
Element matrices in the finest mesh are only evaluated for white elements.

allows for reusing calculations performed in previousmeshes.
The hierarchical data structure provides the so-called vertical
data sharing by means of which elements present in different
meshes of the ℎ-adaptive process will not be reevaluated for
the newer meshes.

As an example, Figure 4 shows two consecutive meshes
obtained during the ℎ-adaptive analysis of a gravity dam.
Note that elements colored in blue are present in bothmeshes.
The vertical data sharing allows for the reuse in the finest
mesh of the information evaluated in the coarsest mesh.
Note that in the finest mesh new element matrices are only
evaluated for white elements.

Shape Optimization Problems: Horizontal Data Sharing. The
use of optimization technologies for structural shape opti-
mization of mechanical components has increased its use
in industry during the last years. The main drawback of
these iterative technologies is their high computational cost,
which prevents their widespread use. Shape optimization
algorithms are composed by two different levels. The higher
level is in charge of generating the geometries to be considered
during the iterative process. On the other hand, the lower level
is in charge of analyzing each of the geometries proposed
by the higher level. A numerical method is used to obtain
an approximation to the exact behavior of each geometry. In
our case we will use cg-FEM in this lower level because of
the benefits in computational cost obtained when evaluating
each of the different geometries but also because data can
be shared between different geometries through the so-
called horizontal data sharing to further improve the overall
computational efficiency of the optimization process.

The optimization problem can be formally defined as
follows: given a decision space (search space)𝑋, an objective
space (objective values) 𝑌, the objective function 𝑓 : 𝑋 → 𝑌
and a set of constraints 𝑔

𝑖
:

min𝑓 (x)

where x = {𝑥
𝑖
} 𝑖 = 1, 2, . . . , 𝑛,

under g (x) ≤ {𝑔𝑗 (x)} 𝑗 = 1, 2, . . . , 𝑚,

𝑎
𝑖
≤ 𝑥
𝑖
≤ 𝑏
𝑖
𝑖 = 1, 2, . . . , 𝑛.

(6)

In the particular case of structural optimization the
objective function (OF) 𝑓 is, normally, the weight of the
component, 𝑥

𝑖
are the design variables (e.g., coordinates of

control points) that define the geometry,𝑔
𝑗
are the constraints

expressed, normally, in terms of displacements or stresses,
and 𝑎
𝑖
and 𝑏
𝑖
define the side constrains.

There are different optimization algorithms that can be
used in the higher level to create the different geometries to
be analyzed during the optimization process. The benefits of
the use of the cg-FEM methodology could be obtained with
any optimization algorithm that would require the use of the
FEM to analyze the different geometries during the iterative
process. In our case, in the numerical examples, we have
considered the use of the genetic algorithm (GA) proposed
by Storn andPrice [54].More precisely, we use theDifferential
Evolution (DE) algorithm, version DE1.

With the traditional FEM it is almost impossible to
enable the exchange of information between elements of
different geometries because, in general, the elements of
different meshes are different and completely unrelated as
each geometry requires a different mesh conformal to the
boundary. However if we use cg-FEM considering the same
Cartesian grid pile for all the geometries to be analyzed, we
will be able to relate elements used in different geometries
making it possible to define a process for horizontal data
sharing, that is, between elements of different geometries.

Note that the parametric definition of the boundary of the
components to be analyzed can be subdivided into two parts:

(i) the fixed part: this is the part of the boundary that
remains fixed in all the geometries (such as the
external boundary and the lower straight segment of
the internal boundary of the gravity dams represented
in Figure 5),

(ii) the moving part: this is the part of the boundary
that would bemodified by the optimization algorithm
(such as the curved part of the internal boundary of
the gravity dams in Figure 5).

The horizontal data sharing consists in reusing the com-
putations performed over the elements intersected by the
fixed part of the boundary in the different geometries ana-
lyzed during the optimization process. Figure 5 shows an
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(a) Geometry i of the optimization process (b) Geometry j of the optimization process

(c) Geometry i of the optimization process, an h-adaptivemesh

Figure 5: Comparison of two different geometries 𝑖 < 𝑗 during an optimization process. The data for the green elements evaluated for geo-
metry 𝑖, in both meshes, are reused in geometry 𝑗.

example of this horizontal data sharing. This figure shows
two different geometries 𝑖 and 𝑗 analyzed during the iterative
process. h-adaptive analysis is used to obtain an accurate
solution for each geometry as the low accuracy results would
negatively affect the performance of the optimization process.
In this case green elements represented in Figures 5(a) and
5(b) for geometry 𝑖 are reused in geometry 𝑗 represented in
Figure 5(c). Observe that the horizontal data sharing implies
a significant reduction of calculations as the information
required formost of the boundary elements used in geometry
𝑗 was already evaluated in geometry 𝑖. The only element
matrices evaluated for the analysis of geometry 𝑗 are those
corresponding to the white elements.

4. h-Adaptive Refinement

The cost of FE analyses of complex structural components
can be reduced bymeans of the use of ℎ-adaptive techniques.
These techniques can provide an adequate sizing of the
elements adapted to the characteristics of the problem. The
use of these techniques can provide the required accuracy in
the solution with optimized FE models where the number
of elements has been minimized, thus reducing the com-
putational cost of the analysis. In some cases, like in struc-
tural shape optimization problems, ℎ-adaptive analysis is
a must because inaccurate FE results can negatively affect
the behavior of the optimization algorithm [55], leading to
nonoptimal solutions, reducing the convergence rate to the
optimal solution or even preventing convergence.

cg-FEM implements two ℎ-refinement procedures. As in
[56], the first one is based exclusively on geometrical criteria,
whereas the second one considers the quality of the solution
and is based on the minimization of the error in the energy
norm.

𝐿
𝑑𝑖

𝑑𝑖

𝑑𝑖

𝑑𝑖
𝑑𝑖

Figure 6: Intersection points and distances used for the evaluation
of the curvature error indicator 𝑘.

4.1. Geometrical Refinement. The analysis starts adapting the
Cartesian Grid dimensions domain (Ω

𝐸
) to the problem

domain Ω in order to ensure that Ω is embedded into Ω
𝐸
.

A preliminary mesh (not used for FE analysis) of uniform
element size defined by the user is created as the first
step of the analysis process. This preliminary mesh is then
intersected with the problem domain.The first analysis mesh
is then created following a refinement process based on the
geometry of the domain. This procedure consists in refining
the boundary elements where the curvature of the boundary
is too large with respect to the element size. A simple
curvature indicator is defined in (7), where, as represented
in Figure 6, the values of 𝑑

𝑖
represent the distances between

points over the boundary and a straight line segment of
length 𝐿 defined by the intersection of the boundary with
the element sides. 𝑁𝐼𝑃 is the number of those intersection
points. The refinement process is repeated until the relative
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Preliminary mesh 1st analysis mesh geometrically adapted

Figure 7: Comparison between the preliminary mesh and the geometrically adapted mesh with the curvature criterion.

curvature indicator 𝑘 is small enough.The first analysis mesh
is created as a result of this process. Figure 7 shows examples
of preliminary meshes and first analysis meshes:

𝑘 =
∑
𝑁𝐼𝑃

𝑖=1

𝑑𝑖


𝑁𝐼𝑃 ⋅ 𝐿
. (7)

4.2. Solution-Based Refinement. After the FE solution of the
first analysis mesh has been obtained, newmeshes are created
following a refinement procedure that takes into account the
quality of the FE solution. This procedure aims to minimize
the error in energy norm of the solution. In order to estimate
the error in energy norm, we use the Zienkiewicz and Zhu

(ZZ) error estimator (8), presented in [34], where 𝜎ℎ is the
FE stress field and 𝜎∗ is an improved stress field recovered
from 𝜎ℎ:

ees


2
= ∫
Ω

(𝜎
∗
− 𝜎
ℎ
)
𝑇

D−1 (𝜎∗ − 𝜎ℎ) 𝑑Ω. (8)

Particularizing (8) to each element domain, we would
obtain the estimation of the error in energy norm at element
level. With that information, and using a mesh optimization
criterion based on the equidistribution of the error in the
elements of the mesh to be created [57], we obtain the new
levels (sizes) of the elements in each zone. Examples of
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2nd analysis mesh 3rd analysis mesh

Figure 8: Second and third analysis mesh obtained with the error estimation information.

analysis meshes obtained by this procedure are represented
in Figure 8.

The numerical results presented in Section 5 will show
that, as previously exposed, the use of the cg-FEM increases
the computational efficiency of the FE analyses. On the other
hand, some authors have reported that the main drawback
of this technique is the low accuracy along the boundaries
[25, 28]. Loon et al. [52] propose to slightly modify the shape
of those elements over the boundary to fit them, generating a
mesh conformal to the boundary. One of the benefits of the
use of the ZZ error estimator is that the process requires the
evaluation of a recovered solution 𝜎∗. Thus, our approach to
improve the solution, not only on boundary elements but on
all the elements of the analysis mesh, consists in substituting
the raw FE solution (obtained by cg-FEM) by the recovered
solution 𝜎∗ obtained during the error estimation process to
guide the adaptive process. The recovery technique used by
cg-FEM is based on the Superconvergent Patch Recovery

(SPR) scheme presented and developed in [35, 58–60] by
Zienkiewicz and Zhu. The proposed technique is called SPR-
CD and provides a recovered displacement field u∗ that
is then used to obtain 𝜎∗. A stress-based version of this
technique was presented initially for the traditional FEM in
[61], adapted for XFEM in [41, 42] and finally also adapted for
cg-FEM in [62]. The displacement-based technique was first
presented in [63].The recovery process produces a recovered
displacement field that satisfies the Dirichlet and Neumann
boundary conditions and the internal equilibrium equation
in each patch of elements attached to the vertex nodes. A
continuous recovered field is then obtained using a partition
of unity approach as described in the previous references.The
recovered solution obtained with the SPR-CD technique is
very accurate both along the boundary and in the interior of
the domain.

The proposed SPR-CD recovery method is based on
the 𝐿

2
minimization at each patch of elements (elements
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connected to a vertex node) of the difference between the
recovered displacement field u∗ and the FE solution uℎ,
according to (9):

Ψ = ∫
Ω𝑖

(u∗ − uℎ)
2

𝑑Ω, (9)

where u∗
𝑖
= pa
𝑖
with 𝑖 = {𝑥, 𝑦}, p = {1, 𝑥, 𝑦, 𝑥2, . . .} and

𝑎
𝑖
are the vectors of unknown coefficients to be evaluated.

Minimizing (9), integrating numerically, and combining the
two displacement components, we end up with the linear
system of equations shown in (10):

∑

GP
P𝑇P |J|𝜔a = ∑

GP
P𝑇uℎ |J|𝜔 ⇒ Ma=G

with P = [p 0
0 p] ,

(10)

where |J| is the determinant of the Jacobian matrix that
provides the mapping between the derivatives of the physical
and reference element and 𝜔 is the weight associate to each
integration point.

The equilibrium and Dirichlet constrains are imposed
via the Lagrange multipliers technique through matrix C in
the system of equations shown in (11) used to evaluate the
unknown coefficients a

𝑖
. Once a

𝑖
have been evaluated, the

recovered displacements u∗
𝑖
can be evaluated at each patch 𝑖.

The recovered stresses𝜎∗
𝑖
will be evaluated at each patch from

u∗
𝑖
, yielding a solution pair (u∗

𝑖
,𝜎
∗

𝑖
), that is, both statically and

kinematically admissible at each patch:

[
M C𝑇
C 0 ]{

a
𝜆
} = {

G
𝜃
} ⇒ QA = f . (11)

Once the solution (u∗
𝑖
,𝜎
∗

𝑖
) is obtained at each patch, it is

evaluated for the whole domain (u∗,𝜎∗), (12), by using the
Conjoint Polynomial Enhancement presented by Blacker and
Belytschko in [37] to ensure continuity of both fields:

u∗ =
𝑛𝑉𝑁

∑

𝑖

𝑁
𝑖
(𝑥, 𝑦) u∗

𝑖
(𝑥, 𝑦) ,

𝜎
∗
=

𝑛𝑉𝑁

∑

𝑖

𝑁
𝑖
(𝑥, 𝑦)𝜎

∗

𝑖
(𝑥, 𝑦) .

(12)

4.3. Efficiency of the Recovery Procedure. A maximum dif-
ference of one level is allowed by the ℎ-adaptive process
between two adjacent elements. Because of this and the
topological features of the Cartesian grid, only a reduced
number of possible patch configurations can be obtained.
Figure 9 represents the 19 possible configurations of internal
patches for 2D. Note that internal patches are defined as the
patches composed by internal elements only.

The polynomial coefficients a used to describe the recov-
ered displacement field according to (11) are obtained for a
normalized coordinate system. Then, matrix Q in (11) will
be exactly the same for all internal patches having the same
configuration. This implies that we will only need to invert

Figure 9: Possible configurations of internal patches in 2D.

a maximum of 19 Q matrices to obtain the recovered field
in all the internal patches. The first step of the recovery
process for the internal patches consists in codifying the
configuration of each patch and classifying them according to
the configurations shown in Figure 9; then the values of Q−1
are evaluated for each of the different patch configurations.
Once the 𝑓 terms in (11) have been evaluated for each
patch, the unknown coefficients A are evaluated from A =
Q−1f .This procedure considerably reduces the computational
cost associated to the evaluation of internal patches. The
computational cost associated to the evaluation of internal
patches is negligible with respect to the cost associated to the
evaluation of patches that contain boundary elements as each
of these patcheswill have differentQmatrices. In practice, the
computational cost of the recovery process is only depending
on the number of patches along the boundary. That implies a
(𝑑 − 1)-dimensional computational cost.

4.4. Error Estimation of the Recovered Solution: Stopping
Criterion. With this novel recovery procedure we have an
improved solution (u∗,𝜎∗) more accurate than the raw FE
solution (uℎ,𝜎ℎ). The recovered solution can therefore be
used as the standard output provided by cg-FEM instead of
the FE solution. Then the accuracy of the recovered solution
needs to be evaluated. This means that an error estimator
for the recovered solution should be available. An error
estimation of the recovered field was first introduced in the
report [64]. This report shows that the error in energy norm
of the recovered solution ‖e∗‖ can be estimated from

e
∗

2
= ∫
Ω

e∗s𝑑Ω + ∫
Γ𝑁

e∗r𝑑Γ ≈ ∫
Ω


e𝑇ess

𝑑Ω

+ ∫
Γ𝑁


e𝑇esr

𝑑Γ =

e
∗

2

es,

(13)

where e∗ = u − u∗ is the exact error of the recovered dis-
placement field, ees = u∗ − uℎ is the estimated error of the
FE displacements, s = −div (𝜎∗) − b represents the lack of
internal equilibriumof the recovered stresses, and r = Π𝜎∗−t
represents the lack of equilibrium on Neumann boundaries,
where Π is the matrix that projects the boundary stress field
into tractions over the boundary. Reference [42] showed
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Figure 10: ℎ-adaptive refinement scheme.
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Figure 11: Problem 1: cylinder model and analytical solution.

that as the recovery technique produces an almost exact
satisfaction of the boundary equilibrium equation (r ≈

0), then, the second integral in (13) (boundary integral) is
negligible when compared with the first integral (domain
integral). Therefore, only the first integral in (13) will be
considered for the error estimation of the recovered solution.

Figure 10 shows a scheme of the evolution of the exact
errors in energy norm of the finite element and recovered
solutions. Note that in SPR-based recovery techniques the
recovered solution is in practice more accurate than the FE
solution and has a higher convergence rate. Therefore, the
number of degrees of freedom𝑁

𝐵
required by the recovered

solution to obtain a prescribed accuracy level 𝛾 defined by
blue horizontal line in Figure 10 is considerably smaller than
that required by the FE solution (𝑁

𝐶
). We can thus define a

highly efficient ℎ-adaptive refinement process that considers
the accuracy of the recovered solution instead of the accuracy
of the FE solution. The ℎ-adaptive refinement process of cg-
FEM will, as usual, be guided by the error estimation of the
FE solution using (8). The error reduction of the FE solution
simultaneously produces an error reduction of the recovered
solution that is estimated using (13). The refinement process
will run until the estimated error of the recovered solution

reaches the prescribed accuracy level. As a resume, the error
of the FE solution ‖e‖ is used to drive the ℎ-adaptive process
whereas the error of the recovered solution ‖e∗‖ is used to
define the stopping criterion.

5. Numerical Examples

This section will present numerical examples to evaluate the
improvements provided by cg-FEM.

5.1. Problem 1: Cylinder under Internal Pressure. Let us con-
sider a thick wall cylinder subjected to an internal pressure
and plain strain conditions, as described in Figure 11. The
analytical solution of this problem is known and is also given
in Figure 11. Only a quarter of the section has been considered
in the model together with the appropriate symmetry condi-
tions.

Figures 12 and 13 show the evolution of the errors in
energy norm and the error convergence rate, respectively, for
bilinear (Q4) and biquadratic (Q8) elements. In the graphs
on the left of these figures we observe that the exact and
estimated errors of the FE solution (blue and red lines)
almost overlap. We can see that the cg-FEM results converge
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Figure 12: Problem 1: Cylinder Q4. Study of evolution of error in energy norm.
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Figure 13: Problem 1: Cylinder Q8. Study of evolution of error in energy norm.

smoothly to the exact solution and that our recovery-based
error estimator provides very accurate results.This graph also
shows that the brown and black curves that represent the
evolution of the exact and estimated errors of the recovered
solution also overlap, clearly presenting a higher accuracy
and convergence rate than the FE solution. The convergence
rates of the exact error for the FE and recovered solutions are
shown in the graphs on the right of the figures.The theoretical
convergence rates of the exact error in energy norm of the FE

solution with respect to the number of degrees of freedom are
0.5 and 1.0 for Q4 and Q8 elements. In all cases the recovered
solution has presented higher convergence rates than the FE
solution.

The accuracy of the error estimation techniques for the
FE and recovered solutions can be clearly evaluated bymeans
of the use of the effectivity index 𝜃 represented in Figure 14
for Q4 and Q8 elements and for the error estimators of
the FE and recovered solutions. The effectivity index is
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Figure 14: Problem 1: error estimator effectivity study.
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Figure 15: Problem 1: Cylinder Q8. Computational cost and speedup for uniform meshes.

defined as the ratio of the estimated to the exact errors in
energy norm. Thus, values close to 1 would indicate accurate
error estimators. This figure clearly shows that both error
estimators are very accurate. Although the error estimator in
energy norm of the FE solution is more accurate than that of
the recovered solution, the error estimator of this last solution
presents a very good behavior and can be used to effectively
evaluate its accuracy.

Regarding the computational cost, we have used this
problem to compare cg-FEM with the commercial code
ANSYS 11 considering uniform meshes. This could not be
taken as a strict comparison because the commercial code
works with a more complex data structure. However, our
purpose here is to show that the computational cost of
the cg-FEM is comparable with that obtained by widely
used commercial codes. In Figure 15 we show how the
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Figure 16: Problem 2: Flywheel: model of the problem, loads, and
constrains.

computational cost is always lower for the proposed code
than that for the commercial code. On the right hand side we
show the speedup obtained. It is worth to mention that the
cg-FEM code is fully implemented in Matlab 2010b and no
subroutine has been compiled. As represented in this figure
the speedup obtained with our cg-FEM implementation is
about 1.5. In addition, we also have to consider that the
commercial code is postprocessing the solution with a nodal
averaging technique, whereas cg-FEM uses an advanced
recovery process and evaluates two error estimations, one for
the FE solution and other one for the recovered solution.This
is a numerical evidence that the cg-FEMmethodology will be
highly competitive with a standard FEM compilation.

5.2. Problem 2: Flywheel. This problem with a more complex
geometry represents a flywheel under tangential tractions
along the external surface and constrained displacements in
the internal surface as shown in Figure 16. The material is
aluminium with elastic modulus 𝐸 = 70GPa and Poisson
coefficient 𝜇 = 0.33. Plane stress conditions are considered.

Figures 17 and 18 present the set of the three first ℎ-
adapted meshes for the analysis of this component with Q4
andQ8 elements.The firstmesh of each set has been obtained
using the geometrical refinement criterion. The following
meshes have been createdwith the ℎ-adaptivity process based
on the error estimation in energy norm.

This problem has no analytical solution; however we
can check the behavior of the cg-FEM code considering the
convergence rate of the error of the FE solution [45–47]. We
have to check that, in the asymptotic range, this convergence
rate tends to the theoretical value (0.5 for Q4 elements and
1 for Q8). We can verify this in Figures 19 and 20 where the
evolution of the estimated error and its convergence rate have
been evaluated for the FE and recovered solutions. We can
observe that the convergence rate of the FE results tends to
theoretical values in both cases (blue lines). Furthermore, the
estimated error of the recovered solution (red lines) presents

a smooth behavior and a higher (and stable) convergence rate
than the FE solution along the refinement process.

5.3. Structural Shape Optimization

5.3.1. Problem 3: Pipe Optimization. To check the perfor-
mance of the cg-FEM combined with the optimization soft-
ware, we have chosen an optimization problem with known
analytical solution. Our objective in this problem is to
minimize the cross-sectional area of a tube under internal
pressure 𝑃 applied on the circular internal surface, with
unknown external surface, where theVonMises stressesmust
be below the yield stress 𝑆

𝑦
.

As shown in Figure 21, two symmetry surfaces are consid-
ered.The external surface is given by a cubic spline defined by
three points. The optimal analytical solution corresponds to
a circular external surface. For 𝑃 = 0.9 ⋅ 106 and 𝑆

𝑦
= 2 ⋅ 10

6

the optimal external radius is 𝑅
0
= 10.67033824461 and the

corresponding area is 𝐴opt = 69.787307715081.
30 individuals per generation have been considered in

the genetic algorithm used for the optimization. We have
performed analyses withQ4 elements for different prescribed
error levels 𝛾 ≤ (2.0, 5.0)% to study the influence of the error
in energy norm on the computational cost and the accuracy
of the solution provided by the optimization process. We
have considered two types of ℎ-adaptive analysis techniques
to evaluate the numerical solution of each geometry.

(i) Strategy a: we have used the FE solution 𝜎ℎ as the
output of the analysis together with a criterion to stop
the adaptive process based on ‖e‖es, see (8).

(ii) Strategy b: we have used the recovered solution 𝜎∗
and a criterion to stop the adaptive process based on
the error estimator for this solution ‖e∗‖es; see (13).

Figure 22 presents the results of this analysis. The graph
on the left shows the evolution of the exact relative error in
area (evaluated from the exact known analytical solution for
this problem) of the best solutions provided by the process
versus the number of generations. We can observe that the
optimization process will provide accurate solutions only for
the most restrictive error levels. Although we used the same
values for both strategies, the best results are obtained for
Strategy b (𝜎∗ curves).The reason for this could be that, given
an FE solution and a recovered solution with similar global
errors in energy norm, the maximum value of the Von Mises
stress (used as a control parameter during the optimization
process) is usually very accurate in the recovered solution as
it will appear on the boundary where this solution has been
forced to satisfy the boundary constraints. The graph on the
right shows the evolution of the computational cost along the
optimization process. It can be clearly observed that the use
of Strategy b that takes into account the recovered solution to
drive the optimization process results in a computing time
considerably lower than the time required with Strategy a,
driven by the FE solution.The speedup obtainedwith Strategy
b is of about 3.3 for 𝛾 = 5.0% and 3.1 for 𝛾 = 2.0%. Thus,
this speedup together with the considerable increase in the
accuracy displayed in the graph on the left of the figure
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Figure 17: Problem 2: Flywheel Q4. Sequence of ℎ-adapted meshes.

Figure 18: Problem 2: Flywheel Q8. Sequence of ℎ-adapted meshes.
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Figure 19: Problem 2: Flywheel Q4. Study of evolution of error in energy norm.
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Figure 20: Problem 2: Flywheel Q8. Study of evolution of error in energy norm.
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Figure 21: Problem 3. Pipe under internal pressure. Design variables
and optimal geometry (shaded area).

clearly shows that the use of Strategy b, that is, the use of
the recovered solution to drive the optimization process,
produces remarcable benefits with respect to the use of the
FE solution.

6. Conclusions

In this work, we have presented a novel numerical technique,
cg-FEM, to solve Boundary Value Problems. This technique,

which has been implemented to solve 2D linear elasticity
problems, is based on the use of ℎ-adaptive Finite Element
Analysis and has three main characteristics:

(1) use of Cartesianmeshes, nonconformal to the bound-
ary of the domain, to decrease mesh burden, focusing
the computational cost of the mesh generation pro-
cess on the domain’s boundary which must be inter-
sected with the so-called boundary elements;

(2) use of a hierarchical data structure that allows reusing
previous computations, reducing to theminimum the
total number of calculations; and

(3) prominent use of a recovered solution (𝜎∗, u∗) ob-
tained with the SPR-CD technique, for which an
efficient error estimator in energy norm is available,
with two main objectives:

(a) to drive the ℎ-adaptive analysis based on re-
covery-based error estimation techniques,

(b) to replace the raw FE solution (𝜎ℎ, uℎ), com-
monly used as the standard output of the anal-
ysis, in order to improve accuracy and reduce
the size of the FE model required to reach the
prescribed accuracy level.

The numerical results have shown that the FE solution
of cg-FEM smoothly converges to the exact solution with
(approximately) the theoretical convergence rate. Further-
more, the recovered solution, as a result of being based on the
Superconvergent Patch Recovery technique, is more accurate
and converges with a higher convergence rate than the FE
solution.An error estimator for the recovered solution,whose
accuracy is only supported by numerical tests, has been used.
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Figure 22: Problem 3. Evolution of pipe optimization considering the error estimation of the FE solution (𝜎ℎ) or the recovered one (𝜎∗),
for different prescribed errors levels 𝛾. (a) Evolution of exact error in area with respect to the optimal analytical solution, (b) accumulative
computational cost of the optimization processes.

Further investigations to provide a theoretical basis for this
error estimator are now in process.

The cg-FEM technology has allowed for decreasing the
complexity of the problem to one less dimension in the vast
majority of the routines. As a result basic numerical tests
have shown that even itsMatlab implementation can be com-
putationally more efficient than commercial codes based on
the traditional FEM. A 3D implementation of cg-FEM under
development has already provided promising preliminary
results.

The numerical results have shown how shape optimiza-
tion processes can benefit from the use of cg-FEM, leading to
a substantial reduction in computational cost that would help
to increase the use of optimization processes in industrial
applications.
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