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We study the metric on the n-dimensional unit hypercube. We introduce a class of new metrics for the space, which is information
theoretically motivated and has close relation to Jensen-Shannon divergence. These metrics are obtained by discussing a function
𝐹𝐷
𝛼
(𝑃, 𝑄) with the parameter 𝛼. We come to the conclusion that the sufficient and necessary condition of the function being a

metric is 0 < 𝛼 ≤ 1/2. Finally, by computing basic examples of codons, we show some numerical comparison of the new metrics to
the former metric.

1. Introduction

As early as 1971, Zadeh introduced a geometric interpretation
of fuzzy sets by stating that they can be represented as
points in unit hypercube [1]. Many years later, his idea was
taken up by Kosko, who built a promising fuzzy-theoretical
framework and geometry thereon [2, 3]. This geometry of
fuzzy sets was used in [4] to develop the fuzzy polynucleotide
space. He demonstrated a polynucleotide molecule as a
point in an n-dimensional unit hypercube. This approach
enabled us to make quantitative studies such as the measure-
ment of distances, similarities, and dissimilarities between
polynucleotide sequences. The n-dimensional unit hyper-
cube enriched by a metric 𝑑 is named fuzzy polynucleotide
space (𝐼𝑛, 𝑑) with 𝐼 = [0, 1] ⊂ R which is a metric space.
Torres and Nieto [5, 6] considered the frequencies of the
nucleotides at the three base sites of a codon in the coding
sequence as fuzzy sets to give an example on 𝐼

12. Later, Dress,
Lokot, and Pustyl’nikov have pointed out that the metric is
under the 𝐿

1
-norm and showed the metric properties [7].

Because the fuzzy sets which come from the polynu-
cleotidemolecules reflect the information of those sequences,
we may introduce the related concept in information the-
ory to measure the differences between polynucleotide
sequences. In information theory, the relative entropy (also
called Kullback-Leibler divergence) is the most common
measure to show two probability distributions. But it is
not a metric for it does not satisfy symmetric and triangle

inequality [8]. In the past time, many pieces of research [9–
15] were made to improve the relative entropy. From those
references, Jensen-Shannon divergence as an improvement of
relative entropy receivedmuch attention. In this paper, a class
of new metrics inspired by the Jensen-Shannon divergence
are introduced in the n-dimensional unit hypercube. These
metrics with information-theoretical property of logarithm
can replace the former metric 𝑑 in the fuzzy polynucleotide
space.

2. Preliminaries

Let 𝑋 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
} be a fixed set; a fuzzy set in 𝑋 is

defined by

𝐴 = {(𝑥, 𝜇
𝐴
(𝑥)) | 𝑥 ∈ 𝑋} , (1)

where

𝜇
𝐴
: 𝑋 → 𝐼 = [0, 1] , 𝑥 → 𝜇

𝐴
(𝑥) . (2)

The number 𝜇
𝐴
(𝑥) denotes the membership degree of the

element 𝑥 in the fuzzy set 𝐴. We can also use the unit
hypercube 𝐼

𝑛

= [0, 1]
𝑛 to describe all the fuzzy sets

in 𝑋, because a fuzzy set 𝐴 determines a point 𝑃 =

(𝜇
𝐴
(𝑥
1
), 𝜇
𝐴
(𝑥
2
), . . . , 𝜇

𝐴
(𝑥
𝑛
)). Reciprocally, any point 𝑃 =

(𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
) ∈ 𝐼

𝑛 generates a fuzzy set 𝐴 defined by
𝜇
𝐴
(𝑥
𝑖
) = 𝑎
𝑖
, 𝑖 = 1, 2, . . . , 𝑛. A polynucleotide is representable

as such an ordered fuzzy set in [4–6]. Given two fuzzy sets
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𝑃 = (𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑛
), 𝑄 = (𝑞

1
, 𝑞
2
, . . . , 𝑞

𝑛
) ∈ 𝐼

𝑛, the
metric 𝑑 is defined by

𝑑 (𝑃, 𝑄) =
∑
𝑛

𝑖=1

𝑝𝑖 − 𝑞𝑖


∑
𝑛

𝑖=1
max {𝑝

𝑖
, 𝑞
𝑖
}
. (3)

With the metric 𝑑 defined, the fuzzy polynucleotide space is
constructed.

Let 𝑌 be a discrete random variable with alphabet Y =

{𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
}. 𝑃, 𝑄 are two probability distributions of 𝑌.

Then, the relative entropy between 𝑃 and 𝑄 is defined as

𝐷 (𝑃 ‖ 𝑄) =

𝑛

∑

𝑖=1

𝑝
𝑖
ln
𝑝
𝑖

𝑞
𝑖

. (4)

Here, ln denotes the natural logarithm for convenience. Fur-
thermore, the Jensen-Shannon divergence is defined by

JSD (𝑃, 𝑄) =
1

2
[𝐷 (𝑃 ‖ 𝑅) + 𝐷 (𝑄 ‖ 𝑅)] , (5)

where 𝑅 = (1/2)(𝑃 + 𝑄).
Jensen-Shannon divergence is obviously nonnegative,

symmetric and vanishes for 𝑃 = 𝑄, but it does not fulfill the
triangle inequality. And a point in the n-dimensional 𝐼𝑛 is not
a probability distribution. In view of the foregoing, the con-
cept of Jensen-Shannon divergence should be generalized. If
𝑃, 𝑄 are two points in 𝐼𝑛, this function 𝐹𝐷

𝛼
(𝑃, 𝑄) is studied:

𝐹𝐷
𝛼
(𝑃, 𝑄) = (2JSD (𝑃, 𝑄))

𝛼

= [𝐷 (𝑃 ‖ 𝑅) + 𝐷 (𝑄 ‖ 𝑅)]
𝛼

= (

𝑛

∑

𝑖=1

(𝑝
𝑖
ln

2𝑝
𝑖

𝑝
𝑖
+ 𝑞
𝑖

+ 𝑞
𝑖
ln

2𝑞
𝑖

𝑝
𝑖
+ 𝑞
𝑖

))

𝛼

,

(6)

where 𝛼 ∈ R. In the following sections, we discuss the
function to all 𝛼 ∈ R and obtain the class of new metrics.

3. Auxiliary Result Associated with 𝐹𝐷
𝛼
(𝑃,𝑄)

Definition 1. Let the function 𝐽(𝑝, 𝑞) : [0, +∞) × [0, +∞) →

R be defined by

𝐽 (𝑝, 𝑞) = 𝑝 ln
2𝑝

𝑝 + 𝑞
+ 𝑞 ln

2𝑞

𝑝 + 𝑞
. (7)

In the above definition, we use convention based on
continuity that 0 ln(0/𝑥) = 0, 𝑥 ∈ [0, +∞).

To all 𝛼 ∈ R, we wonder whether the function (𝐽(𝑝, 𝑞))𝛼
can be a metric on the space 𝐼.

Lemma 2. 𝐽(𝑝, 𝑞) ≥ 0, with equality only for 𝑝 = 𝑞.

Proof. From (7) we can get

𝐽 (𝑝, 𝑞)

= (𝑝 + 𝑞)(
𝑝

𝑝 + 𝑞
ln
𝑝/ (𝑝 + 𝑞)

1/2
+

𝑞

𝑝 + 𝑞
ln
𝑞/ (𝑝 + 𝑞)

1/2
) .

(8)

The formula above expresses that 𝐽(𝑝, 𝑞) is the relative
entropy of the probability distributions (𝑝/(𝑝 + 𝑞), 𝑞/(𝑝 + 𝑞))
and (1/2, 1/2). With the nonnegativity of the relative entropy
[8] the lemma holds.

Lemma 3. If the function 𝑓 : [0, +∞) → R is defined by
𝑓(𝑥) = 𝐽(𝑎, 𝑥) − 𝑎(ln(2𝑎/(𝑎 + 𝑥)))2 with 𝑎 > 0, then 𝑓 is
convex function.

Proof. Straightforward derivative shows

𝑓


(𝑥) = ln 2𝑥

𝑎 + 𝑥
+

2𝑎

𝑎 + 𝑥
ln 2𝑎

𝑎 + 𝑥
,

𝑓


(𝑥) =
𝑎 (𝑎 − 𝑥 − 2𝑥 ln (2𝑎/ (𝑎 + 𝑥)))

𝑥(𝑎 + 𝑥)
2

.

(9)

Using the standard inequality

ln 𝑎 ≥ 1 − 1

𝑎
, ln 𝑎 ≤ 𝑎 − 1, (10)

we find

𝑎 − 𝑥 − 2𝑥 ln 2𝑎

𝑎 + 𝑥
≥ 𝑎 − 𝑥 − 2𝑥 (

2𝑎

𝑎 + 𝑥
− 1)

=
(𝑎 − 𝑥)

2

𝑎 + 𝑥
≥ 0.

(11)

The equality holds if and only if 𝑥 = 𝑎. So 𝑓


(𝑥) ≥

0, 𝑓 is convex function, and the function 𝑓(𝑥) gets the
minimum 0 when 𝑥 = 𝑎 for 𝑓(𝑎) = 0.

As a consequence of Lemma 3, when 𝑥 ̸= 𝑎,

1

𝑎
>
(ln (2𝑎/ (𝑎 + 𝑥)))2

𝐽 (𝑎, 𝑥)
. (12)

Lemma 4. If the function 𝑔 : [0, +∞) → R is defined by
𝑔(𝑥) = ln(2𝑥/(𝑎 + 𝑥))/√𝐽(𝑎, 𝑥) with 𝑎 > 0, then

lim
𝑥→𝑎

+

𝑔 (𝑥) = √
1

𝑎
, lim

𝑥→𝑎
−

𝑔 (𝑥) = −√
1

𝑎
. (13)

Proof. As 𝑔2(𝑥) = (ln(2𝑥/(𝑎 + 𝑥)))2/𝐽(𝑎, 𝑥), using l’Hôs-
pital’s rule we can obtain

lim
𝑥→𝑎

𝑔
2

(𝑥) = lim
𝑥→𝑎

2𝑎 ln (2𝑥/ (𝑎 + 𝑥)) /𝑥 (𝑎 + 𝑥)
ln (2𝑥/ (𝑎 + 𝑥))

=
1

𝑎
. (14)

And 𝑔(𝑥) < 0 in the case 𝑥 < 𝑎, 𝑔(𝑥) > 0 in the case 𝑥 > 𝑎.
Thus, the lemma holds.

Assuming 0 < 𝑝 < 𝑞, we introduce the function ℎ :

[0, +∞) → [0, +∞) defined by

ℎ (𝑟) = √𝐽 (𝑝, 𝑟) + √𝐽 (𝑞, 𝑟). (15)

Lemma 5. The function ℎ(𝑟) has two minima, one at 𝑟 = 𝑝

and the other at 𝑟 = 𝑞.
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Proof. The derivative of the function ℎ is

ℎ


(𝑟) =
1

2
(

ln (2𝑟/ (𝑝 + 𝑟))

√𝐽 (𝑝, 𝑟)

+
ln (2𝑟/ (𝑝 + 𝑟))

√𝐽 (𝑞, 𝑟)

) . (16)

So ℎ(𝑟) < 0 for 𝑟 ∈ [0, 𝑝) and ℎ(𝑟) > 0 for 𝑟 ∈ (𝑞, +∞).
It shows ℎ is monotonic decreasing in [0, 𝑝) and monotonic
increasing in [𝑞, +∞).

Next, consider themonotonicity of ℎ in the open interval
(𝑝, 𝑞).

From (12), we have

√
1

𝑝
>

ln (2𝑝/ (𝑝 + 𝑞))


√𝐽 (𝑝, 𝑞)

,

√
1

𝑞
>

ln (2𝑞/ (𝑝 + 𝑞))


√𝐽 (𝑝, 𝑞)

.

(17)

From Lemma 4, we have

lim
𝑟→𝑝

+

ln (2𝑟/ (𝑝 + 𝑟))


√𝐽 (𝑝, 𝑟)

= √
1

𝑝
,

lim
𝑟→𝑞
−

ln (2𝑟/ (𝑞 + 𝑟))


√𝐽 (𝑞, 𝑟)

= −√
1

𝑞
.

(18)

Using (17) and (18), we obtain

lim
𝑟→𝑝

+

ℎ


(𝑟) =
1

2
( lim
𝑟→𝑝

+

ln (2𝑟/ (𝑝 + 𝑟))

√𝐽 (𝑝, 𝑟)

+
ln (2𝑝/ (𝑝 + 𝑞))

√𝐽 (𝑝, 𝑞)

)

=
1

2
(√

1

𝑝
+
ln (2𝑝/ (𝑝 + 𝑞))

√𝐽 (𝑝, 𝑞)

) > 0,

lim
𝑟→𝑞
−

ℎ


(𝑟) =
1

2
(

ln (2𝑞/ (𝑝 + 𝑞))

√𝐽 (𝑝, 𝑞)

+ lim
𝑟→𝑞
−

ln (2𝑟/ (𝑞 + 𝑟))

√𝐽 (𝑞, 𝑟)

)

=
1

2
(

ln (2𝑞/ (𝑝 + 𝑞))

√𝐽 (𝑝, 𝑞)

− √
1

𝑞
) < 0.

(19)

Let

𝐴 (𝑦, 𝑟) =
ln (2𝑟/ (𝑦 + 𝑟))

√𝐽 (𝑦, 𝑟)

=
ln (2𝑟/ (𝑦 + 𝑟))

√𝑟√𝐽 (𝑦/𝑟, 1)

=
1

√𝑟
𝐵 (𝑦, 𝑟) ;

(20)

then

𝜕𝐵 (𝑦, 𝑟)

𝜕𝑟

= (𝑦(2𝑟 ln 2𝑟

𝑦 + 𝑟
+ ln

2𝑦

𝑦 + 𝑟
(2𝑦 + (𝑦 + 𝑟) ln 2𝑟

𝑦 + 𝑟
)))

× (2√𝑟 (𝑦 + 𝑟) (𝐽 (𝑦, 𝑟))
3/2

)

−1

≜
𝑦𝐶 (𝑟)

2√𝑟 (𝑦 + 𝑟) (𝐽 (𝑦, 𝑟))
3/2

.

(21)

We have 𝐶(𝑦) = 0, 𝐶(𝑟) = ln(2𝑟/(𝑦 + 𝑟)) + (1/𝑟) ln(2𝑦/(𝑦 +
𝑟))(𝑦 + 𝑟 ln(2𝑟/(𝑦 + 𝑟))), 𝐶(𝑦) = 0, and 𝐶(𝑟) = −(1/(𝑟2(𝑦 +
𝑟)))(𝑦

2 ln(2𝑦/(𝑦 + 𝑟)) + 𝑟2 ln(2𝑟/(𝑦 + 𝑟))). From (10),

𝑦
2 ln

2𝑦

𝑦 + 𝑟
+ 𝑟
2 ln 2𝑟

𝑦 + 𝑟

≥ 𝑦
2

(1 −
𝑦 + 𝑟

2𝑦
) + 𝑟
2

(1 −
𝑦 + 𝑟

2𝑟
) =

(𝑦 − 𝑟)
2

2
≥ 0.

(22)

The equality holds if and only if 𝑟 = 𝑦. This means 𝐶(𝑟) ≤ 0,
and the equality holds if and only if 𝑟 = 𝑦. From the above,
𝐶(𝑟) ≤ 0 is easily obtained, and 𝐶(𝑟) = 0 if and only if
𝑟 = 𝑦. So with respect to variable 𝑟 in the open interval
(𝑝, 𝑞),𝐵(𝑝, 𝑟) and𝐵(𝑞, 𝑟) are bothmonotonic decreasing, and
𝐵(𝑝, 𝑟) + 𝐵(𝑞, 𝑟) is also monotonic decreasing. As

ℎ


(𝑟) =
1

2
(𝐴 (𝑝, 𝑟) + 𝐴 (𝑞, 𝑟)) =

1

2√𝑟
(𝐵 (𝑝, 𝑟) + 𝐵 (𝑞, 𝑟)) ,

(23)

lim
𝑟→𝑝

+𝐵(𝑝, 𝑟)+𝐵(𝑞, 𝑟) > 0, and lim
𝑟→𝑞
−𝐵(𝑝, 𝑟)+𝐵(𝑞, 𝑟) < 0,

we can see that 𝐵(𝑝, 𝑟) + 𝐵(𝑞, 𝑟) has only one zero point
in the open interval (𝑝, 𝑞) with respect to variable 𝑟. As a
consequence, ℎ(𝑟) has only one zero point 𝑥

0
in the open

interval (𝑝, 𝑞)with respect to variable 𝑟. This means ℎ(𝑟) > 0
in the interval (𝑝, 𝑥

0
), ℎ(𝑟) < 0 in the interval (𝑥

0
, 𝑞). From

this, we know ℎ has only one maximum and no minimum in
the open interval (𝑝, 𝑞).

As a result, the conclusion in the lemma is obtained.

Theorem 6. The function (𝐽(𝑝, 𝑞))1/2 is a metric on the space
𝐼.

Proof. From Lemma 2, the function 𝐽(𝑝, 𝑞) ≥ 0 with equality
only for 𝑝 = 𝑞 is proved. Hence, (𝐽(𝑝, 𝑞))1/2 ≥ 0with equality
only for 𝑝 = 𝑞. It is easy to see that (𝐽(𝑝, 𝑞))1/2 = (𝐽(𝑞, 𝑝))

1/2.
Because the formula holds,

(𝐽 (𝑝, 𝑞))
1/2

= lim
𝑟→𝑝

(𝐽 (𝑝, 𝑟))
1/2

+ (𝐽 (𝑞, 𝑟))
1/2

= lim
𝑟→𝑞

(𝐽 (𝑝, 𝑟))
1/2

+ (𝐽 (𝑞, 𝑟))
1/2

,

(24)
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and from Lemma 5, the triangle inequality

(𝐽 (𝑝, 𝑞))
1/2

≤ (𝐽 (𝑝, 𝑟))
1/2

+ (𝐽 (𝑞, 𝑟))
1/2 (25)

can be easily proved for any number 𝑟 ∈ 𝐼.

Corollary 7. If 0 < 𝛼 < 1/2, then the function (𝐽(𝑝, 𝑞))𝛼 is a
metric on the space 𝐼.

Proof. The properties of nonnegativity and symmetry can be
proved using the same method inTheorem 6.

Let 𝑎, 𝑏 > 0 and 0 < 𝛾 < 1, then 𝑎𝛾 + 𝑏𝛾 > (𝑎 + 𝑏)
𝛾 which

follows from the concavity of 𝑥𝛾. Now a 𝛾 which satisfies 𝛼 =
(1/2)𝛾 can be found. Thus,

(𝐽 (𝑝, 𝑟))
𝛼

+ (𝐽 (𝑞, 𝑟))
𝛼

= (𝐽 (𝑝, 𝑟))
(1/2)𝛾

+ (𝐽 (𝑞, 𝑟))
(1/2)𝛾

≥ ((𝐽 (𝑝, 𝑟))
1/2

+ (𝐽 (𝑞, 𝑟))
1/2

)

𝛾

≥ (𝐽 (𝑝, 𝑞))
(1/2)𝛾

= (𝐽 (𝑝, 𝑞))
𝛼

.

(26)

This is the triangle inequality for the function (𝐽(𝑝, 𝑞))𝛼.

Theorem 8. If 1/2 < 𝛼 < 1, then function (𝐽(𝑝, 𝑞))𝛼 is not a
metric on the space 𝐼.

Proof. Assuming 0 < 𝑝 < 𝑞, let 𝑙(𝑟) = (𝐽(𝑝, 𝑟))
𝛼

+ (𝐽(𝑞, 𝑟))
𝛼.

Firstly, the formula holds:

(𝐽 (𝑝, 𝑞))
𝛼

= lim
𝑟→𝑝

(𝐽 (𝑝, 𝑟))
𝛼

+ (𝐽 (𝑞, 𝑟))
𝛼

= lim
𝑟→𝑞

(𝐽 (𝑝, 𝑟))
𝛼

+ (𝐽 (𝑞, 𝑟))
𝛼

.

(27)

The derivative of the function 𝑙 is

𝑙


(𝑟) = 𝛼(ln 2𝑟

𝑝 + 𝑟
(𝐽 (𝑝, 𝑟))

𝛼−1

+ ln 2𝑟

𝑞 + 𝑟
(𝐽 (𝑞, 𝑟))

𝛼−1

) .

(28)

Let

𝑚(𝑟) = (ln 2𝑟

𝑝 + 𝑟
(𝐽 (𝑝, 𝑟))

𝛼−1

)

1/(1−𝛼)

=
(ln (2𝑟/ (𝑝 + 𝑟)))1/(1−𝛼)

𝐽 (𝑝, 𝑟)
.

(29)

Using l’Hôspital’s rule,

lim
𝑟→𝑝

𝑚(𝑟) =
𝑝

𝑟 (𝑝 + 𝑟) (1 − 𝛼)
(ln 2𝑟

𝑝 + 𝑟
)

(2𝛼−1)/(1−𝛼)

= 0.

(30)

So

lim
𝑟→𝑝

𝑙


(𝑟) = 𝛼 ln
2𝑝

𝑝 + 𝑞
(𝐽 (𝑝, 𝑞))

𝛼−1

< 0. (31)

According to the definition of derivative, there exists a 𝛿 > 0

such that, for any 𝑠 ∈ (𝑝, 𝑝 + 𝛿),

(𝐽 (𝑝, 𝑞))
𝛼

= lim
𝑟→𝑝

+

(𝐽 (𝑝, 𝑟))
𝛼

+ (𝐽 (𝑞, 𝑟))
𝛼

> (𝐽 (𝑝, 𝑠))
𝛼

+ (𝐽 (𝑞, 𝑠))
𝛼

.

(32)

This shows that the triangle inequality does not hold.

Theorem 9. If 𝛼 ≥ 1, then function (𝐽(𝑝, 𝑞))𝛼 is not a metric
on the space 𝐼.

Proof. Let 𝑝, 𝑞 ∈ 𝐼 and 𝑝 ̸= 𝑞; 𝑟 = (𝑝 + 𝑞)/2. Consider the
following:

𝐽 (𝑝, 𝑞) − 𝐽 (𝑝, 𝑟) − 𝐽 (𝑞, 𝑟) = 𝑝 ln
2𝑝

𝑝 + 𝑞
+ 𝑞 ln

2𝑞

𝑝 + 𝑞

− (𝑝 ln
2𝑝

𝑝 + 𝑟
+ 𝑟 ln 2𝑟

𝑝 + 𝑟
)

− (𝑟 ln 2𝑟

𝑞 + 𝑟
+ 𝑞 ln

2𝑞

𝑞 + 𝑟
) .

(33)

By substituting 𝑟 = (𝑝 + 𝑞)/2,

𝐽 (𝑝, 𝑞) − 𝐽 (𝑝, 𝑟) − 𝐽 (𝑞, 𝑟)

=
3𝑝 + 𝑞

2
ln

3𝑝 + 𝑞

2𝑝 + 2𝑞
+
𝑝 + 3𝑞

2
ln

𝑝 + 3𝑞

2𝑝 + 2𝑞

= 𝐽 (
3𝑝 + 𝑞

2
,
𝑝 + 3𝑞

2
) > 0.

(34)

For (3𝑝 + 𝑞)/2, (𝑝 + 3𝑞)/2 ∈ 𝐼 and (3𝑝 + 𝑞)/2 ̸= (𝑝 + 3𝑞)/2.
Because if 0 ≤ 𝑥 ≤ 1, then 𝑥𝛼 ≤ 𝑥 and (1 − 𝑥)𝛼 ≤ 1 − 𝑥,

we have 𝑥𝛼 + (1 − 𝑥)𝛼 ≤ 1. Thus,

(
𝐽 (𝑝, 𝑟)

𝐽 (𝑝, 𝑞)
)

𝛼

+ (
𝐽 (𝑞, 𝑟)

𝐽 (𝑝, 𝑞)
)

𝛼

< (
𝐽 (𝑝, 𝑟)

𝐽 (𝑝, 𝑟) + 𝐽 (𝑞, 𝑟)
)

𝛼

+ (
𝐽 (𝑞, 𝑟)

𝐽 (𝑝, 𝑟) + 𝐽 (𝑞, 𝑟)
)

𝛼

≤
𝐽 (𝑝, 𝑟)

𝐽 (𝑝, 𝑟) + 𝐽 (𝑞, 𝑟)
+

𝐽 (𝑞, 𝑟)

𝐽 (𝑝, 𝑟) + 𝐽 (𝑞, 𝑟)

= 1.

(35)

As a consequence, (𝐽(𝑝, 𝑞))𝛼 > (𝐽(𝑝, 𝑟))
𝛼

+ (𝐽(𝑞, 𝑟))
𝛼. This

shows that the triangle inequality does not hold.

To sum up the theorems and corollary above, we can
obtain the main theorem.

Theorem 10. The function (𝐽(𝑝, 𝑞))𝛼 is a metric on the space 𝐼
if and only if 0 < 𝛼 ≤ 1/2.
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4. Metric Property of 𝐹𝐷
𝛼
(𝑃,𝑄)

In this section, we mainly prove the following theorem.

Theorem 11. The function 𝐹𝐷
𝛼
(𝑃, 𝑄) is a metric on the space

𝐼
𝑛 if and only if 0 < 𝛼 ≤ 1/2.

Proof. When 𝛼 ≤ 0, 𝐷(𝑃 ‖ 𝑅) + 𝐷(𝑄 ‖ 𝑅) = 0, where 𝑃 = 𝑄.
So the function 𝐹𝐷

𝛼
(𝑃, 𝑄) = [𝐷(𝑃 ‖ 𝑅) + 𝐷(𝑄 ‖ 𝑅)]

𝛼 is not
a metric. When 𝛼 > 0, From (6), we can get 𝐹𝐷

𝛼
(𝑃, 𝑄) =

(∑
𝑛

𝑖=1
𝐽(𝑝
𝑖
, 𝑞
𝑖
))
𝛼. It is easy to see that 𝐹𝐷

𝛼
(𝑃, 𝑄) ≥ 0 with

equality only for𝑃 = 𝑄, and𝐹𝐷
𝛼
(𝑃, 𝑄) = 𝐹𝐷

𝛼
(𝑄, 𝑃). Sowhat

we are concerned with is whether the triangle inequality

𝐹𝐷
𝛼
(𝑃, 𝑄) ≤ 𝐹𝐷

𝛼
(𝑃,𝐻) + 𝐹𝐷

𝛼
(𝑄,𝐻) (36)

holds for any 𝑃,𝑄,𝐻 ∈ 𝐼
𝑛.

When 𝑃 = 𝑄, 𝐹𝐷
𝛼
(𝑃, 𝑄) = 0, the triangle inequality (36)

holds apparently. So we assume 𝑃 ̸=𝑄 in the following.
Next consider the value of 𝛼 in three cases, respectively,

(i) 0 < 𝛼 ≤ 1/2.

FromTheorem 10, the inequality (𝐽(𝑝
𝑖
, 𝑞
𝑖
))
𝛼

≤ (𝐽(𝑝
𝑖
, ℎ
𝑖
))
𝛼

+ (𝐽(𝑞
𝑖
, ℎ
𝑖
))
𝛼 holds. Applying Minkowski’s inequality, we

have

(

𝑛

∑

𝑖=1

𝐽 (𝑝
𝑖
, 𝑞
𝑖
))

𝛼

= {

𝑛

∑

𝑖=1

((𝐽 (𝑝
𝑖
, 𝑞
𝑖
))
𝛼

)
1/𝛼

}

𝛼

≤ {

𝑛

∑

𝑖=1

((𝐽 (𝑝
𝑖
, ℎ
𝑖
))
𝛼

+ (𝐽 (𝑞
𝑖
, ℎ
𝑖
))
𝛼

)
1/𝛼

}

𝛼

≤ {

𝑛

∑

𝑖=1

((𝐽 (𝑝
𝑖
, ℎ
𝑖
))
𝛼

)
1/𝛼

}

𝛼

+ {

𝑛

∑

𝑖=1

((𝐽 (𝑞
𝑖
, ℎ
𝑖
))
𝛼

)
1/𝛼

}

𝛼

= (

𝑛

∑

𝑖=1

𝐽 (𝑝
𝑖
, ℎ
𝑖
))

𝛼

+ (

𝑛

∑

𝑖=1

𝐽 (𝑞
𝑖
, ℎ
𝑖
))

𝛼

.

(37)

So the triangle inequality (36) holds:

(ii) 𝛼 ≥ 1.

Let 𝑅 = (1/2)(𝑃 + 𝑄); then using Theorem 9 and noticing
𝑃 ̸=𝑄, we find

𝐹𝐷
𝛼
(𝑃, 𝑅) + 𝐹𝐷

𝛼
(𝑄, 𝑅)

𝐹𝐷
𝛼
(𝑃, 𝑄)

=
(∑
𝑛

𝑖=1
𝐽 (𝑝
𝑖
, 𝑟
𝑖
))
𝛼

+ (∑
𝑛

𝑖=1
𝐽 (𝑞
𝑖
, 𝑟
𝑖
))
𝛼

(∑
𝑛

𝑖=1
𝐽 (𝑝
𝑖
, 𝑞
𝑖
))
𝛼

<
(∑
𝑛

𝑖=1
𝐽 (𝑝
𝑖
, 𝑟
𝑖
))
𝛼

+ (∑
𝑛

𝑖=1
𝐽 (𝑞
𝑖
, 𝑟
𝑖
))
𝛼

(∑
𝑛

𝑖=1
(𝐽 (𝑝
𝑖
, 𝑟
𝑖
) + 𝐽 (𝑞

𝑖
, 𝑟
𝑖
)))
𝛼

≤ 1.

(38)

This means 𝐹𝐷
𝛼
(𝑃, 𝑄) > 𝐹𝐷

𝛼
(𝑃, 𝑅) + 𝐹𝐷

𝛼
(𝑄, 𝑅). The

inequality is not consistent with triangle inequality (36):

(iii) 1/2 < 𝛼 < 1.

Let

𝐹 (𝑥
1
, . . . , 𝑥

𝑛
) = 𝐹
1
(𝑥
1
, . . . , 𝑥

𝑛
) + 𝐹
2
(𝑥
1
, . . . , 𝑥

𝑛
) , (39)

where

𝐹
1
(𝑥
1
, . . . , 𝑥

𝑛
) = (

𝑛

∑

𝑖=1

(𝑝
𝑖
ln

2𝑝
𝑖

𝑝
𝑖
+ 𝑥
𝑖

+ 𝑥
𝑖
ln

2𝑥
𝑖

𝑝
𝑖
+ 𝑥
𝑖

))

𝛼

,

𝐹
2
(𝑥
1
, . . . , 𝑥

𝑛
) = (

𝑛

∑

𝑖=1

(𝑥
𝑖
ln

2𝑥
𝑖

𝑞
𝑖
+ 𝑥
𝑖

+ 𝑞
𝑖
ln

2𝑞
𝑖

𝑞
𝑖
+ 𝑥
𝑖

))

𝛼

.

(40)

Then, 𝐹(𝑝
1
, . . . , 𝑝

𝑛
) = 𝐹(𝑞

1
, . . . , 𝑞

𝑛
) = 𝐹𝐷

𝛼
(𝑃, 𝑄).

Next, we prove (𝑝
1
, . . . , 𝑝

𝑛
) and (𝑞

1
, . . . , 𝑞

𝑛
) are not the

extreme points of the function 𝐹(𝑥
1
, . . . , 𝑥

𝑛
). From the sym-

metry, we only need to prove (𝑝
1
, . . . , 𝑝

𝑛
) is not the extreme

point.
By partial derivative,

𝜕𝐹

𝜕𝑥
𝑖

(𝑥
1
,...,𝑥
𝑛
)=(𝑝
1
,...,𝑝
𝑛
)

=
𝜕𝐹
1

𝜕𝑥
𝑖

(𝑥
1
,...,𝑥
𝑛
)=(𝑝
1
,...,𝑝
𝑛
)

+
𝜕𝐹
2

𝜕𝑥
𝑖

(𝑥
1
,...,𝑥
𝑛
)=(𝑝
1
,...,𝑝
𝑛
)

.

(41)

Since 𝑃 ̸=𝑄, we might as well assume 𝑝
1
̸= 𝑞
1
and 𝑝

1
> 0.

Consider the following

𝜕𝐹
2

𝜕𝑥
1

(𝑥
1
,...,𝑥
𝑛
)=(𝑝
1
,...,𝑝
𝑛
)

= 𝛼 ln
2𝑝
1

𝑝
1
+ 𝑞
1

⋅ (

𝑛

∑

𝑖=1

(𝑝
𝑖
ln

2𝑝
𝑖

𝑝
𝑖
+ 𝑞
𝑖

+ 𝑞
𝑖
ln

2𝑞
𝑖

𝑝
𝑖
+ 𝑞
𝑖

))

𝛼−1

̸= 0,

(42)

𝜕𝐹
1

𝜕𝑥
1

(𝑥
1
,...,𝑥
𝑛
)=(𝑝
1
,...,𝑝
𝑛
)

= lim
Δ𝑥
1
→0

1

Δ𝑥
1

(𝐹
1
(𝑝
1
+ Δ𝑥
1
, . . . , 𝑝

𝑛
) − 𝐹
1
(𝑝
1
, . . . , 𝑝

𝑛
))

= lim
Δ𝑥
1
→0

1

Δ𝑥
1

⋅ (𝑝
1
ln

2𝑝
1

2𝑝
1
+ Δ𝑥
1

+ (𝑝
1
+ Δ𝑥
1
) ln

2 (𝑝
1
+ Δ𝑥
1
)

2𝑝
1
+ Δ𝑥
1

)

𝛼

.

(43)
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Using (10), we have

ln
2𝑝
1

2𝑝
1
+ Δ𝑥
1

≤
2𝑝
1

2𝑝
1
+ Δ𝑥
1

− 1 = −
Δ𝑥
1

2𝑝
1
+ Δ𝑥
1

,

ln
2 (𝑝
1
+ Δ𝑥
1
)

2𝑝
1
+ Δ𝑥
1

≤
2 (𝑝
1
+ Δ𝑥
1
)

2𝑝
1
+ Δ𝑥
1

− 1 =
Δ𝑥
1

2𝑝
1
+ Δ𝑥
1

.

(44)

If Δ𝑥
1
is small enough, using (44), we find the inequality

(𝑝
1
ln

2𝑝
1

2𝑝
1
+ Δ𝑥
1

+ (𝑝
1
+ Δ𝑥
1
) ln

2 (𝑝
1
+ Δ𝑥
1
)

2𝑝
1
+ Δ𝑥
1

)

𝛼

≤ (𝑝
1
(−

Δ𝑥
1

2𝑝
1
+ Δ𝑥
1

) + (𝑝
1
+ Δ𝑥
1
) (

Δ𝑥
1

2𝑝
1
+ Δ𝑥
1

))

𝛼

=
(Δ𝑥
1
)
2𝛼

(2𝑝
1
+ Δ𝑥
1
)
𝛼
.

(45)

A straight result of (45) is

0 ≤



1

Δ𝑥
1



⋅



(𝑝
1
ln

2𝑝
1

2𝑝
1
+ Δ𝑥
1

+ (𝑝
1
+ Δ𝑥
1
) ln

2 (𝑝
1
+ Δ𝑥
1
)

2𝑝
1
+ Δ𝑥
1

)

𝛼

≤

Δ𝑥1


2𝛼−1

(2𝑝
1
+ Δ𝑥
1
)
𝛼
→ 0, if Δ𝑥

1
→ 0.

(46)

So from (43), (46) can be

𝜕𝐹
1

𝜕𝑥
1

(𝑥
1
,...,𝑥
𝑛
)=(𝑝
1
,...,𝑝
𝑛
)

= 0. (47)

Then, taking (42) and (43) into (47), we have

𝜕𝐹

𝜕𝑥
1

(𝑥
1
,...,𝑥
𝑛
)=(𝑝
1
,...,𝑝
𝑛
)

̸= 0. (48)

Therefore, (𝑝
1
, . . . , 𝑝

𝑛
) is not the extreme point of the

function 𝐹(𝑥
1
, . . . , 𝑥

𝑛
). For the same reason, (𝑞

1
, . . . , 𝑞

𝑛
) is

also not the extreme point.
Using the definition of extreme point, there exists a point

𝐻 = (ℎ
1
, . . . , ℎ

𝑛
) such that 𝐹(ℎ

1
, . . . , ℎ

𝑛
) < 𝐹(𝑝

1
, . . . , 𝑝

𝑛
) =

𝐹𝐷
𝛼
(𝑃, 𝑄). As 𝐹

1
(ℎ
1
, . . . , ℎ

𝑛
) = 𝐹𝐷

𝛼
(𝑃,𝐻), 𝐹

2
(ℎ
1
, . . . , ℎ

𝑛
) =

𝐹𝐷
𝛼
(𝑄,𝐻), then 𝐹𝐷

𝛼
(𝑃,𝐻) + 𝐹𝐷

𝛼
(𝑄,𝐻) < 𝐹𝐷

𝛼
(𝑃, 𝑄). The

inequality is not consistent with (36).
From what has been discussed above, the conclusion in

the theorem is obtained.

5. Comparison between 𝐹𝐷
1/2

and 𝑑

As [5, 6] mentioned, we focus on the RNA alphabet
{U,C,A,G}. Code U as (1, 0, 0, 0): 1 shows that the first
letter U is present, 0 shows that the second letter C does
not appear, 0 shows that the third letter A does not appear,
and 0 shows that the fourth letter G does not appear.

Thereby, C is represented as (0, 1, 0, 0), A is represented as
(0, 0, 1, 0), G is represented as (0, 0, 0, 1). So any codon can
correspond to a fuzzy set as a point in the 12-dimensional
fuzzy polynucleotide space 𝐼12. For example, the codon CGU
would be recorded as

(0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0) ∈ 𝐼
12

. (49)

However, there exist some cases in which there is no
sufficient knowledge about the chemical structure of a partic-
ular sequence. One therefore may deal with base sequences
not necessarily at a corner of the hypercube, and some
components of the fuzzy set are not either 0 or 1. For example,

(0.3, 0.4, 0.1, 0.2, 0, 1, 0, 0, 0, 0, 0, 1) ∈ 𝐼
12 (50)

expresses a codon XCG. In this case, the first letter X is
unknown and corresponds to U to an extent of 0.3, C to an
extent of 0.4, A to an extent of 0.1, G to an extent of 0.2.

(1) For the metric 𝑑 (in [5]),

𝑑(histidine, proline) = 𝑑(CAU,CCG) = 0.8;
𝑑(histidine, serine) = 𝑑(CAU,UCG) = 1;
𝑑(histidine, arginine) = 𝑑(CAU,CGU) = 0.5;
𝑑(arginine, glutamine) = 𝑑(CGU,CAG) = 0.8;
𝑑(lysine, glycine) = 𝑑(AAA,GGG) = 1.

(2) For the metric 𝐹𝐷
1/2

,

𝐹𝐷
1/2
(histidine, proline) = 𝐹𝐷

1/2
(CAU,CCG) =

1.6651;
𝐹𝐷
1/2
(histidine, serine) = 𝐹𝐷

1/2
(CAU,UCG) =

2.0393;
𝐹𝐷
1/2
(histidine, arginine) = 𝐹𝐷

1/2
(CAU,CGU) =

1.1774;
𝐹𝐷
1/2
(arginine, glutamine) = 𝐹𝐷

1/2
(CGU,CAG) =

1.6651;
𝐹𝐷
1/2
(lysine, glycine) = 𝐹𝐷

1/2
(AAA,GGG) =

2.0393.

From the above, the 𝐹𝐷
1/2

is larger than 𝑑. But the value
does not change the relationship of the distances between
different codons. This shows that the new metric 𝐹𝐷

1/2

reflects more information of the difference between codons.
Next, the distances between codon XCG mentioned and
proline and serine are as follows:

(1) For the metric 𝑑 (in [5]),
𝑑(XCG, proline) = 𝑑(XCG,CCG) = 0.3333;
𝑑(XCG, serine) = 𝑑(XCG,UCG) = 0.3784;

(2) For the metric 𝐹𝐷
1/2

,
𝐹𝐷
1/2
(XCG, proline) = 𝐹𝐷

1/2
(XCG,CCG) = 0.7408;

𝐹𝐷
1/2
(XCG, serine) = 𝐹𝐷

1/2
(XCG,UCG) = 0.8271.

We apply the comparison to complete genomes. In
[5], Torres a.nd Nieto computed the frequencies of the
nucleotides A, C, G, and T at the three base sites of a codon
in two bacteria M. tuberculosis and E. coli and obtained two
points corresponding to either
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(0.1632, 0.3089, 0.1724, 0.3556, 0.2036, 0.3145,
0.1763, 0.3056, 0.1645, 0.3461, 0.1593, 0.3302) ∈ 𝐼12

or
(0.1605, 0.2420, 0.2600, 0.3374, 0.3116, 0.2286,
0.2846, 0.1752, 0.2619, 0.2568, 0.1831, 0.2981) ∈ 𝐼12.

For the metric 𝑑 (in [5]),

𝑑 (𝑀. 𝑡𝑢𝑏𝑒𝑟𝑐𝑢𝑙𝑜𝑠𝑖𝑠, 𝐸.𝑐𝑜𝑙𝑖) = 0.2483. (51)

For the metric 𝐹𝐷
1/2

,

𝐹𝐷
1/2

(𝑀. 𝑡𝑢𝑏𝑒𝑟𝑐𝑢𝑙𝑜𝑠𝑖𝑠, 𝐸.𝑐𝑜𝑙𝑖) = 0.2859. (52)

It is easy to obtain that 𝐹𝐷
𝛼
is closer to 1 and also larger

than 𝑑 when 0 < 𝛼 < 1/2.

6. Concluding Remarks

By the discussion in the above sections, we come to the main
conclusion: when 𝑃, 𝑄 are two points in the n-dimensional
unit hypercube 𝐼𝑛, 𝐹𝐷

𝛼
(𝑃, 𝑄) is a metric if and only if 0 <

𝛼 ≤ 1/2.
In Section 4, the method in case (iii) can also be used to

prove that triangle inequality (36) does not hold in case (ii).
But the method in case (ii) is intuitive, and we can find one
determinate point 𝑅 beyond the existence. So we adopt the
method in case (ii) when 𝛼 ≥ 1.

In this paper, we extend the method in [2, 4–6] to discuss
the new fuzzy polynucleotide space. By considering all the
possible values of parameter 𝛼, we obtain the new class of
metrics in the space. At last, we numerically compare the
new metrics 𝐹𝐷

𝛼
to the former metric 𝑑 by computing some

basic examples of codons. This shows the improvement is
comprehensive.

With 0 < 𝛼 ≤ 1/2, we can also study the metric
space (𝐼𝑛, 𝐹𝐷

𝛼
) using the theory of metric space, such as

the Pythagoras theorem, the isometric property, the isomor-
phismproperty, and the limit property in the future.We think
the new metrics can interpret more biological significance
for the sequences of the polynucleotide and be useful in the
bioinformatics.
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