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The monotone variational inequalities capture various concrete applications arising in many areas. In this paper, we develop a
new prediction-correction method for monotone variational inequalities with separable structure. The new method can be easily
implementable, and the main computational effort in each iteration of the method is to evaluate the proximal mappings of the
involved operators. At each iteration, the algorithm also allows the involved subvariational inequalities to be solved in parallel.
We establish the global convergence of the proposed method. Preliminary numerical results show that the new method can be
competitive with Chen’s proximal-based decomposition method in Chen and Teboulle (1994).

1. Introduction

The variational inequality (VI (Ω, 𝐹)) in the finite-dimen-
sional space is to determine a vector 𝑢 ∈ Ω such that

⟨𝑢

− 𝑢, 𝐹 (𝑢)⟩ ≥ 0, ∀𝑢


∈ Ω, (1)

where Ω ∈ R𝑛 is a nonempty closed convex subset and 𝐹
is a continuous mapping from R𝑛 into itself. The VI (Ω, 𝐹)
has found many efficient applications in a broad spectrum of
areas such as traffic equilibrium [1] and network economic
problems [2]. For solving (1), the proximal point algorithm
(PPA), which was proposed by Martinet [3] and further
studied by Rockafellar [4, 5], generates the new iterative point
𝑢
𝑘+1 via the following procedure:

⟨𝑢

− 𝑢
𝑘+1
, 𝐹 (𝑢
𝑘+1
) + 𝐺 (𝑢

𝑘+1
− 𝑢
𝑘
)⟩ ≥ 0, ∀𝑢


∈ Ω, (2)

where 𝐺 ∈ R𝑛×𝑛 is a positive definite matrix, playing the
role of proximal regularization parameter. Note that the PPA
has to solve systems of nonlinear equations in each iteration.
In many cases, solving these equations is quite difficult. This
difficulty has inspired the burst of approximate versions of
the PPAs, in order to approximately solve (2) under certain
“relative error.” These new methods include well-known-
extragradient type methods (EGM) as special cases. Assume

that 𝐹 is Lipschitz continuous; that is, there is 𝑙 ∈ (0, 1), such
that

𝛽

𝐹 (𝑢
𝑘
) − 𝐹 (�̃�

𝑘
)

≤ 𝑙

𝑢
𝑘
− �̃�
𝑘
. (3)

Then at each iteration EGM takes the following general form:

⟨𝑢

− �̃�, 𝛽𝐹 (𝑢

𝑘
) + �̃� − 𝑢

𝑘
⟩ ≥ 0, ∀𝑢


∈ Ω,

⟨𝑢

− 𝑢
𝑘+1
, 𝛽𝐹 (�̃�) + 𝑢

𝑘+1
− 𝑢
𝑘
⟩ ≥ 0, ∀𝑢


∈ Ω.

(4)

In this paper, we consider the following variational
inequalities: find a vector 𝑤 ∈ D such that

⟨𝑤

− 𝑤, 𝐹 (𝑤)⟩ ≥ 0, ∀𝑤


∈ D, (5)

with

𝑤 := (
𝑥

𝑦
) , 𝐹 (𝑤) := (

𝑓 (𝑥)

𝑔 (𝑦)
) ,

D = {(𝑥, 𝑦) | 𝑥 ∈ X, 𝑦 ∈ Y, 𝐴𝑥 + 𝐵𝑦 = 𝑏} ,

(6)

where D ∈ R𝑛+𝑝 is a nonempty closed convex subset and
𝑓 : X → R𝑛 and 𝑔 : Y → R𝑝 are monotone operators.
Problem (5) is referred to as a structured variational inequal-
ity (SVI) [6].
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By attaching a Lagrange multiplier vector 𝜆 ∈ R𝑚 to
the linear constraints 𝐴𝑥 + 𝐵𝑦 = 𝑏, the VI problem (5) is
converted into the following form:

⟨

𝑥

− 𝑥, 𝑓 (𝑥) − 𝐴

𝑇
𝜆

𝑦

− 𝑦, 𝑔 (𝑦) − 𝐵

𝑇
𝜆

𝜆

− 𝜆, 𝐴𝑥 + 𝐵𝑦 − 𝑏

⟩ ≥ 0, ∀𝑢

∈ Ω, (7)

where

Ω = X ×Y ×R
𝑚
. (8)

The compact form is

⟨𝑢

− 𝑢, 𝐹 (𝑢)⟩ ≥ 0, ∀𝑢


∈ Ω, (9)

with

𝑢 := (

𝑥

𝑦

𝜆

) , 𝐹 (𝑢) := (

𝑓 (𝑥) − 𝐴
𝑇
𝜆

𝑔 (𝑦) − 𝐵
𝑇
𝜆

𝐴𝑥 + 𝐵𝑦 − 𝑏

) . (10)

For the purpose of parallel computing, the proximal al-
ternating directions method (PADM) generates �̃�𝑘 = (𝑥𝑘, 𝑦𝑘,
�̃�
𝑘
) ∈ Ω as follows [7, 8]: first find an 𝑥𝑘 ∈ X such that

⟨𝑥

− 𝑥
𝑘
, 𝑓 (𝑥
𝑘
) − 𝐴
𝑇
[𝜆
𝑘
− 𝛽 (𝐴𝑥

𝑘
+ 𝑦
𝑘
− 𝑏)]

+𝑟 (𝑥
𝑘
− 𝑥
𝑘
)⟩ ≥ 0, ∀𝑥 ∈ X.

(11)

Then find an 𝑦𝑘 ∈ Y such that

⟨𝑦

− 𝑦
𝑘
, 𝑔 (𝑦
𝑘
) − 𝐵
𝑇
[𝜆
𝑘
− 𝛽 (𝐴𝑥

𝑘
+ 𝑦
𝑘
− 𝑏)]

+𝑠 (𝑦
𝑘
− 𝑦
𝑘
)⟩ ≥ 0, ∀𝑦 ∈ Y.

(12)

Finally, update �̃�𝑘 via

�̃�
𝑘
= 𝜆
𝑘
− 𝛽 (𝐴𝑥

𝑘
+ 𝐵𝑦
𝑘
− 𝑏) . (13)

Here 𝑟 ≥ 0 and 𝑠 ≥ 0 are given proximal parameters; 𝛽 ≥ 0 is
a given penalty parameter for the linearly constraints. Note
that when 𝑟 = 𝑠 = 0 in (11)-(12), the classical alternating
directions method (ADM) is recovered. To make the PADM
(11)–(13) more efficient and flexible, some strategies have
been developed. For example, allow 𝑟, 𝑠, and 𝛽 to vary from
iteration to iteration according to certain strategies [8–10];
produce the new iterate based on the minor correction to the
predictor. A simple and effective correction scheme is (see,
e.g., [11, 12])

𝑢
𝑘+1
= 𝑢
𝑘
− 𝛼
𝑘
(𝑢
𝑘
− �̃�
𝑘
) , (14)

where 𝛼
𝑘
> 0 is a chosen step size.

The PADM (11)–(13) is often easy to implement under the
assumption that the decomposed subproblems have closed-
form solutions or can be efficiently solved up to a high
precision. However, in some cases, matrixes 𝐴 and 𝐵 are not
identity matrices, and the two subproblems in PADM (11)-
(12) are difficult to solve because the evaluation of (𝐴𝑇𝐴 +

(1/𝛽)𝑓)
−1
(𝐴𝜐) and (𝐵𝑇𝐵 + (1/𝛽)𝑔)−1(𝐵𝜐) could be costly. To

overcome this difficulty, we propose a new implementable
prediction-correction method for the SVI. At each iteration,
we first decompose the problem to two small problems with
respect to 𝑥 and 𝑦, respectively. The two subproblems are
all easy to solve under the assumption that the resolvent
operators of 𝑓 and 𝑔 are easy to evaluate, where the resolvent
operator of mapping 𝑇 is defined as (𝐼 + 𝜆𝑇)−1(𝜐). Then, we
update the Lagrange multipliers and make a correction step
to ensure the algorithm’s convergence.

The SVI has been studied extensively both in the the-
oretical frameworks and applications. Recently, Han [13]
proposed a hybrid entropic proximal decomposition method
for the SVI. Han’s method is based on logarithmic-quadratic
functions and combined with self-adaptive strategy. He [14]
presented a parallel splitting augmented Lagrangian method
which can be extended to solve the system of equilibrium
problems with three separable operators. Xu et al. [15]
proposed two classes of correction methods for the SVI in
which themapping 𝐹 does not have an explicit form. Besides,
Xu and Wu [16] also studied a class of linearized proximal
alternating directionmethods and showed that the relaxation
factor can have the same restriction region as for the general
ADM. Yuan and Li [17] developed a logarithmic-quadratic-
proximal- (LQP-) based decomposition method by applying
the LQP terms to regularize the ADM subproblems; then
Bnouhachem et al. [18] studied a new inexact LQP alternating
direction method by solving a series of related systems of
nonlinear equations.

The rest of this paper is organized as follows. In Section 2,
we review some preliminaries which are useful for further
analysis. In Section 3, we present the new implementable
prediction-correctionmethod for SVI, and the global conver-
gence result is established. Numerical experiments and some
conclusions are addressed in Sections 4 and 5, respectively.

2. Preliminaries

In this section, we make some standard assumptions and
summarize some basic properties of VI which will be used
in the subsequent discussions.

Assumption

(A1) X,Y are simple closed convex sets.
A set which is said to be simple means that the pro-
jection onto the set is easy to compute, where the
projection of a point 𝜐 onto the closed convex set
Ω, denoted by 𝑃

Ω
(𝜐), is defined as the nearest point

𝑢 ∈ Ω to 𝜐; that is,

𝑃
Ω
(𝜐) = argmin {‖𝑢 − 𝜐‖ | 𝑢 ∈ Ω} . (15)

(A2) The mapping 𝐹 is point-to-point, monotone, and
continuous.
A mapping 𝐹 : R𝑛 → R𝑛 is said to be monotone on
Ω if

⟨𝑢 − 𝜐, 𝐹 (𝑢) − 𝐹 (𝜐)⟩ ≥ 0, ∀𝑢, 𝜐 ∈ Ω. (16)
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(A3) The solution set of SVI (Ω, 𝐹), denoted by Ω∗, is
nonempty.

Properties. Let 𝐺 be a symmetric positive definite matrix; the
𝐺-norm of the vector 𝑢 is denoted by ‖𝑢‖

𝐺
:= √⟨𝑢, 𝐺𝑢⟩. In

particular, when𝐺 = 𝐼, ‖𝑢‖ := √⟨𝑢, 𝑢⟩ is the Euclidean norm
of 𝑢. For amatrix𝐴, ‖𝐴‖ denotes its norm ‖𝐴‖ := max{‖𝐴𝑥‖ :
‖𝑥‖ ≤ 1}.

The following well-known properties of the projection
operator will be used in the coming analysis.

Lemma 1. Let Ω ∈ R𝑛 be a nonempty closed convex set; let
𝑃
Ω
(⋅) be the projection operator onto Ω under the 𝐺-norm.

Then

⟨𝑢

− 𝑃
Ω
(𝑢

) , 𝐺 (𝑢 − 𝑃

Ω
(𝑢

))⟩ ≤ 0, ∀𝑢


∈ R
𝑛
, ∀𝑢 ∈ Ω,


𝑃
Ω
(𝑢) − 𝑃

Ω
(𝑢

)
𝐺
≤

𝑢 − 𝑢
𝐺
, ∀𝑢, 𝑢


∈ R
𝑛
,


𝑢 − 𝑃
Ω
(𝑢

)


2

𝐺
≤

𝑢 − 𝑢


2

𝐺
−

𝑢

− 𝑃
Ω
(𝑢

)


2

𝐺
,

∀𝑢

∈ R
𝑛
, ∀ 𝑢 ∈ Ω.

(17)

For any arbitrary positive scalar 𝛽 and 𝑢 ∈ Ω, let 𝑒(𝑢, 𝛽)
denote the residual function associated with the mapping 𝐹;
that is,

𝑒 (𝑢, 𝛽) = 𝑢 − 𝑃
Ω
[𝑢 − 𝛽𝐹 (𝑢)] . (18)

Lemma 2. 𝑢∗ is a solution of the SVI (Ω, 𝐹) if and only if
𝑒(𝑢
∗
, 𝛽) = 0 for any given positive constant 𝛽 (see [2, page

267]).

Lemma 3. Solving SVI (Ω, 𝐹) (7) is equivalent to find a zero
point of the mapping

𝑒 (𝑢, 𝛽) := (

𝑒
1
(𝑢, 𝛽)

𝑒
2
(𝑢, 𝛽)

𝑒
3
(𝑢, 𝛽)

)

=(

𝑥 − 𝑃X {𝑥 − 𝛽 [𝑓 (𝑥) − 𝐴
𝑇
𝜆]}

𝑦 − 𝑃Y {𝑦 − 𝛽 [𝑔 (𝑦) − 𝐵
𝑇
𝜆]}

𝛽 (𝐴𝑥 + 𝐵𝑦 − 𝑏)

) .

(19)

3. The New Algorithm

In this section, we present a new prediction-correction
method for SVI (Ω, 𝐹) and show its global convergence. But,

at the beginning, to make the algorithm more succinct, we
first define some matrices:

𝐻 = (

𝑟𝐼 0 0

0 𝑠𝐼 0

0 0
1

𝛽
𝐼

) , 𝑀 =(

𝐼 0
1

𝑟
𝐴
𝑇

0 𝐼
1

𝑠
𝐵
𝑇

0 0 𝐼

),

𝑄 = (

𝑟𝐼 0 𝐴
𝑇

0 𝑠𝐼 𝐵
𝑇

0 0
1

𝛽
𝐼

) .

(20)

Obviously, 𝐻 is a symmetric positive definite matrix
whenever 𝑟 > 0, 𝑠 > 0, and𝛽 > 0, andwe also have𝑄 = 𝐻𝑀.

3.1. Description of the Algorithm

Algorithm 4. It is a prediction-correction-based algorithm
for the SVI (Ω, 𝐹).

Phase 1 (initialization step). Given a small number 𝜖 > 0,
let 𝛾 ∈ (0, 2); matrixes 𝑄,𝑀 are defined in (20). Take 𝑢0 ∈
R𝑛+𝑝+𝑚; set 𝑘 = 0. Choose the parameters 𝑟 > 0, 𝑠 > 0, and
𝛽 > 0 such that

𝑟 > 2𝛽

𝐴
𝑇
𝐴

, 𝑠 > 2𝛽


𝐵
𝑇
𝐵

. (21)

Phase 2 (prediction step). Generate the predictor𝑥𝑘 via solving
the following projection equation:

𝑥
𝑘
= 𝑃X [𝑥

𝑘
−
1

𝑟
(𝑓 (𝑥

𝑘
) − 𝐴
𝑇
𝜆
𝑘
)] . (22)

Then find an 𝑦𝑘 ∈ Y such that

𝑦
𝑘
= 𝑃Y [𝑦

𝑘
−
1

𝑠
(𝑔 (𝑦
𝑘
) − 𝐵
𝑇
𝜆
𝑘
)] . (23)

Finally, update �̃�𝑘 via

�̃�
𝑘
= 𝜆
𝑘
− 𝛽 (𝐴𝑥

𝑘
+ 𝐵𝑦
𝑘
− 𝑏) . (24)

Phase 3 (correction step). Correct the predictor, and generate
the new iterate 𝑢𝑘+1 via

𝑢
𝑘+1
= 𝑢
𝑘
− 𝛼
𝑘
𝑀(𝑢
𝑘
− �̃�
𝑘
) , (25)

where

𝛼
𝑘
= 𝛾𝛼
∗

𝑘
, 𝛼

∗

𝑘
=

⟨𝑢
𝑘
− �̃�
𝑘
, 𝑄 (𝑢

𝑘
− �̃�
𝑘
)⟩

𝑀 (𝑢
𝑘 − �̃�𝑘)



2

𝐻

. (26)

Phase 4 (convergence verification). If ‖𝑢𝑘 − 𝑢𝑘+1‖ ≤ 𝜖, stop;
otherwise set 𝑘 := 𝑘 + 1; go to Phase 2.
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Remark 5. Note that (22) does not involve 𝑦𝑘 and that (23)
is independent on the 𝑥𝑘 generated by (22). Hence the two
projections (22) and (23) are eligible for parallel computation.

Remark 6. It is easy to check that �̃�𝑘 = (𝑥𝑘, 𝑦𝑘, �̃�𝑘) is a
solution of SVI (Ω, 𝐹) if and only if 𝐴𝑥𝑘 = 𝐴𝑥𝑘, 𝐵𝑦𝑘 = 𝐵𝑦𝑘,
and 𝜆𝑘 = �̃�𝑘. Thus, it is reasonable to take the magnitude of
‖𝑢
𝑘
− 𝑢
𝑘+1
‖ ≤ 𝜖 as the stopping criterion.

Remark 7. The strategy of choosing the step size 𝛼
𝑘
in the

correction step which coincides with the strategy in He’s
papers, see, for example, [19], will be explained in detail in
the following section.

Remark 8. Our method and the methods proposed in [6, 15,
20] are all in the prediction-correction algorithmic frame-
work, where at each iteration they make a prediction step to
produce a predictor and a correction step to generate the new
iterate via correcting this predictor.

3.2. Contractive Properties. Now, we start to prove some
properties of the sequence {�̃�𝑘}. The first lemma quantifies
the discrepancy between the point �̃�𝑘 and a solution point of
SVI (Ω, 𝐹).

Lemma 9. Let {�̃�} be generated by (22)–(24), and let the
matrix𝑀 be given in (20). Then one has

⟨𝑢

− �̃�
𝑘
, 𝐹 (�̃�) − 𝑄 (𝑢

𝑘
− �̃�
𝑘
)⟩ ≥ 0, ∀𝑢


∈ Ω. (27)

Proof. Note that �̃�𝑘 generated by (22)–(24) are actually
solutions of the following VIs:

⟨𝑥

− 𝑥
𝑘
, 𝑓 (𝑥
𝑘
) − 𝐴
𝑇
𝜆
𝑘
− 𝑟 (𝑥

𝑘
− 𝑥
𝑘
)⟩ ≥ 0, ∀𝑥 ∈ X,

(28)

⟨𝑦

− 𝑦
𝑘
, 𝑔 (𝑦
𝑘
) − 𝐵
𝑇
𝜆
𝑘
− 𝑠 (𝑦

𝑘
− 𝑦
𝑘
)⟩ ≥ 0, ∀𝑦 ∈ Y,

(29)

⟨𝜆

− �̃�
𝑘
, 𝐴𝑥
𝑘
+ 𝐵𝑦
𝑘
− 𝑏 −

1

𝛽
(𝜆
𝑘
− �̃�
𝑘
)⟩ ≥ 0, ∀𝜆 ∈ R

𝑚
.

(30)

Combining (28)–(30) together, we have

⟨

𝑥

− 𝑥
𝑘
, 𝑓 (𝑥

𝑘
) − 𝐴
𝑇
�̃�
𝑘
− 𝐴
𝑇
(𝜆
𝑘
− �̃�
𝑘
) − 𝑟 (𝑥

𝑘
− 𝑥
𝑘
)

𝑦

− 𝑦
𝑘
, 𝑔 (𝑦

𝑘
) − 𝐵
𝑇
�̃�
𝑘
− 𝐵
𝑇
(𝜆
𝑘
− �̃�
𝑘
) − 𝑠 (𝑦

𝑘
− 𝑦
𝑘
)

𝜆

− �̃�, 𝐴𝑥

𝑘
+ 𝐵𝑦
𝑘
− 𝑏 −

1

𝛽
(𝜆
𝑘
− �̃�
𝑘
)

⟩

≥ 0, ∀𝑢

∈ Ω.

(31)

Using the notations of𝐹 (see (10)) and𝑄 (see (20)), the earlier
inequality can be rewritten into

⟨𝑢

− �̃�
𝑘
, 𝐹 (�̃�) − 𝑄 (𝑢

𝑘
− �̃�
𝑘
)⟩ ≥ 0, ∀𝑢


∈ Ω. (32)

The assertion (27) is thus proved.

The following lemma plays a key role in proving the
convergence of the algorithm.

Lemma 10. Let matrixes 𝑄, 𝐻 be defined in (20), if the
parameters 𝑟 > 0,𝑠 > 0, and 𝛽 > 0 in (22)–(24) satisfy

𝑟 > 2𝛽

𝐴
𝑇
𝐴

, 𝑠 > 2𝛽


𝐵
𝑇
𝐵

. (33)

Then for the matrix 𝑄 in (27), one has

⟨𝑢 − �̃�, 𝑄 (𝑢 − �̃�)⟩ ≥ (1 −
𝜇

2
) ‖𝑢 − �̃�‖

2

𝐻

∀𝑢 ̸= �̃� ∈ R
𝑛+𝑝+𝑚

,

(34)

with

𝜇 = √max{
2𝛽

𝐴
𝑇
𝐴


𝑟
,

2𝛽

𝐵
𝑇
𝐵


𝑠
} ∈ (0, 1) . (35)

Proof. For any 𝑢 ̸= �̃�, we have

⟨𝑢 − �̃�, 𝑄 (𝑢 − �̃�)⟩ = ‖𝑢 − �̃�‖
2

𝐻

+ ⟨𝜆 − �̃�, 𝐴 (𝑥 − 𝑥)⟩ + ⟨𝜆 − �̃�, 𝑦 − 𝑦⟩ .

(36)

According to the Cauchy-Schwarz inequality, we get

⟨𝜆 − �̃�, 𝐴 (𝑥 − 𝑥)⟩ + ⟨𝜆 − �̃�, 𝑦 − 𝑦⟩

=
1

2
(2 ⟨𝜆 − �̃�, 𝐴 (𝑥 − 𝑥)⟩ + 2 ⟨𝜆 − �̃�, 𝐵 (𝑦 − 𝑦)⟩)

≥ −
1

2
{
2𝛽

𝜇
‖𝐴 (𝑥 − 𝑥)‖

2
+
𝜇

2𝛽


𝜆 − �̃�



2

}

−
1

2
{
2𝛽

𝜇

𝐵 (𝑦 − 𝑦)


2

+
𝜇

2𝛽


𝜆 − �̃�



2

}

= −
1

2
{
2𝛽

𝜇
‖𝐴 (𝑥 − 𝑥)‖

2
+
2𝛽

𝜇

×
𝐵 (𝑦 − 𝑦)



2

+
𝜇

𝛽


𝜆 − �̃�



2

} .

(37)

With the 𝜇 defined in (35), we have

2𝛽

𝜇
‖𝐴 (𝑥 − 𝑥)‖

2
≤ 𝜇𝑟‖𝑥 − 𝑥‖

2
,

2𝛽

𝜇

𝐵 (𝑦 − 𝑦)


2

≤ 𝜇𝑠
𝑦 − 𝑦



2

.

(38)

Substituting (38) into (37), combining (36), the assertion (34)
is proved.

Lemma 11. Suppose that 𝑢∗ = (𝑥∗, 𝑦∗, 𝜆∗) ∈ Ω is a solution
point of (9) and the sequences {𝑢𝑘+1} are corrected by an
undeterminate step size denoted by 𝛼 instead of (26); that is,

𝑢
𝑘+1
= 𝑢
𝑘
− 𝛼𝑀(𝑢

𝑘
− �̃�
𝑘
) . (39)
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Then one has

𝜗
𝑘

(𝛼) ≥ 𝜑
𝑘

(𝛼) , (40)

where

𝜗
𝑘

(𝛼) =

𝑢
𝑘
− 𝑢
∗

2

𝐻
−

𝑢
𝑘+1
− 𝑢
∗

2

𝐻
,

𝜑
𝑘

(𝛼) = 2𝛼 ⟨𝑢
𝑘
− �̃�
𝑘
, 𝑄 (𝑢

𝑘
− �̃�
𝑘
)⟩ − 𝛼

2
𝑀(𝑢
𝑘
− �̃�
𝑘
)


2

𝐻
.

(41)

Proof. One can see that

𝜗
𝑘

(𝛼) =

𝑢
𝑘
− 𝑢
∗

2

𝐻
−

𝑢
𝑘+1
− 𝑢
∗

2

𝐻

=

𝑢
𝑘
− 𝑢
∗

2

𝐻
−

𝑢
𝑘
− 𝛼𝑀(𝑢

𝑘
− �̃�
𝑘
) − 𝑢
∗

2

𝐻

= 2𝛼 ⟨𝑢
𝑘
− 𝑢
∗
, 𝐻𝑀(𝑢

𝑘
− �̃�
𝑘
)⟩

− 𝛼
2
𝑀(𝑢
𝑘
− �̃�
𝑘
)


2

𝐻
.

(42)

On the other hand, since 𝑄 = 𝐻𝑀, using the monotonicity
of 𝐹 and Lemma 9, we have

⟨𝑢
𝑘
− 𝑢
∗
, 𝐻𝑀(𝑢

𝑘
− �̃�
𝑘
)⟩ = ⟨𝑢

𝑘
− 𝑢
∗
, 𝑄 (𝑢

𝑘
− �̃�
𝑘
)⟩

= ⟨𝑢
𝑘
− �̃�
𝑘
, 𝑄 (𝑢

𝑘
− �̃�
𝑘
)⟩

+ ⟨�̃�
𝑘
− �̃�
∗
, 𝑄 (𝑢

𝑘
− �̃�
𝑘
)⟩

≥ ⟨𝑢
𝑘
− �̃�
𝑘
, 𝑄 (𝑢

𝑘
− �̃�
𝑘
)⟩

+ ⟨�̃�
𝑘
− 𝑢
∗
, 𝐹 (�̃�
𝑘
)⟩

≥ ⟨𝑢
𝑘
− �̃�
𝑘
, 𝑄 (𝑢

𝑘
− �̃�
𝑘
)⟩

+ ⟨�̃�
𝑘
− 𝑢
∗
, 𝐹 (𝑢
∗
)⟩

≥ ⟨𝑢
𝑘
− �̃�
𝑘
, 𝑄 (𝑢

𝑘
− �̃�
𝑘
)⟩ .

(43)

Combining (42)-(43) together, we have

𝜗
𝑘

(𝛼) = 2𝛼 ⟨𝑢
𝑘
− 𝑢
∗
, 𝑄 (𝑢

𝑘
− �̃�
𝑘
)⟩

− 𝛼
2
𝑀(𝑢
𝑘
− �̃�
𝑘
)


2

𝐻

≥ 2𝛼 ⟨𝑢
𝑘
− �̃�
𝑘
, 𝑄 (𝑢

𝑘
− �̃�
𝑘
)⟩

− 𝛼
2
𝑀(𝑢
𝑘
− �̃�
𝑘
)


2

𝐻

= 𝜑
𝑘

(𝛼) .

(44)

Thus, 𝜑𝑘(𝛼) is a lower bound of 𝜗𝑘(𝛼) for any 𝛼 > 0.

Remark 12. Note that 𝜑𝑘(𝛼) is a quadratic function of 𝛼 and
it reaches its maximum at

𝛼
∗

𝑘
=

⟨𝑢
𝑘
− �̃�
𝑘
, 𝑄 (𝑢

𝑘
− �̃�
𝑘
)⟩

𝑀 (𝑢
𝑘 − �̃�𝑘)



2

𝐻

. (45)

Hence, it is reasonable to use the step size strategy (26). The
parameter 𝛾 in (26) plays the role of a relaxation or scaling
parameter. We can easily see that 𝛾 ∈ (0, 2) can ensure
convergence.

Now, we prove the Fejér monotonicity of the iterative
sequence {𝑢𝑘} generated by the algorithm.

Theorem 13. Suppose that 𝑢∗ = (𝑥∗, 𝑦∗, 𝜆∗) ∈ Ω is a solu-
tion point of (9) and the sequences {𝑢𝑘} are generated by the
algorithm. Then


𝑢
𝑘+1
− 𝑢
∗

2

𝐻
≤

𝑢
𝑘
− 𝑢
∗

2

𝐻

−
1

2
𝑟 (2 − 𝑟) (1 −

𝜇

2
)

𝑢
𝑘
− �̃�
𝑘

2

𝐻
.

(46)

Proof. According to Lemma 11,


𝑢
𝑘+1
− 𝑢
∗

2

𝐻
≤

𝑢
𝑘
− 𝑢
∗

2

𝐻
− 𝜑
𝑘
(𝛼
𝑘
)

=

𝑢
𝑘
− 𝑢
∗

2

𝐻
− (2𝛼

𝑘
⟨𝑢
𝑘
− �̃�
𝑘
, 𝑄 (𝑢

𝑘
− �̃�
𝑘
)⟩

−𝛼
2

𝑘


𝑀(𝑢
𝑘
− �̃�
𝑘
)


2

𝐻
)

=

𝑢
𝑘
− 𝑢
∗

2

𝐻
− 𝛾 (2 − 𝛾) 𝛼

∗

𝑘

× ⟨𝑢
𝑘
− �̃�
𝑘
, 𝑄 (𝑢

𝑘
− �̃�
𝑘
)⟩

≤

𝑢
𝑘
− 𝑢
∗

2

𝐻
− 𝛾 (2 − 𝛾) 𝛼

∗

𝑘
(1 −

𝜇

2
) ‖𝑢 − �̃�‖

2

𝐻
.

(47)

Moreover, it follows from (26) that the step size

𝛼
∗

𝑘
=


𝑢
𝑘
− �̃�
𝑘


2

𝑄+𝑄
𝑇

2
𝑀 (𝑢

𝑘 − �̃�𝑘)


2

𝐻

=


𝑢
𝑘
− �̃�
𝑘


2

𝑄+𝑄
𝑇

2
𝑢
𝑘 − �̃�𝑘



2

𝑀
𝑇
𝐻𝑀

=
1

2
((

𝑢
𝑘
− �̃�
𝑘

2

𝑀
𝑇
𝐻𝑀
+ 𝑟

𝑥
𝑘
− 𝑥
𝑘

2

+ 𝑠

𝑦
𝑘
− 𝑦
𝑘

2

+ (
1

𝛽


𝜆
𝑘
− �̃�
𝑘

2

−
1

𝑟


𝐴
𝑇
(𝜆
𝑘
− �̃�
𝑘
)


2

−
1

𝑠


𝐵
𝑇
(𝜆
𝑘
− �̃�
𝑘
)


2

))

× (

𝑢
𝑘
− �̃�
𝑘

2

𝑀
𝑇
𝐻𝑀
)

−1

)

≥
1

2
((

𝑢
𝑘
− �̃�
𝑘

2

𝑀
𝑇
𝐻𝑀
+ 𝑟

𝑥
𝑘
− 𝑥
𝑘

2

+ 𝑠

𝑦
𝑘
− 𝑦
𝑘

2

+(
1

𝛽
−
1

𝑟


𝐴
𝑇
𝐴

−
1

𝑠


𝐵
𝑇
𝐵

)

𝜆
𝑘
− �̃�
𝑘

2

)

×(

𝑢
𝑘
− �̃�
𝑘

2

𝑀
𝑇
𝐻𝑀
)

−1

) .

(48)



6 Abstract and Applied Analysis

Based on the conditions (33), we have

𝑟

𝑥
𝑘
− 𝑥
𝑘

2

+ 𝑠

𝑦
𝑘
− 𝑦
𝑘

2

+ (
1

𝛽
−
1

𝑟


𝐴
𝑇
𝐴

−
1

𝑠


𝐵
𝑇
𝐵

)

𝜆
𝑘
− �̃�
𝑘

2

≥ 0.

(49)

Hence,

𝛼
∗

𝑘
≥
1

2


𝑢
𝑘
− �̃�
𝑘


2

𝑀
𝑇
𝐻𝑀

𝑢
𝑘 − �̃�𝑘



2

𝑀
𝑇
𝐻𝑀

=
1

2
. (50)

Substituting (50) into (47), we have

𝑢
𝑘+1
− 𝑢
∗

2

𝐻
≤

𝑢
𝑘
− 𝑢
∗

2

𝐻

−
1

2
𝑟 (2 − 𝑟) (1 −

𝜇

2
)

𝑢
𝑘
− �̃�
𝑘

2

𝐻
.

(51)

Thus, we obtain the assertion of this theorem.

Based on the earlier results, we are now ready to prove the
global convergence of the algorithm.

Theorem 14. The sequence {𝑢𝑘} generated by the proposed
algorithm converges to a solution of SVI (Ω, 𝐹).

Proof. We prove the convergence of the proposed algorithm
by following the standard analytic framework of contraction-
type methods. It follows from (46) that {𝑢𝑘} is bounded, and
we have that

lim
𝑘→∞


𝑢
𝑘
− �̃�
𝑘𝐻
= 0. (52)

Consequently,

lim
𝑘→∞


𝑥
𝑘
− 𝑥
𝑘
= 0, lim

𝑘→∞


𝑦
𝑘
− 𝑦
𝑘
= 0,

lim
𝑘→∞


𝐴𝑥
𝑘
+ 𝐵𝑦
𝑘
− 𝑏

= lim
𝑘→∞



1

𝛽
(𝜆
𝑘
− �̃�
𝑘
)



= 0,

(53)

since (see (22) and (23))

𝑥
𝑘
= 𝑃X [𝑥

𝑘
−
1

𝑟
(𝑓 (𝑥

𝑘
) − 𝐴
𝑇
�̃�
𝑘
)

+ (𝑥
𝑘
− 𝑥
𝑘
) +
1

𝑟
𝐴
𝑇
(𝜆
𝑘
− �̃�
𝑘
)] ,

𝑦
𝑘
= 𝑃Y [𝑦

𝑘
−
1

𝑠
(𝑔 (𝑦
𝑘
) − 𝐵
𝑇
�̃�
𝑘
)

+ (𝑦
𝑘
− 𝑦
𝑘
) +
1

𝑠
𝐵
𝑇
(𝜆
𝑘
− �̃�
𝑘
)] ,

�̃�
𝑘
= 𝜆
𝑘
− 𝛽 (𝐴𝑥

𝑘
+ 𝐵𝑦
𝑘
− 𝑏) .

(54)

It follows from (53) that

lim
𝑘→∞

𝑥
𝑘
− 𝑃X [𝑥

𝑘
−
1

𝑟
(𝑓 (𝑥

𝑘
) − 𝐴
𝑇
�̃�
𝑘
)] = 0,

lim
𝑘→∞

𝑦
𝑘
− 𝑃Y [𝑦

𝑘
−
1

𝑠
(𝑔 (𝑦
𝑘
) − 𝐵
𝑇
�̃�
𝑘
)] = 0,

lim
𝑘→∞

𝐴𝑥
𝑘
+ 𝐵𝑦
𝑘
− 𝑏 = 0.

(55)

Because �̃�𝑘 is also bounded, it has at least one cluster point.
Let 𝑢∞ be a cluster point of �̃�𝑘, and let �̃�𝑘𝑗 be the subsequence
converging to 𝑢∞. It follows from (55) that

lim
𝑗→∞

𝑥
𝑘𝑗 − 𝑃X [𝑥

𝑘𝑗 −
1

𝑟
(𝑓 (𝑥

𝑘𝑗) − 𝐴
𝑇
�̃�
𝑘𝑗)] = 0,

lim
𝑗→∞

𝑦
𝑘𝑗 − 𝑃Y [𝑦

𝑘𝑗 −
1

𝑠
(𝑔 (𝑦
𝑘𝑗) − 𝐵

𝑇
�̃�
𝑘𝑗)] = 0,

lim
𝑗→∞

𝐴𝑥
𝑘𝑗 + 𝐵𝑦

𝑘𝑗 − 𝑏 = 0.

(56)

Consequently,

𝑥
∞
− 𝑃X [𝑥

∞
−
1

𝑟
(𝑓 (𝑥
∞
) − 𝐴
𝑇
𝜆
∞
)] = 0,

𝑦
∞
− 𝑃Y [𝑦

∞
−
1

𝑠
(𝑔 (𝑦
∞
) − 𝐵
𝑇
𝜆
∞
)] = 0,

𝐴𝑥
∞
+ 𝐵𝑦
∞
− 𝑏 = 0.

(57)

Using the continuity of 𝐹 and the projection operator 𝑃
Ω
(⋅),

we have that 𝑢∞ is a solution of SVI (Ω, 𝐹).
On the other hand, by taking limits over the subsequences

in (52) and using lim
𝑗→∞

�̃�
𝑘𝑗 = 𝑢

∞, we have that, for any
𝑘 > 𝑘
𝑗
, it follows from (46) that


𝑢
𝑘
− 𝑢
∞𝐻

≤

𝑢
𝑘𝑗 − 𝑢

∞𝐻
. (58)

Thus, the sequence {𝑢𝑘} converges to 𝑢∞, which is a solution
of SVI (Ω, 𝐹).

4. Numerical Experiments

In this section, we present some numerical experiments
results to show the effectiveness of the proposed algorithm.
The codes are run on a notebook computer with Inter(R)
Core(TM) 2 CPU 2.0GHZ and RAM 2.00GM under MAT-
LAB Version 2009b.

We consider the following optimization problem:

min
𝑥∈R𝑛,𝑦∈R𝑝

1

2
𝑥
𝑇
𝑃𝑥 +

1

2
𝑦
𝑇
𝑄𝑦

s.t. 𝐴𝑥 + 𝐵𝑦 = 𝑏,

(59)

where 𝑃 ∈ R𝑛×𝑛, 𝑄 ∈ R𝑝×𝑝 are symmetric positive
semidefinite matrixes, 𝐴 ∈ R𝑚×𝑛, 𝐵 ∈ R𝑚×𝑝, and 𝑏 ∈ R𝑚.

Using the KKT condition, the problem (59) can be
converted into the following variational inequality: find𝑤∗ =
(𝑥
∗
, 𝑦
∗
, 𝜆
∗
) ∈ R𝑛+𝑝+𝑚 such that

⟨

𝑥

− 𝑥
∗
, 𝑃𝑥

∗
− 𝐴
𝑇
𝜆
∗

𝑦

− 𝑦
∗
, 𝑄𝑦

∗
− 𝐵
𝑇
𝜆
∗

𝜆

− 𝜆
∗
, 𝐴𝑥
∗
+ 𝐵𝑦
∗
− 𝑏

⟩ ≥ 0, ∀𝑤

∈ R
𝑛+𝑝+𝑚

. (60)

In this example, we randomly created the input data of the
tested collection in the following manner.
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Table 1: Numerical results for the example.

𝑚 𝑛 𝑝
PDM New algorithm

Iter. CPU (s) Error Iter. CPU (s) Error
10 10 10 237 0.075 9.956 × 10

−5 237 0.075 9.895 × 10
−5

10 15 15 250 0.143 9.758 × 10
−5 250 0.086 9.815 × 10

−5

20 20 20 314 0.115 9.669 × 10
−5 314 0.112 9.728 × 10

−5

20 30 30 372 0.175 9.586 × 10
−5 372 0.178 9.597 × 10

−5

40 50 50 561 3.443 9.631 × 10
−5 561 1.340 9.625 × 10

−5

50 80 80 714 3.534 9.990 × 10
−5 715 1.963 9.892 × 10

−5

60 100 100 842 8.107 9.982 × 10
−5 842 7.274 9.996 × 10

−5

100 120 120 1065 9.773 9.926 × 10
−5 1065 11.786 9.938 × 10

−5

150 200 200 1661 24.451 9.942 × 10
−5 1661 21.366 9.947 × 10

−5

200 250 250 2055 38.037 9.907 × 10
−5 2055 35.020 9.911 × 10

−5

200 300 300 2445 66.520 9.964 × 10
−5 2445 61.673 9.970 × 10

−5

(i) 𝑃 and𝑄were generated randomly with eigenvalues in
[5, 10] according to the following MATLAB scripts:

𝑃 = rand (𝑛); [𝑄1, 𝑅1] = qr (𝑃),
𝑆 = 5 + 5 ∗ rand (𝑛, 1); 𝑃 = 𝑄1 ∗ diag (𝑆) ∗ 𝑄1,
𝑄 = rand (𝑝); [𝑄2, 𝑅2] = qr (𝑄),
𝑆 = 5 + 5 ∗ rand (𝑚, 1); 𝑃 = 𝑄2 ∗ diag (𝑆) ∗𝑄2.

(ii) 𝐴 and 𝐵 were generated randomly with singular
values in [0, 3], and the maximum singular value is
3 according to the following MATLAB scripts:

𝐴 = rand (𝑚, 𝑛); [𝑈, 𝑆, 𝑉] = svd (𝐴),
𝑆 = 𝑆/𝑆 (1, 1) ∗ 3; 𝐴 = 𝑈 ∗ 𝑆 ∗ 𝑉,
𝐵 = rand (𝑚, 𝑝); [𝑈, 𝑆, 𝑉] = svd (𝐵),
𝑆 = 𝑆/𝑆(1, 1) ∗ 3; 𝐵 = 𝑈 ∗ 𝑆 ∗ 𝑉.

(iii) 𝑏 is generated randomly with 𝑏 = rand (𝑚, 1) ∗ 10.

According to the data generation, we have ‖𝐴𝑇𝐴‖ = 9 and
‖𝐵
𝑇
𝐵‖ = 9.
To apply (22)–(25) to solve (59), instead of choosing the

step length 𝛼
𝑘
judiciously as (24), we can simply choose 𝛼

𝑘
≡

1 by takeing 𝑟 = 1/𝛼∗
𝑘
(since 𝛼∗

𝑘
> 1/2 when 𝑢 ̸= �̃�, we have

𝑟 ∈ (0, 2) which satisfies the requirement). Then, we obtain
the following subproblems which are all easy enough to have
closed-form solutions:

𝑥
𝑘
= (𝑟𝐼 + 𝑃)

−1
(𝑟𝑥
𝑘
+ 𝐴
𝑇
𝜆
𝑘
) ,

𝑦
𝑘
= (𝑠𝐼 + 𝑄)

−1
(𝑠𝑦
𝑘
+ 𝐵
𝑇
𝜆
𝑘
) ,

�̃�
𝑘
= 𝜆
𝑘
− 𝛽 (𝐴𝑥

𝑘
+ 𝐵𝑦
𝑘
− 𝑏) ,

𝑥
𝑘+1
= 𝑥
𝑘
−
1

𝑟
𝐴
𝑇
(𝜆
𝑘
− �̃�
𝑘
) ,

𝑦
𝑘+1
= 𝑦
𝑘
−
1

𝑠
𝐵
𝑇
(𝜆
𝑘
− �̃�
𝑘
) ,

𝜆
𝑘+1
= �̃�
𝑘
.

(61)

For comparison, we also solve it by the parallel decom-
position method (denoted by PDM) that has been studied
extensively in the literature (e.g., [21, 22]). For PDM, the
restrictions on the proximal parameters are the same as our
algorithm. By applying PDM to (59), we obtain the following
subproblems which are also easy enough to have closed-form
solutions:

𝑥
𝑘+1
= (𝑟𝐼 + 𝑃)

−1
(𝑟𝑥
𝑘
− 𝛽𝐴
𝑇
(𝐴𝑥
𝑘
+ 𝐵𝑦
𝑘
− 𝑏 −

1

𝛽
𝜆
𝑘
)) ,

𝑦
𝑘+1
= (𝑠𝐼 + 𝑄)

−1
(𝑠𝑦
𝑘
− 𝛽𝐵
𝑇
(𝐴𝑥
𝑘
+ 𝐵𝑦
𝑘
− 𝑏 −

1

𝛽
𝜆
𝑘
)) ,

𝜆
𝑘+1
= 𝜆
𝑘
− 𝛽 (𝐴𝑥

𝑘+1
+ 𝐵𝑦
𝑘+1
− 𝑏) .

(62)

We report the numerical experiments by building their
performance profiles in terms of the number of iterations
and the total of computational time. Here, we take 𝛽 = 3 +
(𝑛/10), 𝑟 = 𝑠 = 20𝛽 for the two algorithms. We set the initial
vector (𝑥0, 𝑦0, 𝜆0) = (0, 0, 0), and the stopping criterion is

Tol = max { 𝑥
𝑘+1
− 𝑥
𝑘∞
,


𝑦
𝑘+1
− 𝑦
𝑘∞
,

𝜆
𝑘+1
− 𝜆
𝑘∞
} ≤ 10

−4
.

(63)

The computational results are given inTable 1 for different
choices of𝑚, 𝑛, and 𝑝. We reported the number of iterations
(Iter.) and the computing time in seconds (CPU(s)) when the
mentioned stopping criterion is achieved.

The data in Table 1 indicates clearly that the proposed
method is efficient compared with the classical PDM in [21,
22]. We can observe that the iteration numbers and the CPU
time of the two algorithms are almost the same.

5. Conclusions

In this paper, we proposed a new implementable algorithm
for solving the monotone variational inequalities with sep-
arable structure. At each iteration, the algorithm performs
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two easily implementable projections parallelly to produce
a predictor and then makes a simple correction to generate
the new iterate. Under some mild conditions, we proved the
global convergence of the new method. We also give some
numerical experiments to show that the proposed method is
applicable and valid.
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