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This paper is concernedwith the asymptotical behavior of solutions to the reaction-diffusion systemunder homogeneousNeumann
boundary condition. By taking food ingestion and species’ moving into account, the model is further coupled with Michaelis-
Menten type functional response and nonlocal delay. Sufficient conditions are derived for the global stability of the positive steady
state and the semitrivial steady state of the proposed problem by using the Lyapunov functional. Our results show that intraspecific
competition benefits the coexistence of prey and predator. Furthermore, the introduction of Michaelis-Menten type functional
response positively affects the coexistence of prey and predator, and the nonlocal delay is harmless for stabilities of all nonnegative
steady states of the system. Numerical simulations are carried out to illustrate the main results.

1. Introduction

The overall behavior of ecological systems continues to be
of great interest to both applied mathematicians and ecol-
ogists. Two species predator-prey models have been exten-
sively investigated in the literature. But recently more and
more attention has been focused on systems with three or
more trophic levels. For example, the predator-prey system
for three species with Michaelis-Menten type functional
response was studied by many authors [1–4]. However, the
systems in [1–4] are either with discrete delay or without
delay or without diffusion. In view of individuals taking
time to move, spatial dispersal was dealt with by introducing
diffusion term to corresponding delayed ODE model in
previous literatures, namely, adding a Laplacian term to the
ODEmodel. In recent years, it has been recognized that there
are modelling difficulties with this approach. The difficulty is
that diffusion and time delay are independent of each other,
since individuals have not been at the same point at previous
times. Britton [5] made a first comprehensive attempt to
address this difficulty by introducing a nonlocal delay; that

is, the delay term involves a weighted-temporal average over
thewhole of the infinite domain and thewhole of the previous
times.

There are many results for reaction-diffusion equations
with nonlocal delays [5–18]. The existence and stability of
travelingwave fronts were studied in reaction-diffusion equa-
tions with nonlocal delay [5–9]. The stability of impulsive
cellular neural networks with time varying was discussed
in [10] by means of new Poincare integral inequality. The
asymptotic behavior of solutions of the reaction-diffusion
equations with nonlocal delay was investigated in [11, 12] by
using an iterative technique and in [13–15] by the Lyapunov
functional.The stability and Hopf bifurcation were discussed
in [16] for a diffusive logistic populationmodel with nonlocal
delay effect.

Motivated by the work above, we are concerned with
the following food chain model with Michaelis-Menten type
functional response:
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for 𝑡 > 0, 𝑥 ∈ Ω with homogeneous Neumann boundary
conditions
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where 𝜙
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is bounded, Hölder continuous function and satis-
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/𝜕] = 0 (𝑖 = 1, 2, 3) on (−∞, 0] × 𝜕Ω. Here, Ω is a

bounded domain in R𝑛 with smooth boundary 𝜕Ω and 𝜕/𝜕]
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respectively, where 𝑚
1
and 𝑚

2
are half-saturation constants.

For a through biological background of similar models, see
[18, 19]. As our most knowledge, the tritrophic food chain
model has been found to have many interesting biological
properties, such as the coexistence and the Hopf bifurcation.
However, the effect of nonlocal time delays on the coexistence
has not been reported. Our paper mainly concerns this
perspective.

Additionally, ∫
Ω
∫
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𝑠)𝑑𝑠 𝑑𝑦 (𝑖 = 1, 2) represents the nonlocal delay due to
the ingestion of predator; that is, mature adult predator can

only contribute to the production of predator biomass. The
boundary condition in (2) implies that there is no migration
across the boundary ofΩ.

The main purpose of this paper is to study the global
asymptotic behavior of the solution of system (1)–(3). The
preliminary results are presented in Section 2. Section 3 con-
tains sufficient conditions for the global asymptotic behaviors
of the equilibria of system (1)–(3) by means of the Lyapunov
functional. Numerical simulations are carried out to show the
feasibility of the conditions in Theorems 8–10 in Section 4.
Finally, a brief discussion is given to conclude this work.

2. Preliminary Results

In this section, we present several preliminary results that will
be employed in the sequel.

Lemma 1 (see [3]). Let 𝑎 and 𝑏 be positive constants. Assume
that 𝜙, 𝜑 ∈ 𝐶1(𝑎, +∞), 𝜑(𝑡) ≥ 0, and 𝜙 is bounded from
below. If 𝜙󸀠(𝑡) ≤ −𝑏𝜑(𝑡) and 𝜑󸀠(𝑡) ≤ 𝐾 in [𝑎, +∞) for some
positive constant 𝐾, then lim
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The following lemma is the Positivity Lemma in [20].
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where 𝑏
𝑖𝑗
, 𝑐
𝑖𝑗
∈ 𝐶([0, 𝑇] × Ω), 𝑢

𝑖𝑡
= (𝑢
𝑖
)
𝑡
. If 𝑏
𝑖𝑗
≥ 0 for 𝑗 ̸= 𝑖

and 𝑐
𝑖𝑗
≥ 0 for all 𝑖, 𝑗 = 1, 2, 3. Then 𝑢

𝑖
(𝑡, 𝑥) ≥ 0 on [0, 𝑇] × Ω.

Moreover, if the initial function is nontrivial, then 𝑢
𝑖
> 0 in

(0, 𝑇] × Ω.

Lemma 3 (see [20]). Let ĉ and c̃ be a pair of constant vector
satisfying c̃ ≥ ĉ and let the reaction functions satisfy local
Lipschitz condition withΛ = ⟨ĉ, c̃⟩.Then system (1)–(3) admits
a unique global solution u(𝑡, 𝑥) such that

ĉ ≤ u (𝑡, 𝑥) ≤ c̃, ∀𝑡 > 0, 𝑥 ∈ Ω, (5)

whenever ĉ ≤ 𝜙(𝑡, 𝑥) ≤ c̃, (𝑡, 𝑥) ∈ (−∞, 0] × Ω.

The following result was obtained by themethod of upper
and lower solutions and the associated iterations in [21].



Abstract and Applied Analysis 3

Lemma 4 (see [21]). Let 𝑢(𝑡, 𝑥) ∈ 𝐶([0,∞) × Ω) ∩
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ous in (𝑥, 𝑦) ∈ Ω×Ω for each 𝑡 ∈ [0, +∞) and measurable in
𝑡 ∈ [0, +∞) for each pair (𝑥, 𝑦) ∈ Ω × Ω.

Now we prove the following propositions which will be
used in the sequel.

Proposition 5. For any nonnegative initial function, the
corresponding solution of system (1)–(3) is nonnegative.
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It follows from Lemma 2 that 𝑢
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Proof. It follows from standard PDE theory that there exists
a 𝑇 > 0 such that problem (1)–(3) admits a unique solution
in [0, 𝑇) × Ω. From Lemma 2 we know that 𝑢
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Using themaximumprinciple gives that 𝑢
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3. Global Stability

In this section, we study the asymptotic behavior of the
equilibrium of system (1)–(3). In the beginning, we show the
existence and uniqueness of positive steady state.
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Figure 1: Graphs of the equations in (12). 𝐿
3
is the boundary

condition (𝑎
3
= 𝑎
32
V
2
/(𝑚
2
+ V
2
)) and 𝐿

2
corresponds to −𝑎
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and 𝐿
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gives the

positive solution (V∗
1
, V∗
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) to (12). Parameter values are listed in the

example in Section 4.

Let us consider the following equations:
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A direct computation shows that the above equations have
only one positive solution (V∗
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) if and only if
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When the parameter 𝑢
3
is sufficiently small, the first two

equations in (15) can be approximated by (12). Moreover,

by continuously increasing the value of 𝑢
3
, 𝐿
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Lemma 7. Assume that𝐻
2
and 𝐺

2
hold, and then the positive

steady state𝐸∗ of system (1)–(3) is locally asymptotically stable.

Proof. We get the local stability of 𝐸∗ by performing a
linearization and analyzing the corresponding characteristic
equation. Similarly as in [22], let 0 < 𝜇

1
< 𝜇
2
< 𝜇
3
<

. . . be the eigenvalues of −Δ on Ω with the homogeneous
Neumann boundary condition. Let 𝐸(𝜇

𝑖
) be the eigenspace

corresponding to 𝜇
𝑖
in 𝐶1(Ω), for 𝑖 = 1, 2, 3, . . . . Let

X = {u = (𝑢
1
, 𝑢
2
, 𝑢
3
) ∈ [𝐶

1
(Ω)]
3

𝜕
𝜂
u = 0, 𝑥 ∈ 𝜕Ω} , (16)

{𝜑
𝑖𝑗
, 𝑗 = 1, . . . , dim𝐸(𝜇

𝑖
)} be an orthonormal basis of 𝐸(𝜇

𝑖
),

and X
𝑖𝑗
= {𝑐 ⋅ 𝜑

𝑖𝑗
| 𝑐 ∈ 𝑅

3
}. Then

X
𝑖
=

dim𝐸(𝜇
𝑖
)

⨁

𝑗=1

X
𝑖𝑗
, X =

∞

⨁

𝑖=1

X
𝑖
. (17)

Let 𝐷 = diag(𝐷
1
, 𝐷
2
, 𝐷
3
) and k = (V

1
, V
2
, V
3
), V
𝑖
=

𝑢
𝑖
− 𝑢
∗

𝑖
, (𝑖 = 1, 2, 3). Then the linearization of (1)

is k
𝑡
= 𝐿k = 𝐷Δk + Fk(E∗)k, Fk(E∗)k = {𝑐

𝑖𝑗
},

where 𝑐
𝑖𝑖

= 𝑏
𝑖𝑖
V
𝑖
, 𝑖 = 1, 2, 3, 𝑐

12
= 𝑏
12
V
2
, 𝑐
23

=

𝑏
23
V
3
, 𝑐
21
= 𝑏
21
∫
Ω
∫
𝑡

−∞
V
1
(𝑠, 𝑦)𝐾

1
(𝑥, 𝑦, 𝑡 − 𝑠)𝑑𝑠 𝑑𝑦, and 𝑐

32
=

𝑏
32
∫
Ω
∫
𝑡

−∞
V
2
(𝑠, 𝑦)𝐾

2
(𝑥, 𝑦, 𝑡 − 𝑠)𝑑𝑠 𝑑𝑦. The coefficients 𝑏

𝑖𝑗
are

defined as follows:

𝑏
11
= −𝑎
11
𝑢
∗

1
+
𝑎
12
𝑢
∗

1
𝑢
∗

2

(𝑚
1
+ 𝑢∗
1
)
2
,

𝑏
12
= −

𝑎
12
𝑢
∗

1

𝑚
1
+ 𝑢∗
1

, 𝑏
13
= 0,

𝑏
21
=
𝑎
21
𝑚
1
𝑢
∗

2

(𝑚
1
+ 𝑢∗
1
)
2
,

𝑏
22
= −𝑎
22
𝑢
∗

2
+
𝑎
23
𝑢
∗

2
𝑢
∗

3

(𝑚
2
+ 𝑢∗
2
)
2
, 𝑏

23
= −

𝑎
23
𝑢
∗

2

𝑚
2
+ 𝑢∗
2

,

𝑏
31
= 0, 𝑏

32
=
𝑎
32
𝑚
2
𝑢
∗

3

(𝑚
2
+ 𝑢∗
2
)
2
, 𝑏

33
= −𝑎
33
𝑢
∗

3
.

(18)

SinceX
𝑖
is invariant under the operator 𝐿 for each 𝑖 ≥ 1, then

the operator 𝐿 on X
𝑖
is k
𝑡
= 𝐿k = 𝐷𝜇

𝑖
k + Fk(E∗)k. Let V𝑖 =

𝑐
𝑖
𝑒
𝜆𝑡
(𝑖 = 1, 2, 3) and we can get the characteristic equation
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𝜑
𝑖
(𝜆) = 𝜆

3
+ 𝐴
𝑖
𝜆
2
+ 𝐵
𝑖
𝜆 + 𝐶

𝑖
= 0, where 𝐴

𝑖
, 𝐵
𝑖
, and 𝐶

𝑖
are

defined as follows:

𝐴
𝑖
= (𝑑
1
+ 𝑑
2
+ 𝑑
3
) 𝜇
𝑖
− 𝑏
11
− 𝑏
22
− 𝑏
33
,

𝐵
𝑖
= (𝑑
1
𝑑
2
+ 𝑑
2
𝑑
3
+ 𝑑
3
𝑑
1
) 𝜇
2

𝑖

+ [𝑑
3
(−𝑏
11
− 𝑏
22
) + 𝑑
1
(−𝑏
33
− 𝑏
22
)

+𝑑
2
(−𝑏
11
− 𝑏
33
)] 𝜇
𝑖

+ 𝑏
11
𝑏
22
+ 𝑏
11
𝑏
33
+ 𝑏
22
𝑏
33

− 𝑏
12
𝑏
21
∫

∞

0

𝑘
1
(𝑠) 𝑒
−𝜆𝑠
𝑑𝑠 − 𝑏

23
𝑏
32
∫

∞

0

𝑘
2
(𝑠) 𝑒
−𝜆𝑠
𝑑𝑠,

𝐶
𝑖
= 𝑑
1
𝑑
2
𝑑
3
𝜇
3

𝑖
+ [−𝑏
33
𝑑
1
𝑑
2
− 𝑏
11
𝑑
2
𝑑
3
− 𝑏
22
𝑑
1
𝑑
3
] 𝜇
2

𝑖

+ [𝑏
11
𝑏
22
𝑑
3
+ 𝑏
11
𝑏
33
𝑑
2
+ 𝑏
22
𝑏
33
𝑑
1
+ 𝑏
22
𝑏
33
𝑑
1

− 𝑑
3
𝑏
12
𝑏
21
∫

∞

0

𝑘
1
(𝑠) 𝑒
−𝜆𝑠
𝑑𝑠

−𝑑
1
𝑏
23
𝑏
32
∫

∞

0

𝑘
2
(𝑠) 𝑒
−𝜆𝑠
𝑑𝑠] 𝜇
𝑖

+ [−𝑏
11
𝑏
22
𝑏
33
+ 𝑏
12
𝑏
21
𝑏
33
∫

∞

0

𝑘
1
(𝑠) 𝑒
−𝜆𝑠
𝑑𝑠

+𝑏
11
𝑏
23
𝑏
32
∫

∞

0

𝑘
2
(𝑠) 𝑒
−𝜆𝑠
𝑑𝑠] .

(19)

It is easy to see that 𝑏
12
, 𝑏
23
, 𝑏
33
< 0 and 𝑏

21
, 𝑏
32
> 0. It

follows from assumption 𝐺
1
and 𝐺

2
that 𝑎

11
< 0, 𝑎

22
< 0.

So 𝐴
𝑖
> 0, 𝐵

𝑖
> 0, 𝐶

𝑖
> 0 and 𝐴

𝑖
𝐵
𝑖
− 𝐶
𝑖
> 0 for 𝑖 ≥ 1

from the direct calculation. According to the Routh-Hurwitz
criterion, the three roots 𝜆

𝑖,1
, 𝜆
𝑖,2
, 𝜆
𝑖,3

of 𝜑
𝑖
(𝜆) = 0 all have

negative real parts.
By continuity of the roots with respect to 𝜇

𝑖
and Routh-

Hurwitz criterion, we can conclude that there exists a positive
constant 𝜀 such that

Re {𝜆
𝑖,1
} ,Re {𝜆

𝑖,2
} ,Re {𝜆

𝑖,3
} ≤ −𝜀, 𝑖 ≥ 1. (20)

Consequently, the spectrum of 𝐿, consisting only of eigen-
values, lies in {Re 𝜆 ≤ −𝜀}. It is easy to see that E∗ is
locally asymptotically stable and follows fromTheorem 5.1.1
of [23].

Theorem 8. Assume that

𝐻
3
:
𝑎
1
(𝑎
21
− 𝑎
2
)

𝑚
1
𝑎
2

> 𝑎
11
>
𝑎
12
𝑢
∗

2

𝑚2
1

, (21)

𝐻
2
and 𝐺

2
hold, and the positive steady state 𝐸∗ of system (1)–

(3) with nontrivial initial function is globally asymptotically
stable.

Proof. It is easy to see that the equations in (1) can be rewritten
as

𝜕𝑢
1

𝜕𝑡
− 𝑑
1
Δ𝑢
1
= 𝑢
1
[ − 𝑎
11
(𝑢
1
− 𝑢
∗

1
)

−
𝑎
12
(𝑢
2
− 𝑢
∗

2
)

𝑚
1
+ 𝑢
1

+
𝑎
12
𝑢
∗

2
(𝑢
1
− 𝑢
∗

1
)

(𝑚
1
+ 𝑢
1
) (𝑚
1
+ 𝑢∗
1
)
] ,

𝜕𝑢
2

𝜕𝑡
− 𝑑
2
Δ𝑢
2
= 𝑢
2
[∫
Ω

∫

𝑡

−∞

𝐾
1
(𝑥, 𝑦, 𝑡 − 𝑠)

×
𝑎
21
𝑚
1
(𝑢
1
(𝑠, 𝑦) − 𝑢

∗

1
)

(𝑚
1
+ 𝑢
1
(𝑠, 𝑦)) (𝑚

1
+ 𝑢∗
1
)
𝑑𝑠 𝑑𝑦

− 𝑎
22
(𝑢
2
− 𝑢
∗

2
) −
𝑎
23
(𝑢
3
− 𝑢
∗

3
)

𝑚
2
+ 𝑢
2

+
𝑎
23
𝑢
∗

3
(𝑢
2
− 𝑢
∗

2
)

(𝑚
2
+ 𝑢
2
) (𝑚
2
+ 𝑢∗
2
)
] ,

𝜕𝑢
3

𝜕𝑡
− 𝑑
3
Δ𝑢
3
= 𝑢
3
[∫
Ω

∫

𝑡

−∞

𝐾
2
(𝑥, 𝑦, 𝑡 − 𝑠)

×
𝑎
32
𝑚
2
(𝑢
2
(𝑠, 𝑦) − 𝑢

∗

2
)

(𝑚
2
+ 𝑢
2
(𝑠, 𝑦)) (𝑚

2
+ 𝑢∗
2
)
𝑑𝑠 𝑑𝑦

−𝑎
33
(𝑢
3
− 𝑢
∗

3
) ] .

(22)

Define

𝑉 (𝑡) = 𝛼∫
Ω

(𝑢
1
− 𝑢
∗

1
− 𝑢
∗

1
ln 𝑢1
𝑢∗
1

)𝑑𝑥

+ ∫
Ω

(𝑢
2
− 𝑢
∗

2
− 𝑢
∗

2
ln 𝑢2
𝑢∗
2

)𝑑𝑥

+ 𝛽∫
Ω

(𝑢
2
− 𝑢
∗

3
− 𝑢
∗

3
ln
𝑢
3

𝑢∗
3

)𝑑𝑥,

(23)

where 𝛼 and 𝛽 are positive constants to be determined.
Calculating the derivatives 𝑉(𝑡) along the positive solution
to the system (1)–(3) yields

𝑉
󸀠
(𝑡) = Φ

1
(𝑡) + Φ

2
(𝑡) , (24)

where

Φ
1
(𝑡) = −∫

Ω

(
𝛼𝑑
1
𝑢
∗

1

𝑢2
1

󵄨󵄨󵄨󵄨∇𝑢1
󵄨󵄨󵄨󵄨
2

+
𝑑
2
𝑢
∗

2

𝑢2
2

󵄨󵄨󵄨󵄨∇𝑢2
󵄨󵄨󵄨󵄨
2

+
𝛽𝑑
3
𝑢
∗

3

𝑢2
3

󵄨󵄨󵄨󵄨∇𝑢3
󵄨󵄨󵄨󵄨
2

)𝑑𝑥,
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Φ
2
(𝑡) = −∫

Ω

𝛼[𝑎
11
−

𝑎
12
𝑢
∗

2

(𝑚
1
+ 𝑢
1
) (𝑚
1
+ 𝑢∗
1
)
] (𝑢
1
− 𝑢
∗

1
)
2

𝑑𝑥

− ∫
Ω

[𝑎
22
−

𝑎
23
𝑢
∗

3

(𝑚
2
+ 𝑢
2
) (𝑚
2
+ 𝑢∗
2
)
] (𝑢
2
− 𝑢
∗

2
)
2

𝑑𝑥

− ∫
Ω

𝑎
33
𝛽(𝑢
3
− 𝑢
∗

3
)
2

𝑑𝑥

− ∫
Ω

𝑎
23
(𝑢
3
− 𝑢
∗

3
) (𝑢
2
− 𝑢
∗

2
)

𝑚
2
+ 𝑢
2

𝑑𝑥

− ∫
Ω

𝛼𝑎
12
(𝑢
2
− 𝑢
∗

2
) (𝑢
1
− 𝑢
∗

1
)

𝑚
1
+ 𝑢
1

𝑑𝑥

+∬
Ω

∫

𝑡

−∞

𝐾
1
(𝑥, 𝑦, 𝑡 − 𝑠)

×
𝑎
21
𝑚
1
(𝑢
1
(𝑠, 𝑦) − 𝑢

∗

1
) (𝑢
2
(𝑡, 𝑥) − 𝑢

∗

2
)

(𝑚
1
+ 𝑢
1
(𝑠, 𝑦)) (𝑚

1
+ 𝑢∗
1
)

𝑑𝑠 𝑑𝑦 𝑑𝑥

+ 𝛽∬
Ω

∫

𝑡

−∞

𝐾
2
(𝑥, 𝑦, 𝑡 − 𝑠)

×
𝑎
32
𝑚
2
(𝑢
2
(𝑠, 𝑦) − 𝑢

∗

2
) (𝑢
3
(𝑡, 𝑥) − 𝑢

∗

3
)

(𝑚
2
+ 𝑢
2
(𝑠, 𝑦)) (𝑚

2
+ 𝑢∗
2
)

𝑑𝑠 𝑑𝑦 𝑑𝑥.

(25)

Applying the inequality 𝑎𝑏 ≤ 𝜖𝑎2 + (1/4𝜖)𝑏2, we derive from
(25) that

Φ
2
(𝑡) ≤ −∫

Ω

𝛼[𝑎
11
−

𝑎
12
𝑢
∗

2

(𝑚
1
+ 𝑢
1
) (𝑚
1
+ 𝑢∗
1
)
] (𝑢
1
− 𝑢
∗

1
)
2

𝑑𝑥

− ∫
Ω

𝑎
33
𝛽(𝑢
3
− 𝑢
∗

3
)
2

𝑑𝑥

− ∫
Ω

[𝑎
22
−

𝑎
23
𝑢
∗

3

(𝑚
2
+ 𝑢
2
) (𝑚
2
+ 𝑢∗
2
)
] (𝑢
2
− 𝑢
∗

2
)
2

𝑑𝑥

+ ∫
Ω

𝛼𝑎
12

𝑚
1
+ 𝑢
1

[𝜖
1
(𝑢
1
− 𝑢
∗

1
)
2

+
1

4𝜖
1

(𝑢
2
− 𝑢
∗

2
)
2

] 𝑑𝑥

+ ∫
Ω

𝑎
23

𝑚
2
+ 𝑢
2

[
1

4𝜖
2

(𝑢
2
− 𝑢
∗

2
)
2

+ 𝜖
2
(𝑢
3
− 𝑢
∗

3
)
2

] 𝑑𝑥

+∬
Ω

∫

𝑡

−∞

𝐾
1
(𝑥, 𝑦, 𝑡 − 𝑠)

×
𝑎
21
𝑚
1

(𝑚
1
+ 𝑢
1
(𝑠, 𝑦)) (𝑚

1
+ 𝑢∗
1
)

× [𝜖
3
(𝑢
1
(𝑠, 𝑦) − 𝑢

∗

1
)
2

+
1

4𝜖
3

(𝑢
2
(𝑡, 𝑥) − 𝑢

∗

2
)
2

] 𝑑𝑠 𝑑𝑦 𝑑𝑥

+∬
Ω

∫

𝑡

−∞

𝐾
2
(𝑥, 𝑦, 𝑡 − 𝑠)

×
𝑎
32
𝛽𝑚
2

(𝑚
2
+ 𝑢
2
(𝑠, 𝑦)) (𝑚

2
+ 𝑢∗
2
)

× [
1

4𝜖
4

(𝑢
2
(𝑠, 𝑦) − 𝑢

∗

2
)
2

+𝜖
4
(𝑢
3
(𝑡, 𝑥) − 𝑢

∗

3
)
2

] 𝑑𝑠 𝑑𝑦 𝑑𝑥.

(26)

According to the property of the Kernel functions𝐾
𝑖
(𝑥, 𝑦, 𝑡),

(𝑖 = 1, 2), we know that

Φ
2
(𝑡) ≤ −∫

Ω

[𝛼𝑎
11
−
𝛼𝑎
12
𝑢
∗

2

𝑚2
1

−
𝛼𝑎
12
𝜖
1

𝑚
1

] (𝑢
1
− 𝑢
∗

1
)
2

𝑑𝑥

− ∫
Ω

[𝑎
22
−
𝑎
23
𝑢
∗

3

𝑚2
2

−
𝛼𝑎
12

4𝑚
1
𝜖
1

−
𝑎
23

4𝑚
2
𝜖
2

−
𝑎
21

4𝑚
1
𝜖
3

] (𝑢
2
− 𝑢
∗

2
)
2

𝑑𝑥

− ∫
Ω

[𝑎
33
𝛽 −

𝑎
23
𝜖
2

𝑚
2

−
𝑎
32
𝛽𝜖
4

𝑚
2

] (𝑢
3
− 𝑢
∗

3
)
2

𝑑𝑥

+
𝑎
21
𝜖
3

𝑚
1

∬
Ω

∫

𝑡

−∞

𝐾
1
(𝑥, 𝑦, 𝑡 − 𝑠)

× (𝑢
1
(𝑠, 𝑦) − 𝑢

∗

1
)
2

𝑑𝑠 𝑑𝑦 𝑑𝑥

+
𝑎
32
𝛽

4𝑚
2
𝜖
4

∬
Ω

∫

𝑡

−∞

𝐾
2
(𝑥, 𝑦, 𝑡 − 𝑠)

× (𝑢
2
(𝑠, 𝑦) − 𝑢

∗

2
)
2

𝑑𝑠 𝑑𝑦 𝑑𝑥.

(27)

Define a new Lyapunov functional as follows:

𝐸 (𝑡) = 𝑉 (𝑡)

+
𝑎
21
𝜖
3

𝑚
1

∬
Ω

∫

+∞

0

∫

𝑡

𝑡−𝑟

𝐾
1
(𝑥, 𝑦, 𝑟)

× (𝑢
1
(𝑠, 𝑦) − 𝑢

∗

1
)
2

𝑑𝑠 𝑑𝑟 𝑑𝑦 𝑑𝑥

+
𝑎
32
𝛽

4𝑚
2
𝜖
4

∬
Ω

∫

+∞

0

∫

𝑡

𝑡−𝑟

𝐾
2
(𝑥, 𝑦, 𝑟)

× (𝑢
2
(𝑠, 𝑦) − 𝑢

∗

2
)
2

𝑑𝑠 𝑑𝑟 𝑑𝑦 𝑑𝑥.

(28)
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It is derived from (27) and (28) that

𝐸
󸀠
(𝑡) ≤ −∫

Ω

(
𝛼𝑑
1
𝑢
∗

1

𝑢2
1

󵄨󵄨󵄨󵄨∇𝑢1
󵄨󵄨󵄨󵄨
2

+
𝑑
2
𝑢
∗

2

𝑢2
2

󵄨󵄨󵄨󵄨∇𝑢2
󵄨󵄨󵄨󵄨
2

+
𝛽𝑑
3
𝑢
∗

3

𝑢2
3

󵄨󵄨󵄨󵄨∇𝑢3
󵄨󵄨󵄨󵄨
2

)𝑑𝑥

− [𝛼𝑎
11
−
𝛼𝑎
12
𝑢
∗

2

𝑚2
1

−
𝛼𝑎
12
𝜖
1

𝑚
1

−
𝑎
21
𝜖
3

𝑚
1

]∫
Ω

(𝑢
1
− 𝑢
∗

1
)
2

𝑑𝑥

− [𝑎
22
−
𝑎
23
𝑢
∗

3

𝑚2
2

−
𝛼𝑎
12

4𝑚
1
𝜖
1

−
𝑎
23

4𝑚
2
𝜖
2

−
𝑎
21

4𝑚
1
𝜖
3

−
𝑎
32
𝛽

4𝑚
2
𝜖
4

]∫
Ω

(𝑢
2
− 𝑢
∗

2
)
2

𝑑𝑥

− [𝑎
33
𝛽 −

𝑎
23
𝜖
2

𝑚
2

−
𝛽𝑎
32
𝜖
4

𝑚
2

]∫
Ω

(𝑢
3
− 𝑢
∗

3
)
2

𝑑𝑥.

(29)

Since (𝑢
1
, 𝑢
2
, 𝑢
3
) is the unique positive solution of system (1).

Using Proposition 5, there exists a constant𝐶which does not
depend on𝑥 ∈ Ω or 𝑡 ≥ 0 such that ‖𝑢

𝑖
(⋅, 𝑡)‖
∞
≤ 𝐶 (𝑖 = 1, 2, 3)

for 𝑡 ≥ 0. By Theorem 𝐴
2
in [24], we have

󵄩󵄩󵄩󵄩𝑢𝑖 (⋅, 𝑡)
󵄩󵄩󵄩󵄩𝐶2,𝛼(Ω) ≤ 𝐶, ∀𝑡 ≥ 1. (30)

Assume that

𝐺
1
: 𝑎
11
𝑚
2

1
> 𝑎
12
𝑢
∗

2
,

𝐺
2
: 𝑎
22
𝑚
2

2
> 𝑎
23
𝑢
∗

3
+
2𝑎
23
𝑎
32

𝑎
33

+
2𝑎
12
𝑎
21
𝑚
2

2

𝑎
11
𝑚2
1
− 𝑎
12
𝑢∗
2

,

(31)

and denote

𝑙
1
= 𝛼𝑎
11
−
𝛼𝑎
12
𝑢
∗

2

𝑚2
1

−
𝛼𝑎
12
𝜖
1

𝑚
1

−
𝑎
21
𝜖
3

𝑚
1

,

𝑙
2
= 𝑎
22
−
𝑎
23
𝑢
∗

3

𝑚2
2

−
𝛼𝑎
12

4𝑚
1
𝜖
1

−
𝑎
23

4𝑚
2
𝜖
2

−
𝑎
21

4𝑚
1
𝜖
3

−
𝑎
32
𝛽

4𝑚
2
𝜖
4

,

𝑙
3
= 𝑎
33
𝛽 −

𝑎
23
𝜖
2

𝑚
2

−
𝛽𝑎
32
𝜖
4

𝑚
2

.

(32)

Then (29) is transformed into

𝐸
󸀠
(𝑡) ≤ −∫

Ω

(
𝛼𝑑
1
𝑢
∗

1

𝑢2
1

󵄨󵄨󵄨󵄨∇𝑢1
󵄨󵄨󵄨󵄨
2

+
𝑑
2
𝑢
∗

2

𝑢2
2

󵄨󵄨󵄨󵄨∇𝑢2
󵄨󵄨󵄨󵄨
2

+
𝛽𝑑
3
𝑢
∗

3

𝑢2
3

󵄨󵄨󵄨󵄨∇𝑢3
󵄨󵄨󵄨󵄨
2

)𝑑𝑥

−

3

∑

𝑖=1

𝑙
𝑖
∫
Ω

(𝑢
𝑖
− 𝑢
∗

𝑖
)
2

𝑑𝑥.

(33)

If we choose

𝛼 =
𝑎
21

𝑎
12

, 𝛽 =
𝑎
23

𝑎
32

, 𝜖
1
= 𝜖
3
=
𝑎
11
𝑚
2

1
− 𝑎
12
𝑢
∗

2

4𝑚
1
𝑎
12

,

𝜖
2
= 𝜖
4
=
𝑚
2
𝑎
33

4𝑎
32

,

(34)

then 𝑙
𝑖
> 0 (𝑖 = 1, 2, 3). Therefore, we have

𝐸
󸀠
(𝑡) ≤ −

3

∑

𝑖=1

𝑙
𝑖
∫
Ω

(𝑢
𝑖
− 𝑢
∗

𝑖
)
2

𝑑𝑥. (35)

FromProposition 6 we can see that the solution of system
(1) and (3) is bounded, and so are the derivatives of (𝑢

𝑖
− 𝑢
∗

𝑖
)

(𝑖 = 1, 2, 3) by the equations in (1). Applying Lemma 1, we
obtain that

lim
𝑡→∞

∫
Ω

(𝑢
𝑖
− 𝑢
∗

𝑖
) 𝑑𝑥 = 0, (𝑖 = 1, 2, 3) . (36)

Recomputing 𝐸󸀠(𝑡) gives

𝐸
󸀠
(𝑡) ≤ −∫

Ω

(
𝛼𝑑
1
𝑢
∗

1

𝑢2
1

󵄨󵄨󵄨󵄨∇𝑢1
󵄨󵄨󵄨󵄨
2

+
𝑑
2
𝑢
∗

2

𝑢2
2

󵄨󵄨󵄨󵄨∇𝑢2
󵄨󵄨󵄨󵄨
2

+
𝛽𝑑
3
𝑢
∗

3

𝑢2
3

󵄨󵄨󵄨󵄨∇𝑢3
󵄨󵄨󵄨󵄨
2

)𝑑𝑥

≤ −𝑐∫
Ω

(
󵄨󵄨󵄨󵄨∇𝑢1

󵄨󵄨󵄨󵄨
2

+
󵄨󵄨󵄨󵄨∇𝑢2

󵄨󵄨󵄨󵄨
2

+
󵄨󵄨󵄨󵄨∇𝑢3

󵄨󵄨󵄨󵄨
2

) 𝑑𝑥 = −𝑔 (𝑡) ,

(37)

where 𝑐 = min{𝛼𝑑
1
𝑢
∗

1
/𝑀
2

1
, 𝑑
2
𝑢
∗

2
/𝑀
2

2
, 𝛽𝑑
3
𝑢
∗

3
/𝑀2
3
}. Using (30)

and (1), we obtain that the derivative of 𝑔(𝑡) is bounded in
[1, +∞). From Lemma 1, we conclude that 𝑔(𝑡) → 0 as 𝑡 →
∞. Therefore

lim
𝑡→∞

∫
Ω

(
󵄨󵄨󵄨󵄨∇𝑢1

󵄨󵄨󵄨󵄨
2

+
󵄨󵄨󵄨󵄨∇𝑢2

󵄨󵄨󵄨󵄨
2

+
󵄨󵄨󵄨󵄨∇𝑢3

󵄨󵄨󵄨󵄨
2

) 𝑑𝑥 = 0. (38)

Applying the Poincaré inequality

∫
Ω

𝜆|𝑢 − 𝑢|
2
𝑑𝑥 ≤ ∫

Ω

|∇𝑢|
2
𝑑𝑥, (39)

leads to

lim
𝑡→∞

∫
Ω

(𝑢
𝑖
− 𝑢
𝑖
)
2

𝑑𝑥 = 0, (𝑖 = 1, 2, 3) , (40)

where 𝑢
𝑖
= (1/|Ω|) ∫

Ω
𝑢
𝑖
𝑑𝑥 and 𝜆 is the smallest positive

eigenvalue of−Δwith the homogeneousNeumann condition.
Therefore,

|Ω| (𝑢1 (𝑡) − 𝑢
∗

1
)
2

= ∫
Ω

(𝑢
1
(𝑡) − 𝑢

∗

1
)
2

𝑑𝑥

= ∫
Ω

(𝑢
1
(𝑡) − 𝑢

1
(𝑡, 𝑥) + 𝑢

1
(𝑡, 𝑥) − 𝑢

∗

1
)
2

𝑑𝑥

≤ 2∫
Ω

(𝑢
1
(𝑡) − 𝑢

1
(𝑡, 𝑥))

2

𝑑𝑥

+ 2∫
Ω

(𝑢
1
(𝑡, 𝑥) − 𝑢

∗

1
)
2

𝑑𝑥.

(41)
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So we have 𝑢
1
(𝑡) → 𝑢

∗

1
as 𝑡 → ∞. Similarly, 𝑢

2
(𝑡) → 𝑢

∗

2

and 𝑢
3
(𝑡) → 𝑢

∗

3
as 𝑡 → ∞. According to (30), there exists

a subsequence 𝑡
𝑚
, and non-negative functions 𝑤

𝑖
∈ 𝐶
2
(Ω),

such that
lim
𝑚→∞

󵄩󵄩󵄩󵄩𝑢𝑖 (⋅, 𝑡𝑚) − 𝑤𝑖 (⋅)
󵄩󵄩󵄩󵄩𝐶2(Ω) = 0 (𝑖 = 1, 2, 3) . (42)

Applying (40) and noting that 𝑢
𝑖
(𝑡) → 𝑢

∗

𝑖
, we then have𝑤

𝑖
=

𝑢
∗

𝑖
, (𝑖 = 1, 2, 3). That is,

lim
𝑚→∞

󵄩󵄩󵄩󵄩𝑢𝑖 (⋅, 𝑡𝑚) − 𝑢
∗

𝑖

󵄩󵄩󵄩󵄩𝐶2(Ω) = 0 (𝑖 = 1, 2, 3) . (43)

Furthermore, the local stability ofE∗ combiningwith (43)
gives the following global stability.

Theorem 9. Assume that

𝐻
5
:
𝑎
1
(𝑎
21
− 𝑎
2
)

𝑚
1
𝑎
2

> 𝑎
11
>
𝑎
12
V∗
2

𝑚2
1

, (44)

𝐻
4
and 𝐺

4
hold, and then the semi-trivial steady state 𝐸

2

of system (1)–(3) with non-trivial initial functions is globally
asymptotically stable.

Proof. It is obvious that system (1)–(3) always has two non-
negative equilibria (𝑢

1
, 𝑢
2
, 𝑢
3
) as follows: 𝐸

0
= (0, 0, 0) and

𝐸
1
= (𝑎
1
/𝑎
11
, 0, 0). If 𝐻

1
and 𝐻

4
are satisfied, system (1) has

the other semitrivial solution denoted by 𝐸
2
(V∗
1
, V∗
2
, 0), where

𝐻
4
: 𝑎
3
𝑚
2
> (𝑎
32
− 𝑎
3
) V
∗

2
. (45)

We consider the stability of 𝐸
2
under condition 𝐻

1
and

𝐻
4
. Equation (1) can be rewritten as

𝜕𝑢
1

𝜕𝑡
− 𝑑
1
Δ𝑢
1
= 𝑢
1
[−𝑎
11
(𝑢
1
− V
∗

1
) −
𝑎
12
(𝑢
2
− V∗
2
)

𝑚
1
+ 𝑢
1

+
𝑎
12
V∗
2
(𝑢
1
− V∗
1
)

(𝑚
1
+ 𝑢
1
) (𝑚
1
+ V∗
1
)
] ,

𝜕𝑢
2

𝜕𝑡
− 𝑑
2
Δ𝑢
2

= 𝑢
2
[∫
Ω

∫

𝑡

−∞

𝐾
1
(𝑥, 𝑦, 𝑡 − 𝑠)

×
𝑎
21
𝑚
1
(𝑢
1
(𝑠, 𝑦) − V∗

1
)

(𝑚
1
+ 𝑢
1
(𝑠, 𝑦)) (𝑚

1
+ V∗
1
)
𝑑𝑠 𝑑𝑦

−𝑎
22
(𝑢
2
− V
∗

2
) −

𝑎
23
𝑢
3

𝑚
2
+ 𝑢
2

] ,

𝜕𝑢
3

𝜕𝑡
− 𝑑
3
Δ𝑢
3

= 𝑢
3
[∫
Ω

∫

𝑡

−∞

𝐾
2
(𝑥, 𝑦, 𝑡 − 𝑠)

×
𝑎
32
𝑚
2
(𝑢
2
(𝑠, 𝑦) − V∗

2
)

(𝑚
2
+ 𝑢
2
(𝑠, 𝑦)) (𝑚

2
+ V∗
2
)
𝑑𝑠 𝑑𝑦

−𝑎
33
𝑢
3
] .

(46)

Similar to the argument ofTheorem 8, we have 𝑢
1
(𝑥, 𝑡) → V∗

1

and 𝑢
2
(𝑥, 𝑡) → V∗

2
as 𝑡 → ∞ uniformly on Ω provided that

the following additional condition holds:

𝐺
3
: 𝑎
11
𝑚
2

1
> 𝑎
12
V
∗

2
,

𝐺
4
: 𝑎
22
𝑚
2

2
>
𝑎
23
𝑎
32

𝑎
33

+
2𝑎
12
𝑎
21
𝑚
2

2

𝑎
11
𝑚2
1
− 𝑎
12
V∗
2

.

(47)

Next, we consider the asymptotic behavior of 𝑢
3
(𝑡, 𝑥). Let

𝜃 =
𝑎
3
− (𝑎
32
− 𝑎
3
) V∗
2

2𝛿
, 𝛿 =

󵄨󵄨󵄨󵄨𝑎32 − 𝑎3
󵄨󵄨󵄨󵄨 .

(48)

Then there exists 𝑡
1
> 0 such that

V
∗

2
− 𝜃 < 𝑢

2
(𝑡, 𝑥) < V

∗

2
+ 𝜃, ∀𝑡 > 𝑡

1
, 𝑥 ∈ Ω. (49)

Consider the following two systems:

𝑤
3𝑡
− 𝑑
3
Δ𝑤
3
= 𝑤
3
[−𝑎
3
+
𝑎
32
(V∗
2
+ 𝜃)

𝑚
2
+ V∗
2
+ 𝜃

− 𝑎
33
𝑤
3
] ,

(𝑡, 𝑥) ∈ [𝑡
1
, +∞) × Ω,

𝜕𝑤
3

𝜕]
= 0, (𝑡, 𝑥) ∈ [𝑡

1
, +∞) × 𝜕Ω,

𝑤
3
= 𝑢
3
, (𝑡, 𝑥) ∈ (−∞, 𝑡

1
] × Ω,

𝑊
3𝑡
− 𝑑
3
Δ𝑊
3
= 𝑊
3
[−𝑎
3
+
𝑎
32
(V∗
2
− 𝜃)

𝑚
2
+ V∗
2
− 𝜃

− 𝑎
33
V
3
] ,

(𝑡, 𝑥) ∈ [𝑡
1
, +∞) × Ω,

𝜕𝑊
3

𝜕]
= 0, (𝑡, 𝑥) ∈ [𝑡

1
, +∞) × 𝜕Ω,

𝑊
3
= 𝑢
3
, (𝑡, 𝑥) ∈ (−∞, 𝑡

1
] × Ω.

(50)

Combining comparison principle with (50), we obtain that

𝑊
3
(𝑡, 𝑥) ≤ 𝑢

3
(𝑡, 𝑥) ≤ 𝑤

3
(𝑡, 𝑥) , ∀𝑡 > 𝑡

1
, 𝑥 ∈ Ω. (51)

By Lemma 4, we obtain

0 = lim
𝑡→∞

𝑊
3
(𝑡, 𝑥) ≤ inf 𝑢

3
(𝑡, 𝑥) ≤ sup 𝑢

3
(𝑡, 𝑥)

≤ lim
𝑡→∞

𝑤
3
(𝑡, 𝑥) = 0, ∀𝑥 ∈ Ω,

(52)

which implies that lim
𝑡→∞

𝑢
3
(𝑡, 𝑥) = 0 uniformly onΩ.

Theorem 10. Suppose that𝐺
5
and𝐺

6
hold, and then the semi-

trivial steady state 𝐸
1
of system (1)–(3) with non-trivial initial

functions is globally asymptotically stable.
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Proof. We study the stability of the semi-trivial solution 𝐸
1
=

(𝑢̃
1
, 0, 0). Similarly, the equations in (1) can be written as

𝜕𝑢
1

𝜕𝑡
− 𝑑
1
Δ𝑢
1
= 𝑢
1
[−𝑎
11
(𝑢
1
− 𝑢̃
1
) −

𝑎
12
𝑢
2

𝑚
1
+ 𝑢
1

] ,

𝜕𝑢
2

𝜕𝑡
− 𝑑
2
Δ𝑢
2

= 𝑢
2
[−𝑎
2
+ ∫
Ω

∫

𝑡

−∞

𝐾
1
(𝑥, 𝑦, 𝑡 − 𝑠)

×
𝑎
21
𝑚
1
(𝑢
1
(𝑠, 𝑦) − 𝑢̃

1
)

(𝑚
1
+ 𝑢
1
(𝑠, 𝑦)) (𝑚

1
+ 𝑢̃
1
)
𝑑𝑠 𝑑𝑦

+
𝑎
21
𝑢̃
1

𝑚
1
+ 𝑢̃
1

− 𝑎
22
𝑢
2
−
𝑎
23
𝑢
3

𝑚
2
+ 𝑢
2

] ,

𝜕𝑢
3

𝜕𝑡
− 𝑑
3
Δ𝑢
3

= 𝑢
3
[−𝑎
3
+ ∫
Ω

∫

𝑡

−∞

𝐾
2
(𝑥, 𝑦, 𝑡 − 𝑠)

×
𝑎
32
𝑢
2
(𝑠, 𝑦)

𝑚
2
+ 𝑢
2
(𝑠, 𝑦)

𝑑𝑠 𝑑𝑦 − 𝑎
33
𝑢
3
] .

(53)

Define

𝑉 (𝑡) = 𝛼∫
Ω

[𝑢
1
− 𝑢̃
1
− 𝑢̃
1
log 𝑢1
𝑢̃
1

] 𝑑𝑥 + ∫
Ω

𝑢
2
𝑑𝑥

+ 𝛽∫
Ω

𝑢
3
𝑑𝑥.

(54)

Calculating the derivative of 𝑉(𝑡) along 𝐸
1
, we get from (54)

that

𝑉
󸀠
(𝑡) ≤ −∫

Ω

[𝛼(𝑎
11
−
𝑎
12
𝜖
1

𝑚
1

)] (𝑢
1
− 𝑢̃
1
)
2

𝑑𝑥

+ ∫
Ω

[𝑎
22
−
𝛼𝑎
12

4𝑚
1
𝜖
1

−
𝑎
23

4𝜖
2
𝑚
2

−
𝑎
21

4𝑚
1
𝜖
3

] 𝑢
2

2
𝑑𝑥

+ ∫
Ω

[𝛽𝑎
33
−
𝑎
23
𝜖
2

𝑚
2

] 𝑢
2

3
𝑑𝑥

− ∫
Ω

[(𝑎
2
−
𝑎
21
𝑢̃
1

𝑚
1
+ 𝑢̃
1

)𝑢
2
+ 𝑎
3
𝑢
3
] 𝑑𝑥

+
𝑎
21
𝜖
3

𝑚
1

∫
Ω

∫

𝑡

−∞

𝐾
1
(𝑥, 𝑦, 𝑡 − 𝑠)

× (𝑢
1
(𝑠, 𝑦) − 𝑢̃

1
)
2

𝑑𝑠 𝑑𝑦 𝑑𝑥

+
𝑎
32
𝛽

4𝜖
4
𝑚
2

∬
Ω

∫

𝑡

−∞

𝐾
2
(𝑥, 𝑦, 𝑡 − 𝑠)

× 𝑢
2

2
(𝑠, 𝑦) 𝑑𝑠 𝑑𝑦 𝑑𝑥.

(55)

Define
𝐸 (𝑡) = 𝑉 (𝑡)

+
𝑎
21
𝜖
3

𝑚
1

∬
Ω

∫

+∞

0

∫

𝑡

𝑡−𝑟

𝐾
1
(𝑥, 𝑦, 𝑟)

× (𝑢
1
(𝑠, 𝑦) − 𝑢

∗

1
)
2

𝑑𝑠 𝑑𝑟 𝑑𝑦 𝑑𝑥

+
𝑎
32
𝛽

4𝜖
4
𝑚
2

∬
Ω

∫

+∞

0

∫

𝑡

𝑡−𝑟

𝐾
2
(𝑥, 𝑦, 𝑟)

× (𝑢
2
(𝑠, 𝑦) − 𝑢

∗

2
)
2

𝑑𝑠 𝑑𝑟 𝑑𝑦 𝑑𝑥.

(56)

It is easy to see that

𝐸
󸀠
(𝑡) ≤ −𝛼𝑑

1
𝑢̃
1
∫
Ω

󵄨󵄨󵄨󵄨∇𝑢1
󵄨󵄨󵄨󵄨
2

𝑢2
1

𝑑𝑥

− ∫
Ω

[𝛼(𝑎
11
−
𝑎
12
𝜖
1

𝑚
1

) −
𝑎
21
𝜖
3

𝑚
1

] (𝑢
1
− 𝑢̃
1
)
2

𝑑𝑥

+ ∫
Ω

[𝑎
22
−
𝛼𝑎
12

4𝑚
1
𝜖
1

−
𝑎
23

4𝑚
2
𝜖
2

−
𝑎
21

4𝑚
1
𝜖
3

−
𝑎
32

4𝑚
2
𝜖
4

] 𝑢
2

2
𝑑𝑥

+ ∫
Ω

[𝛽𝑎
33
−
𝑎
23
𝜖
2

𝑚
2

−
𝑎
32
𝛽𝜖
4

𝑚
2

] 𝑢
2

3
𝑑𝑥

− ∫
Ω

[(𝑎
2
−
𝑎
21
𝑢̃
1

𝑚
1
+ 𝑢̃
1

)𝑢
2
− 𝑎
3
𝛽𝑢
3
] 𝑑𝑥.

(57)

Assume that
𝐺
5
: 𝑎
1
(𝑎
21
− 𝑎
2
) < 𝑚

1
𝑎
2
𝑎
11
,

𝐺
6
: 𝑎
22
𝑚
2

2
>
𝑎
23
𝑎
32

𝑎
33

+
2𝑎
12
𝑎
21
𝑚
2

2

𝑎
11
𝑚2
1

.

(58)

Let

𝑙
1
= 𝛼𝑎
11
−
𝛼𝑎
12
𝜖
1

𝑚
1

−
𝑎
21
𝜖
3

𝑚
1

,

𝑙
2
= 𝑎
22
−
𝛼𝑎
12

4𝑚
1
𝜖
1

−
𝑎
23

4𝑚
2
𝜖
2

−
𝑎
21

4𝑚
1
𝜖
3

−
𝑎
32
𝛽

4𝑚
2
𝜖
4

,

𝑙
3
= 𝑎
33
𝛽 −

𝑎
23
𝜖
2

𝑚
2

−
𝛽𝑎
32
𝜖
4

𝑚
2

.

(59)

Choose

𝛼 =
𝑎
21

𝑎
12

, 𝛽 =
𝑎
23

𝑎
32

, 𝜖
1
= 𝜖
3
=
𝑎
11
𝑚
1

4𝑎
12

,

𝜖
2
= 𝜖
4
=
𝑚
2
𝑎
33

4𝑎
32

.

(60)

Then we get 𝑙
𝑖
> 0 (𝑖 = 1, 2, 3). Therefore we have

lim
𝑡→∞

𝑢
1
(𝑡, 𝑥) = 𝑢̃

1
, (61)

uniformly onΩ.
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Figure 2: Global stability of the positive equilibrium 𝐸∗ with an initial condition (𝜙
1
, 𝜙
2
, 𝜙
3
) = (2.7 + 0.5 sin𝑥, 2.7 + 0.5 cos 𝑥, 2.7 + 0.5 sin𝑥).

Next, we consider the asymptotic behavior of 𝑢
2
(𝑡, 𝑥) and

𝑢
3
(𝑡, 𝑥). For any 𝑇 > 0, integrating (57) over [0, 𝑇] yields

𝐸 (𝑇) + 𝛼𝑑
1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∇𝑢
1

𝑢
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

2

+ 𝑙
1

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝑢1 − 𝑢̃1

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩
2

2

+ 𝑙
2

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝑢2
󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩
2

2
+ 𝑙
3

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝑢3
󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩
2

2
≤ 𝐸 (0) ,

(62)

where ‖|𝑢
𝑖
|‖
2

2
= ∫
𝑇

0
∫
Ω
𝑢
2

𝑖
𝑑𝑥 𝑑𝑡. It implies that ‖|𝑢

𝑖
|‖
2
≤ 𝐶
𝑖
(𝑖 =

2, 3) for the constant 𝐶
𝑖
which is independent of 𝑇. Now we

consider the boundedness of ‖|∇𝑢
2
|‖
2
and ‖|∇𝑢

3
|‖
2
. From the

Green’s identity, we obtain

𝑑
2
∫

𝑇

0

∫
Ω

󵄨󵄨󵄨󵄨∇𝑢2 (𝑡, 𝑥)
󵄨󵄨󵄨󵄨
2

𝑑𝑥 𝑑𝑡

= −𝑑
2
∫

𝑇

0

∫
Ω

𝑢
2
(𝑡, 𝑥) Δ𝑢

2
(𝑡, 𝑥) 𝑑𝑥 𝑑𝑡

= −∫

𝑇

0

∫
Ω

𝑢
2

𝜕𝑢
2

𝜕𝑡
𝑑𝑥 𝑑𝑡 − 𝑎

2
∫

𝑇

0

∫
Ω

𝑢
2

2
𝑑𝑥 𝑑𝑡

− 𝑎
22
∫

𝑇

0

∫
Ω

𝑢
3

2
𝑑𝑥 𝑑𝑡 − 𝑎

23
∫

𝑇

0

∫
Ω

𝑢
2

2
𝑢
3

𝑚
2
+ 𝑢
3

𝑑𝑥 𝑑𝑡

+ 𝑎
21
∫

𝑇

0

∬
Ω

∫

𝑡

−∞

𝑢
1
(𝑠, 𝑦) 𝑢

2

2
(𝑡, 𝑥)

𝑚
1
+ 𝑢
1
(𝑠, 𝑦)

× 𝐾
1
(𝑥, 𝑦, 𝑡 − 𝑠) 𝑑𝑠 𝑑𝑦 𝑑𝑥 𝑑𝑡.

(63)

Note that

∫

𝑇

0

∫
Ω

𝑢
2
(𝑡, 𝑥)

𝜕𝑢
2
(𝑡, 𝑥)

𝜕𝑡
𝑑𝑥 𝑑𝑡

= ∫

𝑇

0

∫
Ω

1

2

𝜕𝑢
2

2

𝜕𝑡
𝑑𝑡 𝑑𝑥

=
1

2
∫
Ω

𝑢
2

2
(𝑇, 𝑥) 𝑑𝑥 −

1

2
∫
Ω

𝑢
2

2
(0, 𝑥) 𝑑𝑥 ≤ 𝑀

2

2
|Ω| ,

∫

𝑇

0

∫
Ω

𝑢
2

2
𝑢
3
𝑑𝑥 𝑑𝑡 ≤ 𝑀

3
∫

𝑇

0

∫
Ω

𝑢
2

2
𝑑𝑥 𝑑𝑡,
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Figure 3: Global stability of the positive equilibrium 𝐸
2
with an initial condition (𝜙

1
, 𝜙
2
, 𝜙
3
) = (2.7 + 0.5 sin𝑥, 2.7 + 0.5 cos 𝑥, 2.7 + 0.5 sin𝑥).

∫

𝑇

0

∫
Ω

𝑢
3

2
𝑑𝑥 𝑑𝑡 ≤ 𝑀

2
∫

𝑇

0

∫
Ω

𝑢
2

2
𝑑𝑥 𝑑𝑡,

∫

𝑇

0

∬
Ω

∫

𝑡

−∞

𝑢
1
(𝑠, 𝑦) 𝑢

2

2
(𝑡, 𝑥)

𝑚
1
+ 𝑢
1
(𝑠, 𝑦)

𝐾
1
(𝑥, 𝑦, 𝑡 − 𝑠) 𝑑𝑠 𝑑𝑦 𝑑𝑥 𝑑𝑡

≤ ∫

𝑇

0

∫
Ω

𝑢
2

2
(𝑡, 𝑥) 𝑑𝑥 𝑑𝑡.

(64)

Thus, we get ‖|∇𝑢
2
|‖
2
≤ 𝐶
4
. In a similar way, we have

‖|∇𝑢
3
|‖
2
≤ 𝐶
5
. Here 𝐶

4
and 𝐶

5
are independent of 𝑇.

It is easy to see that 𝑢
2
(𝑡, 𝑥), 𝑢

3
(𝑡, 𝑥) ∈ 𝐿

2
((0,∞);

𝑊
1,2
(Ω)). These imply that

lim
𝑡→∞

󵄩󵄩󵄩󵄩𝑢𝑖 (⋅, 𝑡)
󵄩󵄩󵄩󵄩𝑊1,2(Ω) = 0, 𝑖 = 2, 3. (65)

From the Sobolev compact embedding theorem, we know

lim
𝑡→∞

󵄩󵄩󵄩󵄩𝑢𝑖 (⋅, 𝑡)
󵄩󵄩󵄩󵄩𝐶(Ω) = 0, 𝑖 = 2, 3. (66)

In the end, we show that the trivial solution 𝐸
0
is an

unstable equilibrium. Similarly to the local stability to 𝐸∗, we
can get the characteristic equation of 𝐸

0
as

(𝜆 + 𝜇
𝑖
𝐷
1
− 𝑎
1
) (𝜆 + 𝜇

𝑖
𝐷
2
+ 𝑎
2
) (𝜆 + 𝜇

𝑖
𝐷
3
+ 𝑎
3
) = 0. (67)

If 𝑖 = 1, then 𝜇
1
= 0. It is easy to see that this equation admits

a positive solution 𝜆 = 𝑎
1
. According to Theorem 5.1 in [23],

we have the following result.

Theorem 11. The trivial equilibrium 𝐸
0
is an unstable equilib-

rium of system (1)–(3).

4. Numerical Illustrations

In this section, we performnumerical simulations to illustrate
the theoretical results given in Section 3.
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Figure 4: Global stability of the positive equilibrium 𝐸
1
with an initial condition (𝜙

1
, 𝜙
2
, 𝜙
3
) = (2.7 + 0.5 sin𝑥, 2.7 + 0.5 cos𝑥, 2.7 + 0.5 sin𝑥).

In the following, we always take Ω = [0, 𝜋], 𝐾
𝑖
(𝑥, 𝑦, 𝑡) =

𝐺
𝑖
(𝑥, 𝑦, 𝑡)𝑘

𝑖
(𝑡), where 𝑘

𝑖
(𝑡) = (1/𝜏

∗
)𝑒
−𝑡/𝜏
∗

(𝑖 = 1, 2) and

𝐺
1
(𝑥, 𝑦, 𝑡) =

1

𝜋
+
2

𝜋

∞

∑

𝑛=1

𝑒
−𝑑
2
𝑛
2

𝑡 cos 𝑛𝑥 cos 𝑛𝑦,

𝐺
2
(𝑥, 𝑦, 𝑡) =

1

𝜋
+
2

𝜋

∞

∑

𝑛=1

𝑒
−𝑑
3
𝑛
2

𝑡 cos 𝑛𝑥 cos 𝑛𝑦.

(68)

However, it is difficult for us to simulate our results directly
because of the nonlocal term. Similar to [25], the equations
in (1) can be rewritten as follows:

𝜕𝑢
1

𝜕𝑡
− 𝑑
1
Δ𝑢
1
= 𝑢
1
(𝑎
1
− 𝑎
11
𝑢
1
−
𝑎
12
𝑢
2

𝑚
1
+ 𝑢
1

) ,

𝜕𝑢
2

𝜕𝑡
− 𝑑
2
Δ𝑢
2
= 𝑢
2
(−𝑎
2
+ 𝑎
21
V
1
− 𝑎
22
𝑢
2
−
𝑎
23
𝑢
3

𝑚
2
+ 𝑢
3

) ,

𝜕𝑢
3

𝜕𝑡
− 𝑑
3
Δ𝑢
3
= 𝑢
3
(−𝑎
3
+ 𝑎
32
V
2
− 𝑎
33
𝑢
3
) ,

𝜕V
1

𝜕𝑡
− 𝑑
2
ΔV
1
=
1

𝜏∗
(

𝑢
1

𝑚
1
+ 𝑢
1

− V
1
) ,

𝜕V
2

𝜕𝑡
− 𝑑
3
ΔV
2
=
1

𝜏∗
(

𝑢
2

𝑚
2
+ 𝑢
2

− V
2
) ,

(69)

where

V
𝑖
= ∫

𝜋

0

∫

𝑡

−∞

𝐺
𝑖
(𝑥, 𝑦, 𝑡 − 𝑠)

1

𝜏∗
𝑒
−(𝑡−𝑠)/𝜏

∗ 𝑢
𝑖
(𝑠, 𝑦)

𝑚
𝑖
+ 𝑢
𝑖
(𝑠, 𝑦)

𝑑𝑦 𝑑𝑠,

𝑖 = 1, 2.

(70)

Each component is considered with homogeneous Neumann
boundary conditions, and the initial condition of V

𝑖
is

V
𝑖
(0, 𝑥) = ∫

𝜋

0

∫

0

−∞

𝐺
𝑖
(𝑥, 𝑦, −𝑠)

1

𝜏∗
𝑒
𝑠/𝜏
∗ 𝑢
𝑖
(𝑠, 𝑦)

𝑚
𝑖
+ 𝑢
𝑖
(𝑠, 𝑦)

𝑑𝑦 𝑑𝑠,

𝑖 = 1, 2.

(71)
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In the following examples, we fix some coefficients and
assume that 𝑑

1
= 𝑑
2
= 𝑑
3
= 1, 𝑎

1
= 3, 𝑎

12
= 1, 𝑚

1
= 𝑚
2
=

1, 𝑎
2
= 1, 𝑎

22
= 12, 𝑎

23
= 1, 𝑎

33
= 12, and 𝜏∗ = 1. The

asymptotic behaviors of system (1)–(3) are shownby choosing
different coefficients 𝑎

11
, 𝑎
21
, 𝑎
3
, and 𝑎

32
.

Example 12. Let 𝑎
11
= 53/9, 𝑎

21
= 81/13, 𝑎

3
= 1/13 and

𝑎
32
= 14.Then it is easy to see that the system admits a unique

positive equilibrium 𝐸
∗
(1/2, 1/12, 1/12). By Theorem 8, we

see that the positive solution (𝑢
1
(𝑡, 𝑥), 𝑢

2
(𝑡, 𝑥), 𝑢

3
(𝑡, 𝑥)) of

system (1)–(3) converges to 𝐸∗ as 𝑡 → ∞. See Figure 2.

Example 13. Let 𝑎
11

= 6, 𝑎
21

= 12, 𝑎
3
= 1/4 and

𝑎
32
= 1. Clearly, 𝐻

2
does not hold. Hence, the positive

steady state is not feasible. System (1) admits two semi-
trivial steady state 𝐸

2
(0.4732, 0.2372, 0) and 𝐸

1
(1/2, 0, 0).

According to Theorem 9, we know that the positive solution
(𝑢
1
(𝑡, 𝑥), 𝑢

2
(𝑡, 𝑥), 𝑢

3
(𝑡, 𝑥)) of system (1)–(3) converges to 𝐸

2

as 𝑡 → ∞. See Figure 3.

Example 14. Let 𝑎
11
= 6, 𝑎

21
= 2, 𝑎

3
= 1/4 and 𝑎

32
= 1.

Clearly,𝐻
1
does not hold. Hence, 𝐸∗ and 𝐸

2
are not feasible.

System (1) has a unique semi-trivial steady state 𝐸
1
(1/2, 0, 0).

According to Theorem 10 we know that the positive solution
(𝑢
1
(𝑡, 𝑥), 𝑢

2
(𝑡, 𝑥), 𝑢

3
(𝑡, 𝑥)) of system (1)–(3) converges to 𝐸

1

as 𝑡 → ∞. See Figure 4.

5. Discussion

In this paper, we incorporate nonlocal delay into a three-
species food chain model with Michaelis-Menten functional
response to represent a delay due to the gestation of the preda-
tor. The conditions, under which the spatial homogeneous
equilibria are asymptotically stable, are given by using the
Lyapunov functional.

We now summarize the ecological meanings of our
theoretical results. Firstly, the positive equilibrium 𝐸

∗ of
system (1)–(3) exists under the high birth rate of the prey
(𝑎
1
) and low death rates (𝑎

2
and 𝑎

3
) of predator and top

predator. 𝐸∗ is globally stable if the intraspecific competition
𝑎
11
is neither too big nor too small and the maximum harvest

rates 𝑎
12
, 𝑎
23

are small enough. Secondly, the semi-trivial
equilibrium 𝐸

2
of system (1)–(3) exists if the birth rate of the

prey (𝑎
1
) is high, death rate of predator 𝑎

2
is low, and the death

rate (𝑎
3
) exceeds the conversion rate from predator to top

predator (𝑎
32
). 𝐸
2
is globally stable if the maximum harvest

rates 𝑎
12
, 𝑎
23
are small and the intra-specific competition 𝑎

11

is neither too big nor too small. Thirdly, system (1)–(3) has
only one semi-trivial equilibrium 𝐸

1
when the death rate (𝑎

2
)

exceeds the conversion rate from prey to predator (𝑎
21
). 𝐸
1

is globally stable if intra-specific competitions (𝑎
11
, 𝑎
22
, and

𝑎
33
) are strong. Finally, 𝐸

0
is unstable and the non-stability of

trivial equilibrium tells us that not all of the populations go
to extinction. Furthermore, our main results imply that the
nonlocal delay is harmless for stabilities of all non-negative
steady states of system (1)–(3).

There are still many interesting and challenging problems
with respect to system (1)–(3), for example, the permanence

and stability of periodic solution or almost periodic solution.
These problems are clearly worthy for further investigations.
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