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A class of fuzzy neural networks (FNNs) with time-varying delays and impulses is investigated.With removing some restrictions on
the amplification functions, a new differential inequality is established, which improves previouse criteria. Applying this differential
inequality, a series of new and useful criteria are obtained to ensure the existence of global robust attracting and invariant sets for
FNNs with time-varying delays and impulses. Our main results allow much broader application for fuzzy and impulsive neural
networks with or without delays. An example is given to illustrate the effectiveness of our results.

1. Introduction

The theoretical and applied studies of the current neural
networks (CNNs) have been a new focus of studies worldwide
because CNNs are widely applied in signal processing, image
processing, pattern recognition, psychophysics, speech, per-
ception, robotics, and so on. The scholars have introduced
many classes of CNNs models such as Hopfield-type net-
works [1], bidirectional associative memory networks [2],
cellular neural networks [3], recurrent back-propagation net-
works [4–6], optimization-type networks [7–9], brain-state-
in-a-box-(BSB-) type networks [10, 11], andCohen-Grossberg
recurrent neural networks (CGCNNs) [12]. According to the
choice of the variable for CNNs [13], two basic mathematical
models of CNNs are commonly adopted: either local field
neural network models or static neural network models. The
basic model of local field neural network is described as
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where𝑓
𝑗
denotes the activation function of the 𝑗th neuron; 𝑥

𝑖

is the state of the 𝑖th neuron; 𝐼
𝑖
is the external input imposed

on the 𝑖th neuron;𝜔
𝑖𝑗
denotes the synaptic connectivity value

between the 𝑖th neuron and the 𝑗th neuron; 𝑛 is the number
of neurons in the network.

It is well known that local field neural network not only
models Hopfield-type networks but alsomodels bidirectional
associative memory networks and cellular neural networks.
In the past few years, there has been increasing interest in
studying dynamical characteristics such as stability, persis-
tence, periodicity, robust stability of equilibrium points, and
domains of attraction of local field neural network. Many
deep theoretical results have been obtained for local field
neural network. We can refer to [14–32] and the references
cited therein.

However, in mathematical modeling of real world prob-
lems, we will encounter some other inconveniences, for
example, the complexity and the uncertainty or vagueness.
Fuzzy theory is considered as a more suitable setting for
the sake of taking vagueness into consideration. Based on
traditional cellular neural networks (CNNs),T. Yang and L.-
B. Yang proposed the fuzzy CNNs (FCNNs) [33], which
integrate fuzzy logic into the structure of traditional CNNs
and maintain local connectedness among cells. Unlike pre-
vious CNNs structures, FCNNs have fuzzy logic between its
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template input and/or output besides the sum of product
operation. FCNNs are very useful paradigm for image pro-
cessing problems, which is a cornerstone in image processing
and pattern recognition. In addition, many evolutionary
processes in nature are characterized by the fact that their
states are subject to sudden changes at certain moments and
therefore can be described by impulsive system. Therefore, it
is necessary to consider both the fuzzy logic and delay effect
on dynamical behaviors of neural networks with impulses.
Nevertheless, to the best of our knowledge, there are few
published papers considering the global robust domain of
attraction for the fuzzy neural network (FNNs).Therefore, in
this paper, we will study the global robust attracting set and
invariant set of the following fuzzy neural networks (FNNs)
with time-varying delays and impulses:
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where 𝛾
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state, input, and bias of the 𝑖th neurons, respectively. 𝜏
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is the transmission delay and 𝑓
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is the activation function.

∧ and ∨ denote the fuzzy AND and fuzzy OR operation,
respectively. Δ𝑢

𝑖
(𝑡

𝑘
) is the impulses at moments 𝑡

𝑘
, and 0 ≤
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1
< 𝑡

2
< ⋅ ⋅ ⋅ is a strictly increasing sequence such that
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𝑖𝑘
(𝜆)𝑢
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(𝑡) is the impulsive function.

Function 𝜙

𝑖
is the initial function. 𝜏(𝜆) > 0 is a constant.

𝜆 ∈ Ξ ⊂ 𝑅 is the parameter.
Themain purpose of this paper is to investigate the global

robust attracting and invariant sets of FNNs (2). Different
from [34, 35], in this paper, we will introduce a new nonlinear
differential inequality, which is more effective than the linear
differential inequalities for studying the asymptotic behavior
of some nonlinear differential equations. Applying this new

nonlinear delay differential inequality, sufficient conditions
are gained for global robust attracting and invariant sets.

The rest of this paper is organized as follows. In Section 2,
we will give some basic definitions and basic results about
the attracting domains of FNNs (2). In Section 3, we will
obtain the proof of the usefully nonlinear delay differential
inequality. In Section 4, our main results will be proved by
this delay differential inequality. Finally, an example is given
to illustrate the effectiveness of our results in Section 5.

2. Preliminaries

As usual, 𝐶(𝑋, 𝑌) denotes the space of continuous mappings
from the topological space 𝑋 to the topological space 𝑌.
In particular, let 𝐶([−𝜏(𝜆), 0],R𝑛) denote the set of all real-
valued continuous mappings from [−𝜏(𝜆), 0] toR𝑛 equipped
with supremum norm ‖ ⋅ ‖

∞
defined by
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where 𝜙 = (𝜙
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)

𝑇
∈ 𝐶([−𝜏(𝜆), 0],R𝑛). Denote by

𝑢(𝑡, 𝜙, 𝜆) the solution of FCNNs (2) with initial condition 𝜙 ∈
𝐶([−𝜏(𝜆), 0],R𝑛).

Let 𝐸 denote the 𝑛-dimensional unit matrix. For 𝐴, 𝐵 ∈

R𝑚×𝑛 or 𝐴, 𝐵 ∈ R𝑛, 𝐴 ≥ 𝐵 (𝐴 > 𝐵) means that each pair of
the corresponding elements of𝐴 and𝐵 satisfies the inequality
“≥ (>)”. For any 𝑥 ∈ R𝑛, 𝐴 ∈ R𝑛×𝑛, 𝜑 ∈ 𝐶([−𝜏, 0],R𝑛),
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Inspired by [37], we construct an equivalent theorem
between (2) and (4). Then we establish some lemmas which
are necessary in the proof of the main results.
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Consider the following non-impulsive system (4):

�̇�

𝑖 (
𝑡) = −𝑐

𝑖 (
𝜆) 𝑥𝑖 (

𝑡) + ∏

0≤𝑡𝑘<𝑡

(1 + 𝜇

𝑖𝑘
)

−1

×

[

[

𝑛

∑

𝑗=1

𝜔

𝑖𝑗 (
𝜆) 𝑓𝑗

(∏

0≤𝑡𝑘<𝑡

(1 + 𝜇

𝑗𝑘
) 𝑥

𝑗
(𝑡 − 𝜏

𝑖𝑗 (
𝑡)))

+

𝑛

⋀

𝑗=1

𝑎

𝑖𝑗 (
𝜆) 𝑓𝑗

( ∏

0≤𝑡𝑘<𝑡

(1 + 𝜇

𝑗𝑘
) 𝑥

𝑗 (
𝑡))

+

𝑛

⋁

𝑗=1

𝑏

𝑖𝑗 (
𝜆) 𝑓𝑗

( ∏

0≤𝑡𝑘<𝑡

(1 + 𝜇

𝑗𝑘
) 𝑥

𝑗 (
𝑡))

+

𝑛

⋀

𝑗=1

𝛼

𝑖𝑗 (
𝜆) 𝑓𝑗

(∏

0≤𝑡𝑘<𝑡

(1 + 𝜇

𝑗𝑘
) 𝑥

𝑗
(𝑡 − 𝜏

𝑖𝑗 (
𝑡)))

+

𝑛

∑

𝑗=1

𝛾

𝑖𝑗 (
𝜆) ]𝑗+

𝑛

⋀

𝑗=1

𝑐

𝑖𝑗 (
𝜆) ]𝑗

+

𝑛

⋁

𝑗=1

𝛽

𝑖𝑗 (
𝜆) 𝑓𝑗

(∏

0≤𝑡𝑘<𝑡

(1 + 𝜇

𝑗𝑘
) 𝑥

𝑗
(𝑡 − 𝜏

𝑖𝑗 (
𝑡)))

+

𝑛

⋁

𝑗=1

𝛿

𝑖𝑗 (
𝜆) ]𝑗 + 𝐼𝑖

]

]

, 𝑡 ≥ 0,

𝑥

𝑖 (
𝑡) = 𝜙

𝑖 (
𝑡) , 𝑡 ∈ [−𝜏 (𝜆) , 0] .

(4)

We have the following lemma, which shows that system (2)
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which implies that 𝑥
𝑖
(𝑡) is continuous on [0,∞). It is easy to

prove that 𝑥
𝑖
(𝑡) is absolutely continuous on [0,∞). Now, one

can easily check that

𝑥 (𝑡) = ( ∏

0≤𝑡𝑘<𝑡

(1 + 𝜇

1𝑘 (
𝜆))

−1
𝑢

1 (
𝑡) , . . . ,

∏

0≤𝑡𝑘<𝑡

(1 + 𝜇

𝑛𝑘 (
𝜆))

−1
𝑢

𝑛 (
𝑡))

(9)

is the solution of (4). The proof is complete.

Definition 2. Let 𝑆 be subsets of 𝐶([−𝜏(𝜆), 0],R𝑛) ≜ 𝐶 which
is independent of the parameter 𝜆 ∈ Ξ and let 𝑢(𝑡, 𝜙, 𝜆) be a
solution of FNNs (2) with 𝜙 ∈ 𝐶.

(i) For any given 𝜆 ∈ Ξ, if for any initial value 𝜙 ∈ 𝑆

implies that 𝑢(𝑡, 𝜙, 𝜆) ∈ 𝑆 for all 𝑡 ≥ 0, then 𝑆 is said
to be a robust positive invariant set of system of FNNs
(2).

(ii) For any given 𝜆 ∈ Ξ, if for any initial value 𝜙 ∈ 𝑆, the
solution 𝑢(𝑡, 𝜙, 𝜆) ∈ 𝑆 converges to 𝑆 as 𝑡 → ∞, that
is, dist(𝑢(𝑡, 𝜙, 𝜆), 𝑆) → 0 as 𝑡 → ∞, then 𝑆 is said to
be a global robust attracting set of system of FNNs (2),
where dist(𝜑, 𝑆) = inf

𝜓∈𝑆
dist(𝜑, 𝜓), and dist(𝜑, 𝜓) =

sup
𝑠∈[−𝜏,0]

|𝜑(𝑠) − 𝜓(𝑠)| for 𝜑 ∈ 𝐶.

For a class of differential equations with the term of fuzzy
AND and fuzzy OR operation, there is the following useful
inequality.
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Lemma 3 (see [33]). Let 𝑢 = (𝑢

1
, 𝑢

2
, . . . , 𝑢

𝑛
)

𝑇 and V = (V
1
,

V
2
, . . . , V

𝑛
)

𝑇 be two states of (2), then we have






















𝑛

⋀

𝑗=1

𝛼

𝑖𝑗
𝑓

𝑗
(𝑢

𝑗
) −

𝑛

⋀

𝑗=1

𝛼

𝑖𝑗
𝑓

𝑗
(V
𝑗
)























≤

𝑛

∑

𝑗=1











𝛼

𝑖𝑗





















𝑓

𝑗
(𝑢

𝑗
) − 𝑓

𝑗
(V
𝑗
)











,























𝑛

⋁

𝑗=1

𝛼

𝑖𝑗
𝑓

𝑗
(𝑢

𝑗
) −

𝑛

⋁

𝑗=1

𝛼

𝑖𝑗
𝑓

𝑗
(V
𝑗
)























≤

𝑛

∑

𝑗=1











𝛼

𝑖𝑗





















𝑓

𝑗
(𝑢

𝑗
) − 𝑓

𝑗
(V
𝑗
)











.

(10)

3. Nonlinear Delay Differential Inequality

In this section, we will establish a new nonlinear delay
differential inequality which will play the important role to
prove our main results.

Lemma 4. Assume that 𝑢(𝑡) ∈ 𝐶([𝑡
0
,∞),R𝑛) satisfies

𝑑

+

𝑑𝑡

[𝑢 (𝑡)]

+
≤ 𝑃[𝑢 (𝑡)]

+
+ 𝑄[𝑢 (𝑡)]

+

𝜏
+ 𝐼, 𝑡 ≥ 𝑡

0
,

𝑢 (𝑡

0
+ 𝜃) = 𝜑 (𝜃) ∈ 𝐶 ([−𝜏, 0] ,R

𝑛
) , 𝜃 ∈ [−𝜏, 0] ,

(11)

where 𝑃 = (𝑝

𝑖𝑗
)

𝑛×𝑛
and 𝑝

𝑖𝑗
≥ 0 for 𝑖 ̸= 𝑗, 𝑄 = (𝑞

𝑖𝑗
)

𝑛×𝑛
≥ 0,

𝐼 = (𝐼

1
, 𝐼

2
, . . . , 𝐼

𝑛
)

𝑇
≥ 0. If 𝐷 = −(𝑃 + 𝑄) ∈ M and 𝐿 = 𝐷

−1
𝐼,

then we have the following.

(i) For any constant 𝑑 ≥ 1, the solution 𝑢(𝑡) of (11) satisfies

[𝑢 (𝑡)]

+
≤ 𝑑𝐿, 𝑡 ≥ 𝑡

0
, (12)

provided that [𝜑]+
𝜏
≤ 𝑑𝐿.

(ii) Consider that

[𝑢 (𝑡)]

+
≤ 𝑧𝑒

−𝜅(𝑡−𝑡0)
+ 𝐿, 𝑡 ≥ 𝑡

0
,

(13)

provided that

[𝑢 (𝑡)]

+
≤ 𝑧𝑒

−𝜅(𝑡−𝑡0)
+ 𝐿, 𝑡 ∈ [𝑡

0
− 𝜏, 𝑡

0
] ,

(14)

where 𝑧 = col{|𝑧
𝑖
|} ∈ Ω

𝑀
(𝐷) and the positive constant

𝜅 is determined by the following inequality:

[𝜅𝐸 + 𝑃 + 𝑄𝑒

𝜅𝜏
] < 0. (15)

Proof. Since 𝐷 = −(𝑃 + 𝑄) ∈ M, we have 𝐷−1 ≥ 0. Let 𝜀 =
𝐷

−1col{1}𝜖 (𝜖 > 0 small enough), then 𝜀 > 0. In order to prove
(12), we will first prove that

[𝑢 (𝑡)]

+
≤ 𝑑𝐿 + 𝜀 = col {𝑥

𝑖
} = 𝑥, ∀𝑡 ≥ 𝑡

0
, (16)

for any given initial function 𝜑 ∈ 𝐶([𝑡

0
− 𝜏, 𝑡

0
],R𝑛) with

[𝜑]

+

𝜏
≤ 𝑑𝐿.

If (16) does not hold, then there exist 𝑖 ∈ {1, 2, . . . , 𝑛} and
𝑡

1
> 𝑡

0
such that









𝑢

𝑖
(𝑡

1
)









= 𝑥

𝑖
, [𝑢 (𝑡)]

+
≤ 𝑥, for 𝑡 ≤ 𝑡

1
, (17)

𝑑

+

𝑑𝑡









𝑢

𝑖
(𝑡

1
)









≥ 0.
(18)

It follows from (11) and (17) that
𝑑

+

𝑑𝑡

[𝑢 (𝑡

1
)]

+
≤ 𝑃[𝑢 (𝑡

1
)]

+
+ 𝑄[𝑢 (𝑡

1
)]

+

𝜏
+ 𝐼 ≤ (𝑃 + 𝑄) 𝑥 + 𝐼

= − [𝑑𝐼 + col {1} 𝜖 − 𝐼] ≤ −col {1} 𝜖 < 0,

(19)

which contradicts the inequality (18). So (16) holds for all 𝑡 ≥
𝑡

0
. Letting 𝜖 → 0 in (16), we have

[𝑢 (𝑡)]

+
≤ 𝑑𝐿, 𝑡 ≥ 𝑡

0
. (20)

The proof of part (i) is complete.
Since 𝐿 = 𝐷

−1
𝐼, we have (𝑃 + 𝑄)𝐿 + 𝐼 = 0. Then

𝑛

∑

𝑗=1

[𝑝

𝑖𝑗
+ 𝑞

𝑖𝑗
] 𝐿

𝑗
+ 𝐼

𝑖
= 0, 𝑖 = 1, 2, . . . , 𝑛. (21)

From (15), we can get
𝑛

∑

𝑗=1

[𝑝

𝑖𝑗
+ 𝑞

𝑖𝑗
𝑒

𝜅𝜏
] 𝑧

𝑗
< −𝜅𝑧

𝑖
, 𝑖 = 1, 2, . . . , 𝑛. (22)

In the following, we at first will prove that for any positive
constant 𝜖,









𝑢

𝑖 (
𝑡)









≤ (1 + 𝜖) [𝑧𝑖
𝑒

−𝜅(𝑡−𝑡0)
+ 𝐿

𝑖
] = 𝑤

𝑖 (
𝑡) ,

𝑡 ≥ 𝑡

0
, 𝑖 = 1, 2, . . . , 𝑛.

(23)

We let
℘ = {𝑖 ∈ {1, 2, . . . , 𝑛} :









𝑢

𝑖 (
𝑡)









> 𝑤

𝑖 (
𝑡)

for some 𝑡 ∈ [𝑡
0
, +∞)} ,

𝜗

𝑖
= inf {𝑡 ∈ [𝑡

0
, +∞) :









𝑢

𝑖 (
𝑡)









> 𝑤

𝑖 (
𝑡) , 𝑖 ∈ ℘} .

(24)

If inequality (23) is not true, then ℘ is nonempty set and there
must exist some integer 𝑚 ∈ ℘ such that 𝜗

𝑚
= min

𝑖∈℘
𝜗

𝑖
∈

[𝑡

0
, +∞).
By 𝑢
𝑚
(𝑡) ∈ ([𝑡 − 0, +∞),R) and the inequality (23), we

can get

𝜗

𝑚
> 𝑡

0
,









𝑢

𝑚
(𝜗

𝑚
)









= 𝑤

𝑚
(𝜗

𝑚
) ,

𝑑

+

𝑑𝑡









𝑢

𝑚
(𝜗

𝑚
)









≥ �̇�

𝑚
(𝜗

𝑚
) ,

(25)









𝑢

𝑖 (
𝑡)









≤ 𝑤

𝑖 (
𝑡) , 𝑡 ∈ [𝑡

0
− 𝜏, 𝜗

𝑚
] , 𝑖 = 1, 2, . . . , 𝑛. (26)

By applying (11) and (21)–(26), we obtain

𝑑

+

𝑑𝑡









𝑢

𝑚
(𝜗

𝑚
)









≤

𝑛

∑

𝑗=1

(1 + 𝜖) 𝑧𝑗
𝑒

−𝜅(𝜗𝑚−𝑡0)
[𝑝

𝑚𝑚𝑗
+ 𝑞

𝑚𝑗
𝑒

𝜅𝜏
] − 𝜖𝐼

𝑚

≤

𝑛

∑

𝑗=1

[𝑝

𝑚𝑗
+ 𝑞

𝑚𝑗
𝑒

𝜅𝜏
] (1 + 𝜖) 𝑧𝑗

𝑒

−𝜅(𝜗𝑚−𝑡0)

< −𝜅𝑧

𝑚 (
1 + 𝜖) 𝑒

−𝜅(𝜗𝑚−𝑡0)
= �̇�

𝑚
(𝜗

𝑚
) ,

(27)
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which contradicts the inequality in (25). Thus the inequality
(23) holds. Therefore, letting 𝜖 → 0, we have (13). The proof
is complete.

By the process of proof of Lemma 4, we easily derive the
following theorem

Theorem 5. Under the conditions of Lemma 4, then

lim
𝑡→+∞

[𝑢 (𝑡)]

+
≤ 𝐿. (28)

4. Main Results

In this section, we will state and prove our main results. The
following lemma is very useful to proveTheorem 7.

Lemma 6. Assume that 0 < |𝑎

𝑘
| < 1, (𝑘 = 1, 2, . . .)

and the series of number ∑

∞

𝑘=1
𝑎

𝑘
is absolute convergence,

then the infinite products∏∞
𝑘=1

(1 − |𝑎

𝑘
|)

−1,∏∞
𝑘=1

(1 + 𝑎

𝑘
) and

∏

∞

𝑘=1
(1+|𝑎

𝑘
|) are convergent and∏∞

𝑘=1
(1−|𝑎

𝑘
|)

−1
≥ ∏

∞

𝑘=1
(1+

𝑎

𝑘
)

−1
, ∏

∞

𝑘=1
(1 + |𝑎

𝑘
|) ≥ ∏

∞

𝑘=1
(1 + 𝑎

𝑘
).

Proof. In fact, by the assumption 0 < |𝑎

𝑘
| < 1, (𝑘 = 1, 2, . . .),

we have
1

1 −









𝑎

𝑘









> 1,

1

1 −









𝑎

𝑘









≥

1

1 + 𝑎

𝑘

> 0,

1 +









𝑎

𝑘









> 1, 1 +









𝑎

𝑘









≥ 1 + 𝑎

𝑘
≥ 1 −









𝑎

𝑘









> 0

(29)

which imply that

ln (1 − 


𝑎

𝑘









) ≤ ln (1 + 𝑎
𝑘
) ≤ ln (1 + 



𝑎

𝑘









) ,

ln (1 − 


𝑎

𝑘









) < 0, ln (1 + 


𝑎

𝑘









) > 0.

(30)

On the other hand, since∑∞
𝑘=1

𝑎

𝑘
is absolute convergence, we

derive that

lim
𝑘→∞

𝑎

𝑘
= lim
𝑘→∞









𝑎

𝑘









= 0. (31)

Equations (30) and (31) give that

lim
𝑘→∞

− ln (1 − 


𝑎

𝑘









)









𝑎

𝑘









= 1,

lim
𝑘→∞

ln (1 + 𝑎
𝑘
)









𝑎

𝑘









= 1,

lim
𝑘→∞

ln (1 + 


𝑎

𝑘









)









𝑎

𝑘









= 1.

(32)

According to (32) and considering that ∑∞
𝑘=1

𝑎

𝑘
is absolute

convergence, we get that the series of positive number
−∑

∞

𝑘=1
ln(1 − |𝑎

𝑘
|) = ∑

∞

𝑘=1
ln(1 − |𝑎

𝑘
|)

−1, ∑∞
𝑘=1

ln(1 +

𝑎

𝑘
), and ∑

∞

𝑘=1
ln(1 + |𝑎

𝑘
|) is convergent. Thus the infinite

products∏∞
𝑘=1

(1 − |𝑎

𝑘
|)

−1,∏∞
𝑘=1

(1 + 𝑎

𝑘
), and∏∞

𝑘=1
(1 + |𝑎

𝑘
|)

are convergent. At the same time, combined with (29), we
conclude that ∏∞

𝑘=1
(1 − |𝑎

𝑘
|)

−1
≥ ∏

∞

𝑘=1
(1 + 𝑎

𝑘
)

−1, ∏∞
𝑘=1

(1 +

|𝑎

𝑘
|) ≥ ∏

∞

𝑘=1
(1 + 𝑎

𝑘
). The proof of Lemma 6 is complete.

Theorem 7. Assume that (𝐴
1
)–(𝐴
5
) hold, then

𝑆 = {𝜙 ∈ 𝐶 : [𝜙]

+

𝜏(𝜆)
≤ Π

̂

𝐷

−1
̂

𝐼} (33)

is a robust positive invariant and global robust attracting set of
FNNs (2),where

Π = diag(
∞

∏

𝑘=1

(1+









𝜇

1𝑘









) ,

∞

∏

𝑘=1

(1+









𝜇

2𝑘









) , . . . ,

∞

∏

𝑘=1

(1+









𝜇

𝑛𝑘









)) .

(34)

Proof. Calculating the upper right derivative (𝑑+/𝑑𝑡)[𝑥(𝑡)]+
along system (4) and by using Lemma 6, we have

𝑑

+

𝑑𝑡









𝑥

𝑖 (
𝑡)









= sgn (𝑥
𝑖 (
𝑡)) �̇�𝑖 (

𝑡)

≤ (−𝑐

𝑖
+ 𝐿

𝑖









𝑎

𝑖𝑖









+ 𝐿

𝑖











𝑏

𝑖𝑖











)









𝑥

𝑖 (
𝑡)









+ 𝐿

𝑖
∏

𝑡𝑘<𝑡

(1 + 𝜇

𝑖𝑘
)

−1
𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

∏

𝑡𝑘<𝑡

(1 + 𝜇

𝑗𝑘
)

× (











𝑎

𝑖𝑗











+











𝑏

𝑖𝑗











)











𝑥

𝑗 (
𝑡)











+ 𝐿

𝑖
∏

𝑡𝑘<𝑡

(1 + 𝜇

𝑖𝑘
)

−1
𝑛

∑

𝑗=1

∏

𝑡𝑘<𝑡

(1 + 𝜇

𝑗𝑘
)

× (











𝜔

𝑖𝑗











+











𝑎

𝑖𝑗











+











𝑏

𝑖𝑗











)

×











𝑥

𝑗
(𝑡 − 𝜏

𝑖𝑗 (
𝑡))











+









𝐼

𝑖









+

𝑛

∑

𝑗=1

(











𝛾

𝑖𝑗











+











𝑐

𝑖𝑗











+











𝛿

𝑖𝑗











)











]
𝑗











≤ (−𝑐

𝑖
+ 𝐿

𝑖









𝑎

𝑖𝑖









+ 𝐿

𝑖











𝑏

𝑖𝑖











)









𝑥

𝑖 (
𝑡)









+ 𝐿

𝑖
∏

𝑡𝑘<𝑡

(1 −









𝜇

𝑖𝑘









)

−1
𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

∏

𝑡𝑘<𝑡

(1 +











𝜇

𝑗𝑘











)

× (











𝑎

𝑖𝑗











+











𝑏

𝑖𝑗











)











𝑥

𝑗 (
𝑡)











+ 𝐿

𝑖
∏

𝑡𝑘<𝑡

(1 −









𝜇

𝑖𝑘









)

−1
𝑛

∑

𝑗=1

∏

𝑡𝑘<𝑡

(1 +











𝜇

𝑗𝑘











)

× (











𝜔

𝑖𝑗











+











𝑎

𝑖𝑗











+











𝑏

𝑖𝑗











)

×











𝑥

𝑗
(𝑡 − 𝜏

𝑖𝑗 (
𝑡))











+









𝐼

𝑖









+

𝑛

∑

𝑗=1

(











𝛾

𝑖𝑗











+











𝑐

𝑖𝑗











+











𝛿

𝑖𝑗











)











]
𝑗
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≤ (−𝑐

𝑖
+ 𝐿

𝑖









𝑎

𝑖𝑖









+ 𝐿

𝑖











𝑏

𝑖𝑖











)









𝑥

𝑖 (
𝑡)









+ 𝐿

𝑖

∞

∏

𝑘=1

(1 −









𝜇

𝑖𝑘









)

−1
𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

∞

∏

𝑘=1

(1 +











𝜇

𝑗𝑘











)

× (











𝑎

𝑖𝑗











+











𝑏

𝑖𝑗











)











𝑥

𝑗 (
𝑡)











+ 𝐿

𝑖

∞

∏

𝑘=1

(1 −









𝜇

𝑖𝑘









)

−1
𝑛

∑

𝑗=1

∞

∏

𝑘=1

(1 +











𝜇

𝑗𝑘











)

× (











𝜔

𝑖𝑗











+











𝑎

𝑖𝑗











+











𝑏

𝑖𝑗











)

×











𝑥

𝑗
(𝑡 − 𝜏

𝑖𝑗 (
𝑡))











+









𝐼

𝑖









+

𝑛

∑

𝑗=1

(











𝛾

𝑖𝑗











+











𝑐

𝑖𝑗











+











𝛿

𝑖𝑗











)











]
𝑗











.

(35)

From (𝐴

5
), (35) can be rewritten as follows:

𝑑

+

𝑑𝑡

[𝑥 (𝑡)]

+
≤

̂

𝑃[𝑥 (𝑡)]

+
+

̂

𝑄[𝑥 (𝑡)]

+

𝜏(𝜆)
+

̂

𝐼, 𝑡 ≥ 0.
(36)

Then from the conclusion (i) of Lemma 4, we can obtain

[𝑥 (𝑡)]

+
≤

̂

𝐿

1
, 𝑡 ≥ 0, (37)

provided that [𝜙]+
𝜏(𝜆)

≤

̂

𝐿

1
, where ̂𝐿

1
=

̂

𝐷

−1
̂

𝐼.
According to Lemma 1 and (37), one has

[𝑢 (𝑡)]

+

= diag( ∏

0≤𝑡𝑘<𝑡

(1 + 𝜇

1𝑘
) , . . . , ∏

0≤𝑡𝑘<𝑡

(1 + 𝜇

𝑛𝑘
)) [𝑥 (𝑡)]

+

≤ diag(
∞

∏

𝑘=1

(1 +









𝜇

1𝑘









) , . . . ,

∞

∏

𝑘=1

(1 +









𝜇

𝑛𝑘









)) [𝑥 (𝑡)]

+

= Π[𝑥 (𝑡)]

+
≤ Π

̂

𝐿

1
=

̂

𝐿,

(38)

provided that [𝜙]+
𝜏(𝜆)

≤

̂

𝐿, where ̂𝐿 = Π

̂

𝐷

−1
̂

𝐼. In view of
Definition 2, we get that 𝑆 denoted by (33) is a robust positive
invariant set of FNNs (2).

On the other hand, since ̂𝐷 ∈ M, there exists a positive
vector 𝑧 = (𝑧

1
, 𝑧

2
, . . . , 𝑧

𝑛
)

𝑇 such that

̂

𝐷𝑧 > 0, that is, (̂𝑃 + ̂𝑄) 𝑧 < 0. (39)

By using continuity, we know that there must exist a positive
scalar 𝜅(𝜆) such that

[𝜅 (𝜆) 𝐸 +

̂

𝑃 +

̂

𝑄𝑒

𝜅(𝜆)𝜏(𝜆)
] 𝑧 < 0, (40)

where ̂𝑑 ≥ 1 is a constant such that [𝜙]+
𝜏(𝜆)

≤

̂

𝑑

̂

𝐿.
Then by (36), (40), and (𝐴

4
), all the conditions of

Theorem 5 are satisfied, and we have

lim
𝑡→+∞

[𝑥 (𝑡)]

+
≤

̂

𝐿. (41)

According to Lemma 1 and Definition 2, we yield that 𝑆
denoted by (33) is also a global robust attracting set of FNNs
(2). The proof is complete.

Theorem 8. In addition to (𝐴
1
)–(𝐴
5
), further assume ̂𝐼 =

0. Then FNNs (2) has a zero solution and the zero solution
is global robust exponential stability and the exponential
convergent rate equals 𝜅 which is determined by (40).

5. Illustrative Example

The following illustrative example will demonstrate the effec-
tiveness of our results. Consider the following FNNs with
time-varying delays and impulses:

�̇�

𝑖 (
𝑡) = − 𝑐

𝑖 (
𝜆) 𝑢𝑖 (

𝑡) +

2

∑

𝑗=1

𝜔

𝑖𝑗 (
𝜆) 𝑓𝑗

(𝑢

𝑗
(𝑡 − 𝜏

𝑖𝑗 (
𝑡)))

+

𝑛

∑

𝑗=1

𝛾

𝑖𝑗 (
𝜆) ]𝑗 + 𝐼𝑖+

2

⋀

𝑗=1

𝑎

𝑖𝑗 (
𝜆) 𝑓𝑗

(𝑢

𝑗 (
𝑡))

+

2

⋀

𝑗=1

𝛼

𝑖𝑗 (
𝜆) 𝑓𝑗

(𝑢

𝑗
(𝑡 − 𝜏

𝑖𝑗 (
𝑡))) +

𝑛

⋀

𝑗=1

𝑐

𝑖𝑗 (
𝜆) ]𝑗

+

2

⋁

𝑗=1

𝑏

𝑖𝑗 (
𝜆) 𝑓𝑗

(𝑢

𝑗 (
𝑡))+

2

⋁

𝑗=1

𝛽

𝑖𝑗
(𝜆) 𝑓𝑗

(𝑢

𝑗
(𝑡 − 𝜏

𝑖𝑗 (
𝑡)))

+

𝑛

⋁

𝑗=1

𝛿

𝑖𝑗 (
𝜆) ]𝑗, 𝑡 ̸= 𝑡

𝑘
, 𝑡 ≥ 0,

Δ𝑢

𝑖 (
𝑡) = 𝑢

𝑖
(𝑡

+
) − 𝑢

𝑖
(𝑡

−
) = 𝜇

𝑖𝑘 (
𝜆) 𝑢𝑖 (

𝑡) , 𝑡 = 𝑡

𝑘
, 𝑡 ≥ 0,

𝑢

𝑖 (
𝑡) = 𝜙

𝑖 (
𝑡) , 𝑡 ∈ [−𝜏 (𝜆) , 0] ,

(42)

where 𝑖 = 1, 2, 𝑡

𝑘
∈ {1, 2, 3, . . .}, Ξ = [𝜋/4, 𝜋/2], 𝜏(𝜆) = 1,

𝑐

1
(𝜆) = ℎ(8+sin(2𝜆)), 𝑐

2
(𝜆) = ℎ(9+cos(2𝜆)),𝑓

1
(𝑥) = 𝑓

2
(𝑥) =

(1/2)(|𝑥 + 1| − |𝑥− 1|), 𝜏
𝑖𝑗
(𝑡) = | sin(𝑖 − 𝑗)𝑡|, 𝜇

1𝑘
(𝜆) = 𝜇

2𝑘
(𝜆) =

(−1)

𝑘 sin 𝜆/2𝑘, 𝑎
𝑖𝑖
(𝜆) = ℎ(1 + sin 2𝑖𝜆)/4, 𝑎

𝑖𝑗
(𝜆) = ((1 + sin(𝑖 +

𝑗)𝜆)/4) (𝑖 ̸= 𝑗), 𝑏
𝑖𝑖
(𝜆) = ℎ(1 + 2 sin(𝑖 + 𝑗)𝜆)/6, 𝑏

𝑖𝑗
(𝜆) = ((1 +

2 sin(𝑖 + 𝑗)𝜆)/6) (𝑖 ̸= 𝑗), 𝛼
𝑖𝑗
(𝜆) = (2 + sin(𝑖 + 𝑗)𝜆)/9, 𝛽

𝑖𝑗
(𝜆) =

(1+2 sin(𝑖+𝑗)𝜆)/9,𝜔
𝑖𝑗
(𝜆) = (1+sin(𝑖+𝑗)𝜆)/6, 𝑐

𝑖𝑗
(𝜆) = sin(𝑖+

𝑗)𝜆/4, 𝛾

𝑖𝑗
(𝜆) = − sin(𝑖+𝑗)𝜆/4, and 𝛿

𝑖𝑗
(𝜆) = cos(𝑖+𝑗)𝜆/4, 𝐼

𝑖
=

−((−1)

𝑖
/4), ]
𝑖
= (−1)

𝑖. By the simple calculation, we obtain

̂

𝑃 = ℎ(

−7 1

1 −7

) ,

̂

𝑄 = ℎ(

1 1

1 1

) ,

̂

𝐼 = (

1

1

) , (43)

where ℎ = ∏

∞

𝑘=1
(2

𝑘
+ 1)/(2

𝑘
− 1). Then ̂

𝐷 = −(

̂

𝑃 +

̂

𝑄) is a
nonsingular 𝑀-matrix, and taking 𝜅 = 0.1, 𝑧 = (1, 1)

𝑇, we
get

[𝜅𝐸 +

̂

𝑃 +

̂

𝑄𝑒

𝜅𝜏
] 𝑧 < 0. (44)

Therefore, by Theorem 7, we obtain that

𝑆 = {𝜙 ∈ 𝐶 : [𝜙]

+

𝜏(𝜆)
≤ Π

̂

𝐷

−1
̂

𝐼 = (

1

4

,

1

4

)

𝑇

}
(45)



Journal of Applied Mathematics 7

is a robust positive invariant and global robust attracting set
of FNNs (42).
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