
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2013, Article ID 930316, 10 pages
http://dx.doi.org/10.1155/2013/930316

Research Article
Efficient Periodic Broadcasting for Mobile Networks at Small
Client Receiving Bandwidth and Buffering Space

Hsiang-Fu Yu,1 Yao-Tien Wang,2 Jong-Yih Kuo,3 and Chu-Yi Chien1

1 Department of Computer Science, National Taipei University of Education, Taipei 10671, Taiwan
2Department of Computer Science and Information Engineering, Hungkuang University, Taichung 43302, Taiwan
3Department of Computer Science and Information Engineering, National Taipei University of Technology, Taipei 10608, Taiwan

Correspondence should be addressed to Hsiang-Fu Yu; yu@tea.ntue.edu.tw

Received 7 January 2013; Accepted 18 March 2013

Academic Editor: Chih-Hao Lin

Copyright © 2013 Hsiang-Fu Yu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Periodic broadcasting is an effective approach for delivering popular videos. In general, this approach does not provide interactive
(i.e., VCR) functions, and thus a client can tolerate playback latency from a video server. The concept behind the approach is
partitioning a video into multiple segments, which are then broadcast across individual communication channels in terms of IP
multicast. The method improves system throughput by allowing numerous clients to share the channels. For many broadcasting
schemes, client receiving bandwidth must equal server broadcasting bandwidth. This limitation causes these schemes to be
infeasible in mobile networks because increasing receiving bandwidth at all client sites is expensive, as well as difficult. To alleviate
this problem, the fibonacci broadcasting (FiB) scheme allows a client with only two-channel bandwidth to receive video segments.
In comparison with other similar schemes, FiB yields smallest waiting time. Extending FiB, this work proposes a new scheme
(called FiB+) to achieve smaller client buffering space and the samewaiting time under two-channel receiving bandwidth. Extensive
analysis shows that FiB+ can yield 34.5% smaller client buffer size than that of FiB. Further simulation results also indicate that FiB+
requires lower client buffering space than several previous schemes.

1. Introduction

Video-on-demand (VOD) services have become popular due
to advances in network and computer technology [1, 2]. A
VOD system may easily run out of bandwidth since the
growth in bandwidth can never keep up with the growth in
the number of clients. To alleviate the problem, one way is to
simply broadcast popular videos. According to the study in [3,
4], a few very popular videos constitute most client requests.
Data broadcasting is thus suitable to transfer popular videos
that may be interesting to many clients in a particular period
of time. An efficient method for broadcasting a popular video
is to divide it into segments, which are simultaneously and
periodically transmitted across individual communication
channels in terms of IP multicast [5]. Because video broad-
casting does not provide VCR functions, a client is able to
tolerate playback latency. To ensure continuous playback,
clients must simultaneously download and save the video

segments from these channels.The clients usually have towait
for the occurrence of the first segment before they can start
playing the video. Since the clients cannot watch the video
immediately, the broadcasting schemes provide near VOD
services.

The fast broadcasting (FB) scheme [6] improves seg-
ment partition and arrangement to yield shorter waiting
time. To achieve near-minimum waiting time, the recur-
sive frequency-splitting (RFS) scheme [7] broadcasts each
segment at the frequency that can keep continuous video
playback. A scalable binomial broadcasting scheme [8] trans-
fers a variable-length video using constant bandwidth. To
simplify the implementation of multiple channels, the PAS
scheme [9] broadcasts video segments over a single channel.
The reverse-order scheduling (ROS) scheme [10] transmits
segments of the same group in reverse order over a single
channel to save buffering space.

2 Journal of Applied Mathematics

With the fast growth of wireless networks, mobile video
services become more and more popular. Broadcasting
videos under rather restricted client resources is increasingly
important. The following schemes address the savings on
client buffer size and bandwidth. Modifying the FB scheme
[6], the reverse fast broadcasting (RFB) scheme [11] buffers
25% of video size, just half of what is required by FB. By
combining RFS and RFB, the hybrid broadcasting scheme
(HyB) [12] achieves small client buffering space and waiting
time. Different RFB-based hybrid schemes were proposed
in [13, 14]. The skyscraper broadcasting (SkB) scheme [15]
allows a client to download video data using only a bandwidth
of two channels. The client-centric approach (CCA) [16]
also permits a client downloading video data via a small
number of channels, and CCA+ [17] further yields smaller
waiting time than SkB. Like SkB and CCA+, the fibonacci
broadcasting (FiB) scheme [18] supports a client with two-
channel bandwidth but achieves the minimum waiting time.
The authors in [19] proposed an FB-based scheme for hetero-
geneous clients.The studies in [20, 21] deploy a proxy in VoD
systems to serve heterogeneous clients.

The contributions of this study are summarized as fol-
lows.

(1) Extending FiB, this work proposes a promising
scheme, called FiB+, to deliver near VOD services to
clients with small receiving bandwidth and buffering
space. In comparison with FiB, FiB+ still yields the
minimum waiting time under two-channel receiving
bandwidth; moreover, FiB+ can save about 34.5% of
buffer size.

(2) The paper investigates the total client buffer require-
ments for FiB+ and explains why this scheme requires
smaller buffering space than FiB. We further derive
the maximum number of segments buffered by an
FiB+ client mathematically. Extensive performance
analysis has been conducted on FiB+ by comparing
a number of past reported counterparts. The results
indicate that FiB+ yields relatively lower client buffer
requirements than most schemes.

The remainder of this study is organized as follows. The
FiB scheme is introduced in Section 2. Section 3 presents
FiB+. This section also verifies the on-time video delivery
under two-channel client bandwidth. Section 4 evaluates
the performance of FiB+. Brief conclusions are drawn in
Section 5.

2. Review of FiB

Let 𝑘 be the number of server channels throughout the paper.
The FiB scheme [18] unequally divides a video of length 𝐿 into
𝑘 segments, denoted by 𝑆

1
, 𝑆
2
, . . . , 𝑆

𝑘
in sequence. The length

of a segment 𝑆
𝑖
is based on the following equation and equals

𝐿𝑛
𝑖
/∑
𝑘

𝑝=1
𝑛
𝑝
as follows:

𝑛
𝑖
=

{{

{{

{

1, 𝑖 = 1

2, 𝑖 = 2

𝑛
𝑖−1

+ 𝑛
𝑖−2
, 3 ≤ 𝑖 ≤ 𝑘.

(1)

Table 1: List of terms used in the proposed scheme and their
respective definitions.

Term Definition
𝐿 Video length

𝑘
Number of broadcasting channels for each video
on the server side

𝐶
𝑖

𝑖th broadcasting channel, 𝑖 = 1, . . . , 𝑘

𝑁 Number of segments of a video
𝑆
𝑖

𝑖th video segment, 𝑖 = 1, . . . , 𝑁

𝑛
𝑖

Number of segments transferred on channel 𝐶
𝑖

𝑚
𝑖

Total segments transferred on channels 𝐶
1

through 𝐶
𝑖
,𝑚
𝑖
= ∑
𝑖

𝑝=1
𝑛
𝑝

𝑏
Video playback rate assumed to equal the data
transmission rate of each channel

𝑇
0

Starting time to watch the first segment

Time unit Basic unit on time axis, whose length equals the
length of a segment (i.e., 𝐿/𝑁)

Assume that the data transmission rate of each channel
equals the playback rate 𝑏. The server then periodically
broadcasts segment 𝑆

𝑖
on channel𝐶

𝑖
, as illustrated in Figure 1.

In the figure, segments downloaded and played by a client
are gray. When a client wants to watch a video, the client
first downloads segments 𝑆

1
and 𝑆
2
on the first two channels

𝐶
1
and 𝐶

2
. Once finishing receiving the segment 𝑆

1
, the

client continuously accepts segment 𝑆
2
and newly downloads

segment 𝑆
3
on channel 𝐶

3
. The client repeats the process,

which starts downloading segment 𝑆
𝑖
on channel 𝐶

𝑖
once

finishing receiving segment 𝑆
𝑖−2

from channel 𝐶
𝑖−2

, until
all the segments are loaded. An FiB client thus requires a
bandwidth of only two channels to download video segments.

3. FiB+

Some of the frequently used terms and their definitions are
listed in Table 1. On the server side, the FiB+ scheme includes
the following steps.

(1) The server equally divides a video into 𝑁 segments,
denoted by 𝑆

1
, 𝑆
2
, . . . , 𝑆

𝑁
in sequence, where 𝑁 =

∑
𝑘

𝑝=1
𝑛
𝑝
, where 𝑛

𝑝
is based on (1). The length of each

segment thus equals 𝐿/𝑁. From (1), we further yields

𝑚
𝑖
=

𝑖

∑

𝑝=1

𝑛
𝑝
= 𝑛
𝑖+2

− 2. (2)

See Appendix A for details. Thus, 𝑁 = 𝑛
𝑘+2

− 2.
The FiB+ scheme then assembles segments 𝑆

𝑛𝑖+1−1
to

𝑆
𝑛𝑖+2−2

(i.e., 𝑆
𝑚𝑖−1+1

to 𝑆
𝑚𝑖
) into group 𝐺

𝑖
sequentially,

as illustrated in Figure 2(a). The number of segments
of group 𝐺

𝑖
thus equals 𝑛

𝑖
. For instance, group 𝐺

4

includes segments 𝑆
7
to 𝑆
11
, and 𝑛

4
= 5.

(2) Channel 𝐶
𝑖
, where 1 ≤ 𝑖 ≤ 𝑘 − 2, periodically

broadcasts the segments of group 𝐺
𝑖
in sequence,

as shown in Figure 2(b). That is, segments 𝑆
𝑛𝑖+1−1

to
𝑆
𝑛𝑖+2−2

are transferred one by one on channel 𝐶
𝑖
.

Journal of Applied Mathematics 3

Hot video

Client
playback

Video length 𝐿
𝑆1

𝑆2
𝑆3
𝑆4

𝑆5
𝑆6

· · ·𝐶1
𝐶2
𝐶3
𝐶4
𝐶5
𝐶6

𝑆1 𝑆1𝑆1𝑆1𝑆1𝑆1𝑆1𝑆1𝑆1𝑆1𝑆1𝑆1𝑆1𝑆1
𝑆2𝑆2𝑆2𝑆2𝑆2𝑆2
𝑆3𝑆3𝑆3𝑆3
𝑆4𝑆4
𝑆5

𝑆6

𝑆6𝑆5𝑆4𝑆3𝑆2

𝑆1 𝑆6𝑆5𝑆4𝑆3𝑆2

· · ·
· · ·
· · ·

· · ·
· · ·

Figure 1: Illustration of segment downloading for the FiB scheme, where 𝑘 = 6.

𝑆1 𝑆2 𝑆3 𝑆4 𝑆5 𝑆6 𝑆7 𝑆8 𝑆9 𝑆10 𝑆11 𝑆𝑛𝑖+1−1 𝑆𝑛𝑖+1 𝑆𝑛𝑖+2−2𝑆𝑛𝑖+2−3 𝑆𝑛𝑘+1−1 𝑆𝑛𝑘+1 𝑆𝑛𝑘+2−3 𝑆𝑛𝑘+2−2· · ·

𝐺1 𝐺2 𝐺3 𝐺4 𝐺𝑖 𝐺𝑘

· · · · · ·

Hot video

Video length 𝐿

𝑏

𝑏

· · ·

(a)

𝐶1

𝐶2

𝐶3

𝐶4

𝑆1𝑆1 𝑆1𝑆1𝑆1𝑆1𝑆1𝑆1𝑆1𝑆1𝑆1𝑆1𝑆1 𝑆1

𝑆2 𝑆2𝑆2𝑆2𝑆2𝑆2𝑆2𝑆3 𝑆3𝑆3𝑆3𝑆3𝑆3𝑆3

𝑆4 𝑆4𝑆4𝑆4𝑆4𝑆5 𝑆5𝑆5𝑆5𝑆5 𝑆6𝑆6 𝑆6𝑆6

𝑆7 𝑆7𝑆7𝑆8 𝑆8𝑆8 𝑆9𝑆9𝑆9 𝑆10 𝑆10𝑆10𝑆11 𝑆11 𝑆11

𝑆𝑛𝑖+1−1 𝑆𝑛𝑖+1 𝑆𝑛𝑖+2−2𝑆𝑛𝑖+2−3 𝑆𝑛𝑖+1−1 𝑆𝑛𝑖+1 𝑆𝑛𝑖+2−2𝑆𝑛𝑖+2−3

𝑆𝑛𝑘+1−3𝑆𝑛𝑘+1−2

𝑆𝑛𝑘+2−3𝑆𝑛𝑘+2−2

𝑆𝑛𝑘 𝑆𝑛𝑘

𝑆𝑛𝑘+1−1 𝑆𝑛𝑘+2−3𝑆𝑛𝑘+2−2𝑆𝑛𝑘+1 𝑆𝑛𝑘+1−1

𝑆𝑛𝑘−1𝑆𝑛𝑘+1−2 𝑆𝑛𝑘+1−3𝑆𝑛𝑘−1

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·· · ·

· · ·

· · ·· · ·

· · ·

· · ·𝐶𝑖

𝐶𝑘−1

𝐶𝑘

...

...

𝑏

𝑏

𝑏

𝑏

𝑏

𝑏

𝑆𝑛𝑘+1 𝑏
(Not to scale)

(b)

Figure 2: Channel allocation for the FiB+ scheme.

(3) The segments of groups 𝐺
𝑘−1

and 𝐺
𝑘
are cyclically

transmitted on channels 𝐶
𝑘−1

and 𝐶
𝑘
in reverse

order, respectively. Figure 2(b) shows that the scheme
repeatedly broadcasts the segments of group 𝐺

𝑘−1
in

the order of 𝑆
𝑛𝑘+1−2

to 𝑆
𝑛𝑘−1

and the segments of group
𝐺
𝑘
in the order of 𝑆

𝑛𝑘+2−2
to 𝑆
𝑛𝑘+1−1

.
Figure 3 demonstrates the segment broadcasting and down-
loading for FiB+,where the segments downloaded and played
by a client are gray. Let 𝑇

0
be the time that the client starts

receiving video segments and be the origin (i.e., the first time
unit) of the time axis. Due to 𝑘 = 6, FiB+ equally divides

a video into 32 segments, which are then classified into
six groups. The segments of groups 𝐺

1
to 𝐺
4
are broadcast

sequentially on channels 𝐶
1
to 𝐶
4
, respectively. In addition,

FiB+ transmits segments of groups 𝐺
5
and 𝐺

6
on channels

𝐶
5
and 𝐶

6
in reverse order.

A client is assumed to have enough buffers to store video
segments downloaded.We further suppose that one time unit
equals the length of a segment throughout this study. Playing
a video on the client side includes the following steps.

(1) Download segments of group𝐺
𝑖
on channel𝐶

𝑖
during

time units 𝑛
𝑖−1

to 𝑛
𝑖−1

+ 𝑛
𝑖
− 1 = 𝑛

𝑖+1
− 1, where

4 Journal of Applied Mathematics

𝑆1 𝑆2 𝑆3 𝑆4 𝑆5 𝑆6 𝑆7 𝑆8 𝑆9 𝑆10 𝑆11 𝑆12 𝑆13 𝑆14 𝑆15 𝑆16 𝑆17 𝑆18 𝑆19 𝑆20 𝑆21 𝑆22 𝑆23 𝑆24 𝑆25 𝑆26 𝑆27 𝑆28 𝑆29 𝑆30 𝑆31 𝑆32
𝐺1 𝐺2 𝐺3 𝐺4 𝐺5 𝐺6
𝑇0 = 1 𝑇now = 𝑥 = 7 𝑇next = 𝑥 + 𝑛6 = 20 𝑇use = 𝑦 = 25 𝑡

𝑆𝑥 𝑆𝑦

· · ·
· · ·
· · ·
· · ·

· · ·

Client
playback

𝑆1 𝑆1𝑆1𝑆1𝑆1𝑆1𝑆1𝑆1𝑆1𝑆1𝑆1 𝑆1 𝑆1𝑆1
𝑆2 𝑆2𝑆2𝑆2𝑆2𝑆2𝑆2

𝑆4𝑆4 𝑆4𝑆4𝑆4 𝑆5𝑆5 𝑆5𝑆5𝑆5 𝑆6𝑆6 𝑆6𝑆6
𝑆7 𝑆7𝑆7 𝑆8𝑆8 𝑆8 𝑆9𝑆9 𝑆9 𝑆10𝑆10 𝑆10 𝑆11𝑆11

𝑆12 𝑆12𝑆13𝑆13 𝑆14𝑆14𝑆15 𝑆15𝑆16𝑆16 𝑆17𝑆18𝑆19𝑆17𝑆18𝑆19 𝑆16𝑆17𝑆18𝑆19
𝑆32 𝑆31 𝑆30 𝑆29 𝑆28 𝑆27 𝑆26 𝑆25 𝑆24 𝑆23 𝑆22 𝑆21 𝑆20 𝑆32 𝑆31 𝑆30 𝑆29 𝑆28 𝑆27 𝑆26 𝑆25 𝑆24 𝑆23 𝑆22 𝑆21 𝑆20 𝑆32 𝑆31 𝑆30 𝑆29 𝑆28 𝑆27 𝑆26 𝑆25 · · ·
𝑆1 𝑆2 𝑆4 𝑆5 𝑆6 𝑆7 𝑆8 𝑆9 𝑆10 𝑆11 𝑆12 𝑆13 𝑆14 𝑆15 𝑆16 𝑆17 𝑆18 𝑆19 𝑆20 𝑆21 𝑆22 𝑆23 𝑆24 𝑆25 𝑆26 𝑆27 𝑆28 𝑆29 𝑆30 𝑆31 𝑆32

𝐶1
𝐶2
𝐶3
𝐶4
𝐶5
𝐶6

𝑆3𝑆3 𝑆3 𝑆3 𝑆3 𝑆3 𝑆3

𝑆3

Figure 3: Illustration of segment broadcasting and downloading for the FiB+ scheme, where 𝑘 = 6 and𝑁 = 32.

1 ≤ 𝑖 ≤ 𝑘 − 2 and 𝑛
0

= 1. For example, the client
accepts segments from channel 𝐶

4
during time units

𝑛
4−1

= 3 to 𝑛
4+1

− 1 = 7, as shown in Figure 3.
(2) The paper next presents how a client receives seg-

ments from channels 𝐶
𝑘−1

and 𝐶
𝑘
. (In Figure 3, refer

to channels𝐶
5
and𝐶

6
.) Suppose that a client first sees

a segment 𝑆
𝑦
on a channel 𝐶

𝑖
at time 𝑇now and sees

the next segment 𝑆
𝑦
at time 𝑇next, where 𝑖 = 𝑘 − 1 or

𝑖 = 𝑘. (In Figure 3, 𝑖 = 6 and 𝑦 = 25.)The client is also
assumed to play segments 𝑆

𝑥
and 𝑆
𝑦
at time 𝑇now and

𝑇use, respectively. Clearly, if𝑇next ≤ 𝑇use, the client can
delay downloading segment 𝑆

𝑦
at time 𝑇now, without

interrupting the playback. Substituting 𝑇use = 𝑦th
time unit, 𝑇now = 𝑥th time unit, and 𝑇next = 𝑇now +𝑛𝑖
into 𝑇next ≤ 𝑇use, we obtain

𝑥 + 𝑛
𝑖
≤ 𝑦. (3)

If the inequality is true, the client does not receive
segment 𝑆

𝑦
at time 𝑇now, otherwise, performs the

downloading immediately. For instance, when the
client first sees segment 𝑆

25
with only diagonal lines

on channel 𝐶
6
at the 7th time unit (i.e., 𝑇now) in

Figure 3, (3) is true, 7 + 13 ≤ 25, and the client does
not download the segment. Afterwards, the client sees
next segment 𝑆

25
with gray color and diagonal lines

at the 20th time unit. The client must receive the
segment because (3) does not hold, 20 + 13 > 25.

(3) The client plays the video in the order of 𝑆
1
, 𝑆
2
, . . . , 𝑆

𝑁

at time 𝑇
0
.

(4) The client stops loading data from networks when all
the segments have been received.

FiB+ and FiB differ in three areas.

(i) Equal-length segment partition versus variable-length
segment partition. FiB+ divides a video into multiple

equal-length segments, while FiB partitions a video
into variable-length segments. For example, given 𝑘 =

6, FiB divides a video into six segments, whose lengths
are 𝐿/32, 2𝐿/32, 3𝐿/32, 5𝐿/32, 8𝐿/32, and 13𝐿/32.
On the other hand, FiB+ partitions a video into 32
segments, whose lengths all equal 𝐿/32.

(ii) Multiple segments on each channel versus single seg-
ment. FiB+ cyclically broadcasts several segments
on each channel except the first channel, and FiB
transmits only one.

(iii) Segment transmission in reverse order. The FiB+
scheme broadcasts segments on the last two channels
in reverse order. For example, the scheme transmits
segments 𝑆

19
to 𝑆
12

on channel 𝐶
5
and segments 𝑆

32

to 𝑆
20
on channel 𝐶

6
, as illustrated in Figure 3.

3.1. Analysis of Segment Playing and Downloading on a Single
Channel. We next analyze the segment downloading on
channel 𝐶

𝑖
, where 1 ≤ 𝑖 ≤ 𝑘.

For 1 ≤ 𝑖 ≤ 𝑘−2, a client receives segments 𝑆
𝑛𝑖+1−1

to 𝑆
𝑛𝑖+2−2

from channel𝐶
𝑖
during time units 𝑛

𝑖−1
to 𝑛
𝑖+1

−1 and plays the
segments during time units 𝑛

𝑖+1
− 1 to 𝑛

𝑖+2
− 2, as mentioned

previously. Suppose that a client sees a segment 𝑆
𝑗
at the

(𝑛
𝑖+1

−1)th time unit, where 𝑛
𝑖+1

−1 ≤ 𝑗 ≤ 𝑛
𝑖+2

−2. Figure 4(a)
shows how a client downloads and plays segments, where the
segments downloaded and played by the client are gray.

For 𝑖 = 𝑘 − 1 or 𝑘, a client downloads segments according
to (3). We also assume that a client sees a segment 𝑆

𝑗
at the

(𝑛
𝑖+1

−1)th time unit, where 𝑛
𝑖+1

−1 ≤ 𝑗 ≤ 𝑛
𝑖+2

−2. A complete
segment-downloading diagram for channel𝐶

𝑖
is based on (3),

as indicated in Figure 4(b). The explanation is as follows.
The client always downloads segment 𝑆

𝑗
since the

inequality of (3) does not hold for 𝑥 = 𝑛
𝑖+1

− 1 and 𝑦 = 𝑗

(i.e., 𝑛
𝑖+1

− 1 + 𝑛
𝑖
= 𝑛
𝑖+2

− 1 > 𝑗). In addition, because
the segments of group 𝐺

𝑖
are transmitted once on channel 𝐶

𝑖

every 𝑛
𝑖
time units and are played during time units 𝑛

𝑖+1
− 1

Journal of Applied Mathematics 5

· · ·

· · ·

· · · · · · · · · · · · · · ·

· · ·

𝐶𝑖

𝑆1 𝑆2

𝑆𝑛𝑖+1−1 𝑆𝑛𝑖+1 𝑆𝑛𝑖+2−2𝑆𝑛𝑖+2−3 𝑆𝑛𝑖+1−1 𝑆𝑛𝑖+1

𝑆𝑛𝑖+1−2𝑆𝑛𝑖+1−3 𝑆𝑛𝑖+1−1 𝑆𝑛𝑖+1

𝑆𝑛𝑖+2−2𝑆𝑛𝑖+2−3 𝑆𝑛𝑖+1−1 𝑆𝑛𝑖+1

𝑆𝑛𝑖+2−2𝑆𝑛𝑖+2−3

𝑛𝑖+2 − 2 𝑛𝑖+2 − 1𝑛𝑖+1 − 1 𝑛𝑖+1𝑛𝑖−1𝑇0 = 1
𝑡

Client
playback (Not to scale)

𝑆𝑗−1 𝑆𝑗 𝑆𝑗+1 𝑆𝑗+2 𝑆𝑗−1 𝑆𝑗 𝑆𝑗+1 𝑆𝑗+2 𝑆𝑗−1 𝑆𝑗

· · ·

(a)

𝑆𝑛𝑖+2−2 𝑆𝑛𝑖+2−3

𝑆𝑛𝑖+2−2𝑆𝑛𝑖+2−3𝑆𝑛𝑖+1−2 𝑆𝑛𝑖+1−1 𝑆𝑛𝑖+1

𝑆𝑛𝑖+2−2𝑆𝑛𝑖+1−1𝑆𝑛𝑖+1 𝑆𝑛𝑖+2−2𝑆𝑛𝑖+1−1𝑆𝑛𝑖+1

𝑛𝑖+2 − 2𝑛𝑖+1𝑛𝑖+1 − 1𝑛𝑖+1 − 2𝑛𝑖−1 𝑗 − 𝑛𝑖 𝑗 𝑗 + 1𝑇0 = 1
⌊ 𝑗 + 𝑛𝑖+2 − 12 ⌋⌊ 𝑗 + 𝑛𝑖+1 − 12 ⌋⌊ 𝑗 + 𝑛𝑖+2 − 12 ⌋ − 𝑛𝑖⌊ 𝑗 + 𝑛𝑖+1 − 12 ⌋ − 𝑛𝑖

𝑆𝑗−1−𝑛𝑖 𝑆𝑗+1−𝑛𝑖

𝑆𝑗+1𝑆𝑗+2 𝑆𝑗𝑆𝑎𝑆𝑗+1 𝑆𝑗−1𝑆𝑗𝑆𝑗−1

𝑆𝑗+1𝑆𝑗𝑆𝑗−1

· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·

· ·

· · ·

Client

playback

(Not to scale)

𝑆2𝑆1

𝐶𝑖

𝑡

𝑆𝑏· · · · · ·
𝑆𝑗−𝑛𝑖𝑆⌊(𝑗+𝑛𝑖+1−1)/2⌋+1−𝑛𝑖𝑆⌊(𝑗+𝑛𝑖+1−1)/2⌋−𝑛𝑖 𝑆⌊(𝑗+𝑛𝑖+2−1)/2⌋−𝑛𝑖 𝑆⌊(𝑗+𝑛𝑖+2−1)/2⌋+1−𝑛𝑖 𝑆⌊(𝑗+𝑛𝑖+1−1)/2⌋+1𝑆⌊(𝑗+𝑛𝑖+1−1)/2⌋ 𝑆⌊(𝑗+𝑛𝑖+2−1)/2⌋ 𝑆⌊(𝑗+𝑛𝑖+2−1)/2⌋+1

𝑆⌈(𝑗+𝑛𝑖+2−1)/2⌉−1

𝑆⌈(𝑗+𝑛𝑖+2−1)/2⌉𝑆⌈(𝑗+𝑛𝑖+1−1)/2⌉

𝑆⌈(𝑗+𝑛𝑖+1−1)/2⌉−1𝑆⌈(𝑗+𝑛𝑖+2−1)/2⌉−1𝑆⌈(𝑗+𝑛𝑖+1−1)/2⌉−1

𝑆⌈(𝑗+𝑛𝑖+1−1)/2⌉ 𝑆⌈(𝑗+𝑛𝑖+2−1)/2⌉

(b)

Figure 4: Segment downloading on channel 𝐶
𝑖
for FiB+.

to 𝑛
𝑖+2

− 2, the client downloads a segment of group 𝐺
𝑖
either

during time units 𝑛
𝑖+1

− 1 to 𝑛
𝑖+2

− 2 or during time units 𝑛
𝑖−1

to 𝑛
𝑖+1

− 2 (i.e., before the downloading of segment 𝑆
𝑗
).

3.1.1. Segment Downloading within [𝑛
𝑖+1
−1, 𝑛
𝑖+2
−2].

Figure 4(b) shows that segments 𝑆
𝑛𝑖+1−1

to 𝑆
𝑗
are broadcast

on channel 𝐶
𝑖
in descending order during time units 𝑛

𝑖+1
− 1

to 𝑗, while a client plays these segments in turn. Let 𝑆
𝑎
be

a segment broadcast on channel 𝐶
𝑖
during this period, and

let 𝑆
𝑏
be the client-playback segment corresponding to 𝑆

𝑎
.

Clearly, if 𝑎 ≥ 𝑏, a client must download segment 𝑆
𝑎
to

ensure continuous playing. Because the number of segments
between 𝑆

𝑗
and 𝑆

𝑎
on channel 𝐶

𝑖
equals the number of

segments between 𝑆
𝑛𝑖+1−1

and 𝑆
𝑏
on the client playback,

𝑗 − 𝑎 = 𝑏− (𝑛
𝑖+1

− 1) and 𝑎 = 𝑗 + 𝑛
𝑖+1

− 1− 𝑏. Substituting this
equation to 𝑎 ≥ 𝑏 yields (𝑗 + 𝑛

𝑖+1
− 1)/2 ≥ 𝑏. The maximum

value of 𝑏 is ⌊(𝑗 + 𝑛
𝑖+1

− 1)/2⌋, and the corresponding value
of 𝑎 equals 𝑗 + 𝑛

𝑖+1
−1− ⌊(𝑗 + 𝑛

𝑖+1
−1)/2⌋ = ⌈(𝑗 + 𝑛

𝑖+1
−1)/2⌉.

Figure 4(b) illustrates that the client downloads segments 𝑆
𝑗

to 𝑆
⌈(𝑗+𝑛𝑖+1−1)/2⌉

during time units 𝑛
𝑖+1

− 1 to ⌊(𝑗 + 𝑛
𝑖+1

− 1)/2⌋

and does not download any segment during time units
⌊(𝑗 + 𝑛

𝑖+1
− 1)/2⌋ + 1 to 𝑗. Similarly, this study obtains that a

client receives segments 𝑆
𝑛𝑖+2−2

to 𝑆
⌈(𝑗+𝑛𝑖+2−1)/2⌉

during time
units 𝑗 + 1 to ⌊(𝑗 + 𝑛

𝑖+2
− 1)/2⌋ and does not download any

segment during time units ⌊(𝑗 + 𝑛
𝑖+2

− 1)/2⌋ + 1 to 𝑛
𝑖+2

− 2.

3.1.2. Segment Downloading within [𝑛
𝑖−1
, 𝑛
𝑖+1
−2]. From (3),

the client must download segments 𝑆
⌈(𝑗+𝑛𝑖+2−1)/2⌉−1

to 𝑆
𝑗+1

during time units ⌊(𝑗 + 𝑛
𝑖+2

− 1)/2⌋ + 1 − 𝑛
𝑖
to 𝑛
𝑖+2

− 2− 𝑛
𝑖
=

𝑛
𝑖+1

− 2 because the client does not download these segments
during time units ⌊(𝑗+𝑛

𝑖+2
−1)/2⌋+1 to 𝑛

𝑖+2
−2, as shown in

Figure 4(b). The figure further indicates that the client does
not accept segments 𝑆

𝑛𝑖+2−2
to 𝑆
⌈(𝑗+𝑛𝑖+2−1)/2⌉

during time units
𝑗+1−𝑛

𝑖
to ⌊(𝑗 +𝑛

𝑖+2
−1)/2⌋−𝑛

𝑖
since the client will perform

their downloading during time units 𝑗+1 to ⌊(𝑗+𝑛
𝑖+2

−1)/2⌋.
Similarly, the client must receive segments 𝑆

⌈(𝑗+𝑛𝑖+1−1)/2⌉−1
to

𝑆
𝑛𝑖+1−1

during time units ⌊(𝑗 + 𝑛
𝑖+1

− 1)/2⌋ + 1 − 𝑛
𝑖
to

𝑗 − 𝑛
𝑖
because the client does not download these segments

during time units ⌊(𝑗 + 𝑛
𝑖+1

− 1)/2⌋ + 1 to 𝑗. Furthermore,
since the client will download segments 𝑆

𝑗−1
to 𝑆
⌈(𝑗+𝑛𝑖+1−1)/2⌉

during time units 𝑛
𝑖+1

to ⌊(𝑗 + 𝑛
𝑖+1

− 1)/2⌋, the client does
not load any segment during time units 𝑛

𝑖+1
− 𝑛
𝑖
= 𝑛
𝑖−1

to
⌊(𝑗 + 𝑛

𝑖+1
− 1)/2⌋ − 𝑛

𝑖
, as illustrated in Figure 4(b).

3.2. Workable Verification. This section shows that FiB+
guarantees continuous playback and two-channel bandwidth
demand on the client side.

3.2.1. Continuous Playback. To keep on-time video delivery,
the study in [7] indicates that a video server must broadcast a
segment 𝑆

𝑗
on a channel𝐶

𝑖
at least once in every 𝑗 time units.

For FiB+, a server transmits a segment 𝑆
𝑗
once every 𝑛

𝑖
time

units, where 𝑛
𝑖+1

− 1 ≤ 𝑗 ≤ 𝑛
𝑖+2

− 2. This paper thus needs to
prove 𝑗 ≥ 𝑛

𝑖
. We then evaluate

𝑗 − 𝑛
𝑖
≥ (𝑛
𝑖+1

− 1) − 𝑛
𝑖
, due to 𝑛

𝑖+1
− 1 ≤ 𝑗

= 𝑛
𝑖−1

− 1

≥ 0.

(4)

For FiB+, the segment broadcasting frequency is large
enough to let clients receive video data in time.

3.2.2. Two-Channel Bandwidth Demand. From the previous
analysis in Figure 4, we make a temporal-channel map of
segment downloading for each channel, as indicated in
Figure 5. In this figure, segments downloaded and played by
a client are gray. This work divides client playback time 𝑡 (in
terms of time units) into multiple successive durations for
ease of explanation.

For 𝑇
0
≤ 𝑡 ≤ 𝑛

𝑘−2
− 1, the client merely receives segments

fromchannels𝐶
1
to𝐶
𝑘−2

because the client starts the segment

6 Journal of Applied Mathematics

𝐶1
𝐶2
𝐶3
𝐶4

𝐶𝑘−3
𝐶𝑘−2
𝐶𝑘−1
𝐶𝑘

𝑇0 = 1 𝑛𝑘−4 𝑛𝑘−3
𝑛𝑘−2 − 1𝑛𝑘−2 𝑛𝑘−1

𝑛𝑘−1 − 1

Client
playback

(Not to scale)

· · ·

· · ·
· · ·
· · ·

· · ·
· · ·
· · ·
· · ·

· · ·
· ·

· · ·· · ·· · ·· · ·· · ·· · ·· · ·
· · · · · · · · ·

· · ·· · ·· · ·
...

𝑡

Figure 5: Segment downloading using client bandwidth 2𝑏.

downloading on channel 𝐶
𝑘−1

at time unit 𝑛
𝑘−2

, as shown
in Figure 5. According to Step 1 of segment downloading on
the client side, the client uses two-channel bandwidth to load
segments in this period.

For 𝑛
𝑘−2

≤ 𝑡 ≤ 𝑛
𝑘−1

− 1, the client receives segments
only from channels 𝐶

𝑘−2
and 𝐶

𝑘−1
because the client finishes

receiving segments from channel 𝐶
1
to 𝐶
𝑘−3

before time unit
𝑛
𝑘−2

and starts downloading segments on channel 𝐶
𝑘
at time

unit 𝑛
𝑘−1

, as indicated in Figure 5.
For 𝑛
𝑘−1

≤ 𝑡, the client simply receives the remaining
segments from channels 𝐶

𝑘−1
and 𝐶

𝑘
because the segment

downloading on channel𝐶
𝑘−2

completes at time unit 𝑛
𝑘−1

−1.
Accordingly, an FiB+ client can download segments using

two-channel bandwidth.

4. Performance Analysis and Comparison

When a client just misses segment 𝑆
1
of a requested video,

the maximum waiting time 𝛿 equals the access time of the
segment from the first channel. Thus, 𝛿 = 𝐿/𝑁 = 𝐿/∑

𝑘

𝑝=1
𝑛
𝑝
,

the same as that of FiB. According to the previous studies
[15, 17], this work has calculated the values of 𝑁 offered by
these schemes at different numbers of channels, as listed in
Table 2.The larger the value is, the smaller the waiting time is.
The table reveals that FiB andFiB+ yield far bigger values than
other schemes. Figure 6 showsmaximumwaiting time versus
server channels. FiB and FiB+ thus achieve much smaller
waiting time than SkB and CCA+ under two-channel client
bandwidth. For example, when the server bandwidth equals
10 channels, FiB and FIB+ reduce the broadcast latency to less
than 32 seconds. By contrast, SkB andCCA+ incurmore than
51 and 48 seconds, respectively.

Before analyzing the entire buffer requirements, we first
investigate the number of the buffered segments when a client
performs segment downloading on a single channel 𝐶

𝑖
.

Lemma 1. Let 𝐵(𝑖, 𝑡) be the function of the number of the
segments buffered by an FiB+ client on channel 𝐶

𝑖
at the 𝑡th

time unit.

For 1 ≤ 𝑖 ≤ 𝑘 − 2,

{{{{

{{{{

{

𝐵 (𝑖, 𝑡) = 0, 𝑡 < 𝑛
𝑖−1
,

𝐵 (𝑖, 𝑡) = 𝑡 − 𝑛
𝑖−1

+ 1, 𝑛
𝑖−1

≤ 𝑡 ≤ 𝑛
𝑖+1

− 2,

𝐵 (𝑖, 𝑡) = 𝑛
𝑖+2

− 2 − 𝑡, 𝑛
𝑖+1

− 2 < 𝑡 ≤ 𝑛
𝑖+2

− 2,

𝐵 (𝑖, 𝑡) = 0, 𝑛
𝑖+2

− 2 < 𝑡.

(5a)

For 𝑖 = 𝑘 − 1 or 𝑘,

{{{{{{{{{{{

{{{{{{{{{{{

{

𝐵 (𝑖, 𝑡) = 0, 𝑡 < 𝑛
𝑖−1
,

𝐵 (𝑖, 𝑡) ≤ ⌊
𝑡 − 𝑛
𝑖−1

+ 2

2
⌋ , 𝑛

𝑖−1
≤ 𝑡 ≤ 𝑛

𝑖+1
− 2,

𝐵 (𝑖, 𝑡) ≤ ⌊
𝑛
𝑖

2
⌋ , 𝑛

𝑖+1
− 2 < 𝑡 ≤ 𝑛

𝑖+2
− 2 − ⌈

𝑛
𝑖

2
⌉ ,

𝐵 (𝑖, 𝑡) ≤ 𝑛
𝑖+2

− 2 − 𝑡, 𝑛
𝑖+2

− 2 − ⌈
𝑛
𝑖

2
⌉ < 𝑡 ≤ 𝑛

𝑖+2
− 2,

𝐵 (𝑖, 𝑡) = 0, 𝑛
𝑖+2

− 2 < 𝑡.

(5b)

Proof. See Appendix B.

Equation (5b) shows that a client buffers at most ⌊𝑛
𝑖
/2⌋

segments from channel 𝐶
𝑖
for 𝑖 = 𝑘 − 1 or 𝑘. On the other

hand, an FiB client needs to buffer 𝑛
𝑖
−1 segments [18]. Such a

difference leads to the result that FiB+ requires much smaller
buffering space.

Theorem 2. Let 𝐵(𝑡) be the maximum number of segments
buffered by an FiB+ client. Then, 𝐵(𝑡) ≤ ⌈𝑛

𝑘−1
/4⌉ + ⌊𝑛

𝑘
/2⌋.

Proof. See Appendix C.

Due to lim
𝑖→∞

(𝑛
𝑖+1
/𝑛
𝑖
) ≈ ((1 + √5)/2) [22] and 𝑁 =

𝑛
𝑘+2

− 2, lim
𝑘→∞

((⌈𝑛
𝑘−1

/4⌉ + ⌊𝑛
𝑘
/2⌋)/𝑁) ≈ 0.25. This result

Journal of Applied Mathematics 7

Table 2: The values of𝑁 offered by different schemes.

𝑘 1 2 3 4 5 6 7 8 9 10
FiB/FiB+ 1 3 6 11 19 32 53 87 142 231
SkB 1 3 5 10 15 27 39 64 89 141
CCA+2 1 3 5 10 15 27 39 64 89 149

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10

W
ai

tin
g

tim
e (

s)

FiB
FiB+

SkB
CCA+2

Number of channels, 𝑘

Figure 6: Maximum waiting time incurred on new clients at
different numbers of channels (𝐿 = 120minutes).

indicates that an FiB+ client can buffer only 25% of video
size, like RFB. We used the Perl language to implement a
simulator, which could estimate the buffer requirements for
FiB+.The results are listed in Table 3.The buffer size required
by FiB+ is quite close to the bound when 𝑘 ≥ 6. Because
FiB has to buffer 𝑛

𝑘
− 1 segments, we can derive the buffer

reduction rate of FiB+ versus FiB as follows: lim
𝑘→∞

(1 −

(⌈𝑛
𝑘−1

/4⌉ + ⌊𝑛
𝑘
/2⌋)/(𝑛

𝑘
− 1)) ≈ 0.345. FiB+ can reduce buffer

requirements by 34.5%, when compared with FiB. Table 3
shows that with the growth of 𝑘, the reduction rate is close
to the bound. For example, for 𝑘 = 10, an FiB client buffers
38.1% of video size. By contrast, an FiB+ client buffers only
25.1%.The reduction rate is 34.1%. According to the previous
studies [15, 17], this work presents the buffer sizes required by
different broadcasting schemes at different numbers of server
channels, as indicated in Figure 7. For 𝑘 > 3, the FiB+ scheme
outperforms all the schemes.

5. Conclusions

With the advance of mobile computing technology, many
clients access VOD services through their mobile devices.
Delivering videos under rather restricted client resources is
increasingly important. To fulfill this requirement, several
schemes, such as SkB, FiB, and CCA+, are proposed to
allow a client to watch a video using two-channel bandwidth.
Extending FiB, this work devises FiB+, which exhibits the
merits of small client waiting time and buffering space. The
scheme still guarantees on-time video delivery under two-
channel receiving bandwidth. According to the performance
analysis, FiB+ yields the minimumwaiting time and requires
smaller client buffer size, when compared with most existing
schemes.

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7 8 9 10
Number of channels, 𝑘

FiB
FiB+ SkB

CCA+2
Bu

ffe
r r

eq
ui

re
m

en
ts

in
pe

rc
en

ta
ge

 o
f v

id
eo

 si
ze

 (%
)

Figure 7: Comparison of required buffers.

Appendices

A. Proof of Equation (2)
For 𝑖mod 2 = 1, let 𝑖 = 2𝑞 + 1. Then,

𝑖

∑

𝑝=1

𝑛
𝑝
= 𝑛
1
+ 𝑛
2
+ 𝑛
3
+ 𝑛
4
+ ⋅ ⋅ ⋅ + 𝑛

𝑖

= 𝑛
3
+ 𝑛
5
+ ⋅ ⋅ ⋅ + 𝑛

2𝑞+1
+ 𝑛
2𝑞+1

, from (1)

= 𝑛
2
+ 𝑛
3
+ 𝑛
5
+ ⋅ ⋅ ⋅ + 𝑛

2𝑞+1
+ 𝑛
2𝑞+1

− 𝑛
2

= 𝑛
4
+ 𝑛
5
+ ⋅ ⋅ ⋅ + 𝑛

2𝑞+1
+ 𝑛
2𝑞+1

− 𝑛
2
, from (1)

= 𝑛
2𝑞+2

+ 𝑛
2𝑞+1

− 𝑛
2
, from (1)

= 𝑛
2𝑞+3

− 𝑛
2
, from (1)

= 𝑛
𝑖+2

− 2.

(A.1)

For 𝑖mod 2 = 0, let 𝑖 = 2𝑞. Then,

𝑖

∑

𝑝=1

𝑛
𝑝
= 𝑛
1
+ 𝑛
2
+ 𝑛
3
+ 𝑛
4
+ ⋅ ⋅ ⋅ + 𝑛

𝑖

= 𝑛
3
+ 𝑛
5
+ ⋅ ⋅ ⋅ + 𝑛

2𝑞+1
, from (1)

= 𝑛
2
+ 𝑛
3
+ 𝑛
5
+ ⋅ ⋅ ⋅ + 𝑛

2𝑞+1
− 𝑛
2

= 𝑛
4
+ 𝑛
5
+ ⋅ ⋅ ⋅ + 𝑛

2𝑞+1
− 𝑛
2
, from (1)

8 Journal of Applied Mathematics

= 𝑛
2𝑞+2

− 𝑛
2
, from (1)

= 𝑛
𝑖+2

− 2.

(A.2)

Accordingly, ∑𝑖
𝑝=1

𝑛
𝑝
= 𝑛
𝑖+2

− 2.

B. Proof of Lemma 1

This study first proves (5a). For easy understanding, please
refer to Figure 4(a).

(1) For 𝑡 < 𝑛
𝑖−1

, a client downloads no segment on
channel 𝐶

𝑖
because these segments will appear again during

time units 𝑛
𝑖−1

to 𝑛
𝑖+1

− 1. Thus, 𝐵(𝑖, 𝑡) = 0.
(2) For 𝑛

𝑖−1
≤ 𝑡 ≤ 𝑛

𝑖+1
− 2, a client continuously accepts

one segment every time unit but consumes no segment.Thus,
the number of buffered segment equals 𝑡 − 𝑛

𝑖−1
+ 1. When

𝑡 = 𝑛
𝑖+1

− 2, the client buffers the maximum segments and
𝐵(𝑖, 𝑡) = 𝑛

𝑖
− 1.

(3) For 𝑛
𝑖+1

− 2 < 𝑡 ≤ 𝑛
𝑖+2

− 2, Figure 4(a) shows that
a client stops loading data but plays the video in this period.
The client consumes one segment every time unit, and thus
the buffered segments decrease, 𝐵(𝑖, 𝑡) = 𝑛

𝑖
− (𝑡− (𝑛

𝑖+1
−2)) =

𝑛
𝑖+2

− 2 − 𝑡.
(4) For 𝑛

𝑖+2
− 2 < 𝑡, a client has finished playing all the

segments on channel 𝐶
𝑖
, and thus 𝐵(𝑖, 𝑡) = 0.

The proof for (5b) is as follows. For easy understanding,
please refer to Figure 4(b).

(1) For 𝑡 < 𝑛
𝑖−1

, a client does not download any segment
on channel 𝐶

𝑖
, and thus, 𝐵(𝑖, 𝑡) = 0.

(2) For 𝑛
𝑖−1

≤ 𝑡 ≤ 𝑛
𝑖+1

− 2, the paper divides the value
range of 𝑡 into four successive subranges for ease of proof.

(a) For 𝑛
𝑖−1

≤ 𝑡 ≤ ⌊(𝑗 + 𝑛
𝑖+1

− 1)/2⌋ − 𝑛
𝑖
, Figure 4(b)

shows that the client downloads no segment on channel 𝐶
𝑖
,

and thus 𝐵(𝑖, 𝑡) = 0 ≤ ⌊(𝑡 − 𝑛
𝑖−1

+ 2)/2⌋.
(b) For ⌊(𝑗 + 𝑛

𝑖+1
− 1)/2⌋ − 𝑛

𝑖
< 𝑡 ≤ 𝑗 − 𝑛

𝑖
,

𝐵 (𝑖, 𝑡)

= 𝑡 − (⌊
𝑗 + 𝑛
𝑖+1

− 1

2
⌋ − 𝑛
𝑖
) , see Figure 4(b)

≤ 𝑡 + 𝑛
𝑖
− ⌊

(𝑡 + 𝑛
𝑖
) + (𝑛

𝑖+1
− 1)

2
⌋ , due to 𝑡 ≤ 𝑗 − 𝑛

𝑖

≤ ⌊
𝑡 − 𝑛
𝑖−1

+ 2

2
⌋ .

(B.1)

(c) For 𝑗 − 𝑛
𝑖
< 𝑡 ≤ ⌊(𝑗 + 𝑛

𝑖+2
− 1)/2⌋ − 𝑛

𝑖
,

𝐵 (𝑖, 𝑡)

= (𝑗 − 𝑛
𝑖
) − (⌊

𝑗 + 𝑛
𝑖+1

− 1

2
⌋ − 𝑛
𝑖
) , see Figure 4(b)

≤ ⌊
𝑡 − 𝑛
𝑖−1

+ 2

2
⌋ , due to 𝑗 − 𝑛

𝑖
< 𝑡.

(B.2)

(d) For ⌊(𝑗 + 𝑛
𝑖+2

− 1)/2⌋ − 𝑛
𝑖
< 𝑡 ≤ 𝑛

𝑖+1
− 2,

𝐵 (𝑖, 𝑡)

= (𝑗 − ⌊
𝑗 + 𝑛
𝑖+1

− 1

2
⌋)

+ (𝑡 − (⌊
𝑗 + 𝑛
𝑖+2

− 1

2
⌋ − 𝑛
𝑖
)) , see Figure 4(b)

≤ ⌊
𝑗 + 2𝑡 − 𝑛

𝑖+1
+ 2 + 2𝑛

𝑖

2
⌋ − ⌊

𝑗 + 𝑛
𝑖+2

− 1

2
⌋

≤ ⌊
𝑡 − 𝑛
𝑖−1

+ 2

2
⌋ , due to 𝑡 ≤ 𝑛

𝑖+1
− 2.

(B.3)

Thus, 𝐵(𝑖, 𝑡) ≤ ⌊𝑛
𝑖
/2⌋ when 𝑡 = 𝑛

𝑖+1
− 2.

(3) For 𝑛
𝑖+1

− 2 < 𝑡 ≤ 𝑛
𝑖+2

− 2 − ⌈𝑛
𝑖
/2⌉, the client plays

one segment every time unit while downloading at most one
segment. The number of buffered segments is not larger than
that at time unit 𝑡 = 𝑛

𝑖+1
− 2, and thus 𝐵(𝑖, 𝑡) ≤ ⌊𝑛

𝑖
/2⌋.

(4) For 𝑛
𝑖+2

− 2 − ⌈𝑛
𝑖
/2⌉ < 𝑡 ≤ 𝑛

𝑖+2
− 2, the client has

played 𝑡−(𝑛
𝑖+1
−2) segments, and the number of the remaining

segments is

𝑛
𝑖
− (𝑡 − (𝑛

𝑖+1
− 2)) = 𝑛

𝑖+2
− 2 − 𝑡. (B.4)

Thus, 𝐵(𝑖, 𝑡) ≤ 𝑛
𝑖+2

− 2 − 𝑡.
(5) For 𝑛

𝑖+2
− 2 < 𝑡, the client finishes playing all the

segments on channel 𝐶
𝑖
so 𝐵(𝑖, 𝑡) = 0.

The proof is complete.

C. Proof of Theorem 2

Thiswork divides client playing time 𝑡 (in terms of time units)
into multiple successive durations for ease of proof.

(1) For 𝑡 ≤ 𝑛
𝑘−2

− 2, Figure 5 shows that the client simply
receives segments from channels 𝐶

1
to 𝐶
𝑘−2

. In addition, the
client downloads two segments but plays only one every time
unit. The number of buffered segments thus increases with
time and achieves the maximum at time unit 𝑛

𝑘−2
− 2. At this

time, the client has finished playing segments from channels
𝐶
1
to 𝐶
𝑘−4

, and thus simply buffers segments from channels
𝐶
𝑘−3

and 𝐶
𝑘−2

. Accordingly,

𝐵 (𝑡) = 𝐵 (𝑘 − 3, 𝑛
𝑘−2

− 2) + 𝐵 (𝑘 − 2, 𝑛
𝑘−2

− 2)

= ((𝑛
𝑘−2

− 2) − 𝑛
𝑘−4

+ 1)

+ ((𝑛
𝑘−2

− 2) − 𝑛
𝑘−3

+ 1) , from (5a)

= 𝑛
𝑘−2

− 2, from (1)

≤ ⌈
𝑛
𝑘−1

4
⌉ + ⌊

𝑛
𝑘

2
⌋ .

(C.1)

(2) For 𝑛
𝑘−2

− 2 < 𝑡 ≤ 𝑛
𝑘−1

− 2, the client has finished
playing all the segments received from channels 𝐶

1
to 𝐶
𝑘−4

and downloads no segment from channel𝐶
𝑘
. We thusmerely

consider the segments on channels 𝐶
𝑘−3

to 𝐶
𝑘−1

. The client
downloads at least one segment from channel 𝐶

𝑘−2
but plays

Journal of Applied Mathematics 9

Table 3: Comparison of buffering space in the percentage of video size using 𝑘 server channels.

𝑘 1 2 3 4 5 6 7 8 9 10
FiB (%) 0 33.3 33.3 36.4 36.8 37.5 37.7 38 38 38.1
FiB+ (%) 0 33.3 33.3 27.3 26.3 25 24.5 25.3 25.4 25.1
Reduction rate (%) 0 0 0 25 28.6 33.3 35 33.3 33.3 34.1

only one every time unit. Thus, the maximum number of
buffered segments appears at time unit 𝑛

𝑘−1
− 2 as follows:

𝐵 (𝑡) = 𝐵 (𝑘 − 3, 𝑛
𝑘−1

− 2) + 𝐵 (𝑘 − 2, 𝑛
𝑘−1

− 2)

+ 𝐵 (𝑘 − 1, 𝑛
𝑘−1

− 2)

≤ 𝑛
𝑘−2

− 1 + ⌊
(𝑛
𝑘−1

− 2) − 𝑛
𝑘−2

+ 2

2
⌋ ,

from (5a) and (5b)

= 𝑛
𝑘−2

+ ⌊
𝑛
𝑘−3

2
⌋ − 1

≤ ⌈
𝑛
𝑘−1

4
⌉ + ⌊

𝑛
𝑘

2
⌋ .

(C.2)

(3) For 𝑛
𝑘−1

−2 < 𝑡 ≤ 𝑛
𝑘
−2, the client has finished playing

all the segments received from channels 𝐶
1
to 𝐶
𝑘−3

, and thus
the client only buffers segments from channels 𝐶

𝑘−2
to 𝐶
𝑘
as

follows:

𝐵 (𝑡) = 𝐵 (𝑘 − 2, 𝑡) + 𝐵 (𝑘 − 1, 𝑡) + 𝐵 (𝑘, 𝑡)

≤ 𝑛
𝑘
− 2 − 𝑡 + ⌊

𝑡 − 𝑛
𝑘−2

+ 2

2
⌋ + ⌊

𝑡 − 𝑛
𝑘−1

+ 2

2
⌋ ,

from (5a) and (5b)

≤ ⌈
𝑛
𝑘−1

4
⌉ + ⌊

𝑛
𝑘

2
⌋ .

(C.3)

(4) For 𝑛
𝑘
− 2 < 𝑡 ≤ 𝑛

𝑘+1
− 2 − ⌈𝑛

𝑘−1
/2⌉, the client has

finished playing all the segments received from channels 𝐶
1

to𝐶
𝑘−2

and only performs segment downloading on channels
𝐶
𝑘−1

and 𝐶
𝑘
as follows:

𝐵 (𝑡) ≤ 𝐵 (𝑘 − 1, 𝑡) + 𝐵 (𝑘, 𝑡)

≤ ⌊
𝑛
𝑘−1

2
⌋ + ⌊

𝑡 − 𝑛
𝑘−1

+ 2

2
⌋ , from (5b)

≤ ⌈
𝑛
𝑘−1

4
⌉ + ⌊

𝑛
𝑘

2
⌋ , due to 𝑡 ≤ 𝑛

𝑘+1
− 2 − ⌈

𝑛
𝑘−1

2
⌉ .

(C.4)

(5) For 𝑛
𝑘+1

− 2 − ⌈𝑛
𝑘−1

/2⌉ < 𝑡 ≤ 𝑛
𝑘+1

− 2, similarly, the
client merely downloads segments on channels 𝐶

𝑘−1
and 𝐶

𝑘

as follows:

𝐵 (𝑡) ≤ 𝐵 (𝑘 − 1, 𝑡) + 𝐵 (𝑘, 𝑡)

≤ 𝑛
𝑘+1

− 2 − 𝑡 + ⌊
𝑡 − 𝑛
𝑘−1

+ 2

2
⌋ , from (5b)

≤ ⌈
𝑛
𝑘−1

4
⌉ + ⌊

𝑛
𝑘

2
⌋ , due to 𝑛

𝑘+1
− 2 − ⌈

𝑛
𝑘−1

2
⌉ < 𝑡.

(C.5)

(6) For 𝑛
𝑘+1

− 2 < 𝑡, the client simply performs data
downloading on channel 𝐶

𝑘
, and thus 𝐵(𝑡) = 𝐵(𝑘, 𝑡). From

(5b), 𝐵(𝑡) = 𝐵(𝑘, 𝑡) ≤ ⌊𝑛
𝑘
/2⌋ ≤ ⌈𝑛

𝑘−1
/4⌉ + ⌊𝑛

𝑘
/2⌋.

The proof is complete.

Acknowledgment

This work was financially supported by National Science
Council, Taiwan under a research grant numbered NSC 101-
2221-E-152-004.

References

[1] TechNavio, “Global video on demand market 2011–2015,”
August 2012.

[2] Digital TV Research, “A sustained boom forecast for global
online TV and video,” October 2012.

[3] M. Vilas, X. G. Pañeda, R. Garćıa, D. Melendi, and V. G.
Garćıa, “User behaviour analysis of a video-on-demand service
with a wide variety of subjects and lengths,” in Proceedings of
the 31st EUROMICRO Conference on Software Engineering and
Advanced Applications (EUROMICRO-SEAA ’05), pp. 330–337,
September 2005.

[4] H. Yu, D. Zheng, B. Y. Zhao, and W. Zheng, “Understanding
user behavior in large-scale video-on-demand systems,” in Pro-
ceedings of the 1st ACM SIGOPS/EuroSys European Conference
on Computer Systems (EuroSys ’06), pp. 333–344, October 2006.

[5] J. Choi, A. S. Reaz, and B.Mukherjee, “A survey of user behavior
in VoD service and bandwidth-saving multicast streaming
schemes,” IEEE Communications Surveys and Tutorials, 2008.

[6] L.-S. Juhn and L.-M. Tseng, “Fast data broadcasting and
receiving scheme for popular video service,” IEEE Transactions
on Broadcasting, vol. 44, no. 1, pp. 100–105, 1998.

[7] Y.-C. Tseng, M.-H. Yang, and C.-H. Chang, “A recursive
frequency-splitting scheme for broadcasting hot videos in VOD
service,” IEEE Transactions on Communications, vol. 50, no. 8,
pp. 1348–1355, 2002.

[8] Z. Y. Yang, Y. M. Chen, and L. M. Tseng, “A seamless broad-
casting schemewith live video support,” International Journal of

10 Journal of Applied Mathematics

Digital Multimedia Broadcasting, vol. 2012, Article ID 373459, 8
pages, 2012.

[9] Y.-W. Chen and C.-Y. Chen, “PAS: a new scheduling scheme for
broadcasting a video over a single channel,” IET Communica-
tions, vol. 5, no. 7, pp. 951–960, 2011.

[10] B. S. Wu, C. C. Hsieh, and Y. W. Chen, “A reverse-order
scheduling scheme for broadcasting continuous multimedia
data over a single channel,” IEEE Transactions on Broadcasting,
vol. 57, no. 3, pp. 721–728, 2011.

[11] H.-F. Yu, H.-C. Yang, and L.-M. Tseng, “Reverse Fast Broad-
casting (RFB) for video-on-demand applications,” IEEE Trans-
actions on Broadcasting, vol. 53, no. 1, pp. 103–110, 2007.

[12] H.-F. Yu, “Hybrid broadcasting with small buffer demand
and waiting time for video-on-demand applications,” IEEE
Transactions on Broadcasting, vol. 54, no. 2, pp. 304–311, 2008.

[13] Y. N. Chen and L. M. Tseng, “An efficient periodic broadcasting
with small latency and buffer demand for near video on
demand,” International Journal of DigitalMultimedia Broadcast-
ing, vol. 2012, Article ID 717538, 7 pages, 2012.

[14] Y. W. Chen, C. C. Lin, and C. Y. Huang, “Hybrid broadcasting
schemewith lowwaiting time and buffer requirement for video-
on-demand services,” IET Communications, vol. 6, no. 17, pp.
2949–2956, 2012.

[15] K. A. Hua and S. Sheu, “Skyscraper broadcasting: a new broad-
casting scheme for metropolitan video-on-demand systems, ,”
in Proceedings of the ACMConference onApplications, Technolo-
gies, Architectures, and Protocols for Computer Communication
(SIGCOMM ’97), pp. 89–100, September 1997.

[16] Y. Cai, A. Hua, and S. Sheu, “Leverage client bandwidth to
improve service latency of distributedmultimedia applications,”
Journal of Applied Systems Studies, vol. 2, no. 3, pp. 686–704,
2001.

[17] A. Natarajan, Y. Cai, and J. Wong, “An enhanced client-centric
approach for efficient video broadcast,” Multimedia Tools and
Applications, vol. 43, no. 2, pp. 179–193, 2009.

[18] Y. Guo, L. Gao, D. Towsley, and S. Sen, “Smooth workload
adaptive broadcast,” IEEE Transactions on Multimedia, vol. 6,
no. 2, pp. 387–395, 2004.

[19] C.-J. Wu, Y.-W. Chen, and Y.-L. Wang, “The minimum band-
width required at each time slot of the fast broadcasting
scheme,” Information Processing Letters, vol. 111, no. 20, pp. 1014–
1018, 2011.

[20] J. B. Kwon, “Proxy-assisted scalable periodic broadcasting
of videos for heterogeneous clients,” Multimedia Tools and
Applications, vol. 51, no. 3, pp. 1105–1125, 2011.

[21] H. Febiansyah and J. B. Kwon, “Dynamic proxy-assisted scal-
able broadcasting of videos for heterogeneous environments,”
Multimedia Tools and Applications, 2012.

[22] J. Kepler, A New Year Gift: On Hexagonal Snow, Oxford
University Press, Oxford, UK, 1966.

