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We investigate the properties of a general class of differential equations described by 𝑑𝑦(𝑡)/𝑑𝑡 = 𝑓𝑘+1(𝑡)𝑦(𝑡)
𝑘+1

+ 𝑓𝑘(𝑡)𝑦(𝑡)
𝑘
+ ⋅ ⋅ ⋅ +

𝑓2(𝑡)𝑦(𝑡)
2
+ 𝑓1(𝑡)𝑦(𝑡) + 𝑓0(𝑡), with 𝑘 > 1 a positive integer and 𝑓𝑖(𝑡), 0 ≤ 𝑖 ≤ 𝑘 + 1, with 𝑓𝑖(𝑡), real functions of 𝑡. For 𝑘 = 2, these

equations reduce to the class of Abel differential equations of the first kind, for which a standard solution procedure is available.
However, for 𝑘 > 2 no general solution methodology exists, to the best of our knowledge, that can lead to their solution. We
develop a general solution methodology that for odd values of 𝑘 connects the closed form solution of the differential equations
with the existence of closed-form expressions for the roots of the polynomial that appears on the right-hand side of the differential
equation. Moreover, the closed-form expression (when it exists) for the polynomial roots enables the expression of the solution of
the differential equation in closed form, based on the class of Hyper-Lambert functions. However, for certain even values of 𝑘, we
prove that such closed form does not exist in general, and consequently there is no closed-form expression for the solution of the
differential equation through this methodology.

1. Introduction

In [1], a differential equationwas derived, in the context of the
theoretical analysis of a security protocol, that can be written
in the following form:

(1 − 𝑡)
𝑑𝑦 (𝑡)

𝑑𝑡

= (

𝑘 − 1

⌈
𝑘

2
⌉ − 1

)𝑦(𝑡)
𝑘−⌈𝑘/2⌉+1

(1 − 𝑦 (𝑡))
⌈𝑘/2⌉

.

(1)

In [2], the differential equations (1) are written as partial
fractions in such away that the formof their solutionmatches
the recursive pattern of the definition of the Hyper-Lambert
functions that were proposed in [3] as a generalization of the
well-known Lambert𝑊 function (see [4] for an introduction

to this function and its properties).The differential equations
defined by (1) can be seen as belonging to the general
differential equation form

𝑑𝑦 (𝑡)

𝑑𝑡
= 𝑓𝑘+1 (𝑡) 𝑦(𝑡)

𝑘+1
+ 𝑓𝑘 (𝑡) 𝑦(𝑡)

𝑘

+ ⋅ ⋅ ⋅ + 𝑓2 (𝑡) 𝑦(𝑡)
2
+ 𝑓1 (𝑡) 𝑦 (𝑡) + 𝑓0 (𝑡) ,

(2)

with 𝑓𝑖(𝑡), 0 ≤ 𝑖 ≤ 𝑘 + 1 real functions. The class defined
by (2) appears to generalize, naturally, the Abel class of
differential equations (see [5]). Unfortunately, no general
solution strategy exists (to the best of our knowledge) for the
solution of this general class for 𝑘 > 2, in analogy with the
methodology that exists for the Abel class. Thus, we could
not reduce the problem of finding the solution of (1) into the
problem of solving (2) for various values of 𝑘.
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In this paper, we propose a general methodology which
for odd values of 𝑘 > 2 provides a closed-form expression
of the solution of (1) based on closed-form solutions of
the roots of the equation 𝑔(𝑦(𝑡)) − 𝑠 where 𝑔(𝑦(𝑡)) =

(
𝑘−1

⌈𝑘/2⌉−1
) 𝑦(𝑡)
𝑘−⌈𝑘/2⌉+1

(1 − 𝑦(𝑡))
⌈𝑘/2⌉ (the polynomial on the

right-hand side of (1)) and 𝑠 ̸= 0. Moreover, this closed-form
solutions are linked with the generalized Hyper-Lambert
functions.

However, for certain even values of 𝑘 > 2 (at least
for values of 𝑘 where 𝑘 + 1 is prime), we prove that
the roots of 𝑔(𝑦(𝑡)) − 𝑠 cannot be expressed by radicals,
and, thus, no closed-form solution can be obtained using
this methodology. This latter result may be of independent
interest.

2. Properties of the Target Class of
Differential Equations

The target differential equation class is the following (see [1]
for its derivation):

𝑑𝑥 (𝑡)

𝑑𝑡
= −

𝑘

∑

𝑗=⌈𝑘/2⌉

(
𝑘

𝑗
)(1 −

𝑥 (𝑡)

(1 − 𝑡)
)

𝑗

(
𝑥 (𝑡)

1 − 𝑡
)

𝑘−𝑗

× (1 −
𝑗

𝑘
) + [−

𝑥 (𝑡)

(1 − 𝑡)
]

×

⌈𝑘/2⌉−1

∑

𝑗=0

(
𝑘

𝑗
) × (1 −

𝑥 (𝑡)

(1 − 𝑡)
)

𝑗

(
𝑥 (𝑡)

1 − 𝑡
)

𝑘−𝑗

.

(3)

If we set 𝑦(𝑡) = 𝑥(𝑡)/(1 − 𝑡), (3) becomes

𝑑𝑦 (𝑡)

𝑑𝑡
=

𝑦 (𝑡)

1 − 𝑡

× (1 −

⌈𝑘/2⌉−1

∑

𝑗=0

(
𝑘

𝑗
) (1 − 𝑦 (𝑡))

𝑗
𝑦(𝑡)
𝑘−𝑗

) −
1

1 − 𝑡

×

𝑘

∑

𝑗=⌈𝑘/2⌉

(
𝑘

𝑗
)(1 −

𝑗

𝑘
) (1 − 𝑦 (𝑡))

𝑗
𝑦(𝑡)
𝑘−𝑗

.

(4)

After some algebraic manipulations, (4) becomes

(1 − 𝑡)
𝑑𝑦 (𝑡)

𝑑𝑡

=

𝑘

∑

𝑗=⌈𝑘/2⌉

(
𝑘

𝑗
) (1 − 𝑦 (𝑡))

𝑗
𝑦(𝑡)
𝑘−𝑗

(1 −
𝑗

𝑘
− 𝑦) .

(5)

Let 𝑔(𝑦(𝑡)) be the polynomial, in 𝑦(𝑡), at the right-hand
side of the differential equation (5). Throughout this paper,
when we refer to this polynomial, we will always mean that
the polynomial is in 𝑦(𝑡), treating 𝑦(𝑡) as an independent
variable. Based on the following two lemmas, whose proofs
follow by straightforward algebraic manipulations, we will
present the properties of the class of ordinary differential
equations defined by (5).

Lemma 1. For any 𝑙, 0 ≤ 𝑙 ≤ 𝑘, and independently of𝑦, it holds

𝑘

∑

𝑗=𝑙

(
𝑘

𝑗
)𝑦
𝑙−1−𝑗

(1 − 𝑦)
𝑗−𝑙

[(1 −
𝑗

𝑘
) − 𝑦] = −(

𝑘 − 1

𝑙 − 1
) . (6)

Based on Lemma 1, the following can be proved.

Lemma 2. The right-hand side of the differential equation (5)
can be written as follows:

𝑔 (𝑦 (𝑡)) = (

𝑘 − 1

⌈
𝑘

2
⌉ − 1

)𝑦(𝑡)
𝑘−⌈𝑘/2⌉+1

(1 − 𝑦 (𝑡))
⌈𝑘/2⌉

. (7)

From Lemma 2, the following property of the polynomial
𝑔(𝑦(𝑡)) can be readily derived.

Corollary 3. The roots of the polynomial 𝑔(𝑦(𝑡)) are 0 with
multiplicity ⌊𝑘/2⌋ + 1 and 1 with multiplicity ⌈𝑘/2⌉.

Lemma 4. The solution 𝑦(𝑡) of the differential equation (5)
with 𝑦(0) ∈ [0, 1) is a function that has the following two
properties: (i) all its values are real numbers in the interval
(0, 1), and (ii) it is monotonically increasing.

Proof. Since 𝑦(0) ∈ [0, 1), because 0 ≤ 𝑥(0) < 1 and 𝑡 =

0, and the polynomial 𝑔(𝑦(𝑡)) contains the factors 𝑦(𝑡) and
(1 − 𝑦(𝑡)) and its roots are 0 and 1, the solution function 𝑦(𝑡)

of the differential equation (5) cannot get values below 0 or
above 1. Thus, statement (i) holds.

Since 𝑑𝑦(𝑡)/𝑑𝑡 is always positive, as 𝑔(𝑦(𝑡)) is always
positive for 𝑦(𝑡) ∈ (0, 1) and 1 − 𝑡 > 0, then 𝑦(𝑡) is a
monotonically increasing function, thus proving statement
(ii).

Lemma 5. The roots of the first derivative of 𝑔(𝑦(𝑡)) as a
function of 𝑦(𝑡) are 𝑤1 = 0 with multiplicity ⌊𝑘/2⌋, 𝑤2 = 1

with multiplicity ⌈𝑘/2⌉, and𝑤3 = (𝑘+1−⌈𝑘/2⌉)/(𝑘+1), while
𝑤3 is a maximum point of 𝑔(𝑦(𝑡)).

Proof. Since 𝑔(𝑦(𝑡)) is continuous on [0, 1], 𝑔(0) = 𝑔(1) = 0,
and it is differentiable on (0, 1), there is 𝑤 ∈ (0, 1) where
𝑑𝑔(𝑦(𝑡))/𝑑𝑦(𝑡)|

𝑦(𝑡)=𝑤
= 0 and 𝑔(𝑦(𝑡)) attains minimum and

maximum values on [0, 1]. After some algebraic manipula-
tions we obtain a closed formula for the first derivative of
𝑔(𝑦(𝑡)):

𝑑𝑔 (𝑦 (𝑡))

𝑑𝑦 (𝑡)
= (

𝑘 − 1

⌈
𝑘

2
⌉ − 1

)(𝑘 + 1 − ⌈
𝑘

2
⌉

1

1 − 𝑦 (𝑡)
)

× 𝑦(𝑡)
𝑘−⌈𝑘/2⌉

(1 − 𝑦 (𝑡))
⌈𝑘/2⌉

.

(8)

From (8), it is readily derived that the roots of the first
derivative of 𝑔(𝑦(𝑡)) are 𝑤1 = 0 with multiplicity ⌊𝑘/2⌋,
𝑤2 = 1withmultiplicity ⌈𝑘/2⌉, and𝑤3 = (𝑘+1−⌈𝑘/2⌉)/(𝑘+1).
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The second derivative of 𝑔(𝑦(𝑡)) is given by the following
formula:

1

(
𝑘−1

⌈𝑘/2⌉−1
)

𝑑
2
𝑔 (𝑦 (𝑡))

𝑑𝑦 (𝑡)

= (𝑘 − ⌈
𝑘

2
⌉)𝑤 (𝑡) 𝑦(𝑡)

𝑘−⌈𝑘/2⌉−1

× (1 − 𝑦 (𝑡))
⌈𝑘/2⌉

− ⌈
𝑘

2
⌉𝑤 (𝑡) 𝑦(𝑡)

𝑘−⌈𝑘/2⌉

× (1 − 𝑦 (𝑡))
⌈𝑘/2⌉−1

− ⌈
𝑘

2
⌉ 𝑦(𝑡)

𝑘−⌈𝑘/2⌉

× (1 − 𝑦 (𝑡))
⌈𝑘/2⌉−2

,

(9)

where 𝑤(𝑡) = 𝑘 + 1 − ⌈𝑘/2⌉(1/(1 − 𝑦(𝑡))). For 𝑦(𝑡) = 𝑤3,
the factor 𝑤(𝑡) of (9) becomes 0, and thus a negative term
remains.Thus𝑑2𝑔(𝑦(𝑡))/𝑑𝑦(𝑡) < 0 on [0, 1]whichmeans that
𝑤3 is a maximum point of 𝑔(𝑦(𝑡)).

Lemma 6. The function 𝑔(𝑦(𝑡)) as function of 𝑦(𝑡) is not
monotonic on [0, 1], and it is an increasing function on (0, 𝑤3)

and a decreasing function on (𝑤3, 1).

Proof. Since 𝑦(𝑡) ∈ (0, 1), the sign of the first derivative of
𝑔(𝑦(𝑡)) in (8) is determined by the factor (𝑘+1−⌈𝑘/2⌉(1/(1−
𝑦(𝑡)))). Specifically, it holds that (𝑑𝑔(𝑦(𝑡))/𝑑𝑦(𝑡)) > 0 for
𝑦(𝑡) ∈ (0, 𝑤3) and (𝑑𝑔(𝑦(𝑡))/𝑑𝑦(𝑡)) < 0 for 𝑦(𝑡) ∈ (𝑤3, 1).
Since the 𝑑𝑔(𝑦(𝑡))/𝑑𝑦(𝑡) changes sign on [0, 1], the function
𝑔(𝑦(𝑡)) is not monotonic, but it is an increasing function on
(0, 𝑤3) and a decreasing function on (𝑤3, 1).

Lemma 7. For odd 𝑘, 𝑤3 = 1/2 and 𝑔(𝑤3) = (
𝑘−1

⌈𝑘/2⌉−1
)

(1/2)
2⌈𝑘/2⌉, while for even 𝑘, 𝑤3 = 1 − (𝑘/(2(𝑘 + 1))) > 1/2

and lim𝑘→∞𝑤3 = 1/2.

Proof. For an odd 𝑘, it holds ⌈𝑘/2⌉ = (𝑘+1)/2 and 𝑘−⌈𝑘/2⌉+
1 = ⌈𝑘/2⌉. Thus,

𝑤3 =
𝑘 + 1 − ⌈𝑘/2⌉

𝑘 + 1
=

1

2
, (10)

and by applying 𝑦(𝑡) = 𝑤3 in (7), we obtain the following:

𝑔 (𝑤3) = (

𝑘 − 1

⌈
𝑘

2
⌉ − 1

)(
1

2
)

2⌈𝑘/2⌉

. (11)

For even 𝑘, it holds ⌈𝑘/2⌉ = 𝑘/2. Consequently, we obtain

𝑤3 = 1 −
𝑘

2 (𝑘 + 1)
(12)

which means that 𝑤3 > 1/2. Applying L’Hospital’s rule, for
large even 𝑘, we have that lim𝑘→∞𝑤3 = 1/2.

The following theorem gives the specific form of the
polynomial function 𝑔(𝑦(𝑡)) of (5).

Table 1: The polynomial of the right-hand side of (13) for various
values of 𝑘.

𝑘 𝑔(𝑦(𝑡))

2 −𝑦(𝑡)
3
+ 𝑦(𝑡)

2

3 2𝑦(𝑡)
4
− 4𝑦(𝑡)

3
+ 2𝑦(𝑡)

2

4 3𝑦(𝑡)
5
− 6𝑦(𝑡)

4
+ 3𝑦(𝑡)

3

5 −6𝑦(𝑡)
6
+ 18𝑦(𝑡)

5
− 18𝑦(𝑡)

4
+ 6𝑦(𝑡)

3

6 −10𝑦(𝑡)
7
+ 30𝑦(𝑡)

6
− 30𝑦(𝑡)

5
+ 10𝑦(𝑡)

4

7 20𝑦(𝑡)
8
− 80𝑦(𝑡)

7
+ 120𝑦(𝑡)

6
− 80𝑦(𝑡)

5
+ 20𝑦(𝑡)

4

8 35𝑦(𝑡)
9
− 140𝑦(𝑡)

8
+ 210𝑦(𝑡)

7
− 140𝑦(𝑡)

6
+ 35𝑦(𝑡)

5

Theorem 8. The right-hand side 𝑔(𝑦(𝑡)) of differential equa-
tion (5) is a polynomial function of one argument of (𝑘 + 1)

degree, and the minimum degree of its terms is 𝑘 − ⌈𝑘/2⌉ + 1;
that is, it has the form:

(1 − 𝑡)
𝑑𝑦 (𝑡)

𝑑𝑡
= 𝑔 (𝑦 (𝑡)) =

⌈𝑘/2⌉

∑

𝑗=0

𝑎𝑗 ⋅ 𝑦(𝑡)
𝑠+𝑗

, (13)

where 𝑠 = 𝑘 − ⌈𝑘/2⌉ + 1 and

𝑎𝑗 = (−1)
𝑗
(
⌈
𝑘

2
⌉

𝑗

)(

𝑘 − 1

⌈
𝑘

2
⌉ − 1

) . (14)

Proof. Based on (7) and the binomial theorem, the results of
the theorem can be readily deduced.

Lemma 9. The function 𝑔 is concave on [0, 1].

Proof. The interval [0, 1] is convex, since every interval inR1

is convex. Thus, for 0 ≤ 𝜆 ≤ 1, the convex combination of
any 𝑦(𝑡1) and 𝑦(𝑡2), 𝑦(𝑡3) = 𝜆𝑦(𝑡1) + (1 − 𝜆)𝑦(𝑡2) is in the
interval [0, 1]. If 𝜆 is close to 0, the convex combination is
close to𝑦(𝑡2). Based on Lemma 6, it is obvious that𝑔(𝑦(𝑡3)) ≥
𝜆𝑔(𝑦(𝑡1)) + (1 − 𝜆)𝑔(𝑦(𝑡2)), which means that the function 𝑔

is concave.

Table 1 presents the polynomial function of the right-
hand side of the differential equation using Theorem 8 for
various values of 𝑘.

Some plots of the polynomial function 𝑔(𝑦(𝑡)) as a
function of 𝑦(𝑡) in the same graph for various odd values of
𝑘 appear in Figure 1. It is easy to verify the result of Lemma 7
that the local maxima of 𝑔 appear at 𝑦(𝑡) = 0.5 independently
of 𝑘 value. Moreover, the function 𝑔 is symmetric around the
axis 𝑦(𝑡) = 0.5; that is, for every value 𝑔(𝑦(𝑡)) ≤ 𝑔(0.5),
there are 𝑦(𝑡1) < 0.5, 𝑦(𝑡2) > 0.5, and |𝑦(𝑡1) − 0.5| =

|𝑦(𝑡2) − 0.5| where 𝑔(𝑦(𝑡1)) = 𝑔(𝑦(𝑡2)). By solving the
differential equation (5) for a certain odd value of 𝑘 where
𝑔(𝑦(𝑡)) ∈ (0, 𝑔(0.5)), we can calculate 𝑡 that 𝑔(𝑦(𝑡)) gets its
maximum value; that is, the first derivative of 𝑦(𝑡) becomes
maximum. This value of 𝑡 along with the fact that 𝑔(𝑦(𝑡)) is
symmetric around the axis 𝑦(𝑡) = 0.5 can be used to calculate
the time value at which the sought function attains a specific
target value, which can be of use in determining a particular
stopping time for the protocol given in [1].
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Local maxima at y(t) = 0.5

Local maxima at y(t) = 0.5
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Figure 1: A plot of 𝑔(𝑦(𝑡)) as a function of 𝑦(𝑡) for odd values of 𝑘.
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Figure 2: A plot of 𝑔(𝑦(𝑡)) as a function of 𝑦(𝑡) for even values of 𝑘.

Figure 2 presents some plots of 𝑔 as a function of 𝑦(𝑡) in
the same graph for various even values of 𝑘. In these plots, the
local maxima of 𝑔 appear at 𝑦(𝑡) = 0.66, 0.6, 0.57, and 0.55
for 𝑘 = 2, 4, 6, 8 correspondingly. Moreover, as 𝑘 increases,
the local maxima of 𝑔 are obtained at a 𝑦(𝑡) closer to 0.5.
But in practice, 𝑘 takes small values. Moreover, the range
(0, 𝑔(𝑤3)) where the function 𝑔 is an increasing function is
longer than the range (𝑔(𝑤3), 1) where the function 𝑔 is a
decreasing function; that is, the values of 𝑔 are not equally
balanced around axis 𝑦(𝑡) = 𝑤3.

Theorem 10. For 𝑠 ∈ (0, 𝑔(𝑤3)), the equation 𝑔(𝑦(𝑡)) = 𝑠 has
always one real root 𝑟1(𝑠) within the interval (0, 𝑤3) and one
real root 𝑟2(𝑠) within the interval (𝑤3, 1). In addition, the root
𝑟1(𝑠) is a monotonically increasing function of 𝑠, while 𝑟2(𝑠) is
a monotonically decreasing function of 𝑠.

Proof. Let 𝑝(𝑦(𝑡)) = 𝑔(𝑦(𝑡)) − 𝑠. Since the first derivative
of 𝑝(𝑦(𝑡)) is equal to the first derivative of 𝑔(𝑦(𝑡)), from
Lemma 5, it follows that 𝑤3 is also a root of 𝑑𝑝(𝑦(𝑡))/𝑑𝑡.
By Lemmas 5 and 6 we conclude that the polynomial
𝑝(𝑦(𝑡)) attains its maximum at 𝑤3. Moreover, it is monotone
increasing for 𝑦(𝑡) < 𝑤3 and monotone decreasing for 𝑦(𝑡) >
𝑤3.

It holds 𝑝(0) = 𝑝(1) = −𝑠 < 0, while 𝑝(𝑤3) = 𝑔(𝑤3) − 𝑠 >

0 since 𝑠 ∈ (0, 𝑔(𝑤3)). Thus, since 𝑝(𝑦(𝑡)) as a function
of 𝑦(𝑡) is continuous on (0, 1) and it has opposite signs at
the endpoints of intervals (0, 𝑤3) and (𝑤3, 1), it has one real
solution 𝑟1(𝑠) in the first interval and one real solution 𝑟2(𝑠)

in the second one.
Finally, due to the monotonicity of 𝑝(𝑦(𝑡)) in each of

these intervals, the root 𝑟1(𝑠) monotonically increases as 𝑠

increases, while the root 𝑟2(𝑠)monotonically decreases.

Lemma 11. For odd 𝑘, it holds 𝑟1(𝑠) + 𝑟2(𝑠) = 1.

Proof. From Lemma 7, 𝑤3 = 1/2. Thus 𝑟1(𝑠) ∈ (0, 1/2)

and 𝑟2(𝑠) ∈ (1/2, 1). Since 𝑝(𝑦(𝑡)) as a function of 𝑦(𝑡) is
continuous on (0, 1) and it has opposite signs at the endpoints
of intervals (0, 1/2) and (1/2, 1), the roots 𝑟1(𝑠) and 𝑟2(𝑠) can
be approximated by the use of the bisection method.

After 𝑛 iterations of the bisection method on these
intervals, the calculated roots 𝑟1(𝑠) and 𝑟2(𝑠) satisfy the
identity 𝑟1(𝑠) + 𝑟2(𝑠) = 1 since the intervals are balanced,
𝑔(𝑟1(𝑠)) = 𝑔(𝑟2(𝑠)) = 𝑠, and in each iteration the method
operates in one of the two halves of the two intervals.

3. The Solution of the Class of the Differential
Equations for Odd 𝑘

By the class of differential equations defined by (13), it is easy
to see that it has the form 𝑑𝑦(𝑡)/𝑑𝑡 = ∑

𝑘+1

𝑖=0
𝑓𝑖(𝑡)𝑦(𝑡)

𝑖, with 𝑘 >

1 and𝑓𝑖(𝑡), 0 ≤ 𝑖 ≤ 𝑘+1, specific real functions of 𝑡.This form
appears to generalize the class of Abel differential equations of
the first kind in that it involves the sought function to powers
greater than 3, for 𝑘 ≥ 3. To the best of our knowledge,
no general solution strategy exists for generalized differential
equations of the Abel type that can be exploited to solve
(13). In this section we will describe such a solution strategy
for odd 𝑘 that makes use of the result of Lemma 4 and the
properties of the polynomial function 𝑔(𝑦(𝑡)) that have been
proved in Section 2.

Definition 12. Let 𝐼 be an index set, and let 𝑓𝑖 : C → C be
arbitrary complex functions which do not vanish identically.
Assuming 𝑚, 𝑛 ∈ N such that 𝑚 ≥ 𝑛, we define 𝐹𝑛,𝑚(𝑧) :

N2 × C → C as follows:

𝐹𝑛,𝑚 (𝑧) = {
𝑒
𝑧 if 𝑛 = 1,

𝑒
𝑓
𝑚−(𝑛−1)
(𝑧)𝐹
𝑛−1,𝑚
(𝑧) if 𝑛 > 1.

(15)
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Definition 13. Let 𝑓𝑖 be as in Definition 12 and 𝑧 ∈ C. Then
we define

𝐺(𝑓1 (𝑧) , 𝑓2 (𝑧) , . . . , 𝑓𝑗 (𝑧) ; 𝑧) = 𝑧𝐹𝑗+1,𝑗+1 (𝑧) . (16)

Definition 14. Let 𝑓𝑖 be as in Definition 12, 𝐺 as in
Definition 13, and 𝑦 ∈ C. Then the function HW({𝑓𝑖}𝑖∈𝐼; 𝑦)

is the function which satisfies the following equation:

𝐺({𝑓𝑖}𝑖∈𝐼;HW ({𝑓𝑖}𝑖∈𝐼; 𝑦)) = 𝑦. (17)

If we set 𝑠 ∈ R+ at the right side of (1), we obtain the following
functional equation:

(1 − 𝑡)
𝑑𝑦 (𝑡)

𝑑𝑡
= 𝑠. (18)

Our approach relies on the following fact for the solution 𝑡(𝑠)

of the functional equation (18).

Claim 1. Let 𝑟(𝑠) be a real function inR, such that each value
of 𝑡−1 belongs to the domain of 𝑟(𝑠) for every value 𝑠 ∈ R+.
Assuming that 𝑏 = 𝑡(𝑠), then 𝑦(𝑏) = 𝑦(𝑡(𝑠)) = 𝑟(𝑡

−1
(𝑏)).

Lemma 15. The solution 𝑡(𝑠), 𝑠 ∈ R+, of the functional
equation

(1 − 𝑡)
𝑑𝑦 (𝑡)

𝑑𝑡
= 𝑠 (19)

forms a solution of the equation 𝑔(𝑦(𝑡)) = 𝑠.

Proof. Given 𝑠 ∈ R+ and the solution 𝑡(𝑠) to (18), it follows
from (13) that 𝑦(𝑡(𝑠)) is a root of the polynomial equation
𝑔(𝑦(𝑡)) = 𝑠.

Theorem 16. For odd 𝑘 and 𝑠 ∈ R+, the solution 𝑡(𝑠) of the
functional equation (18) is equal to

𝑡 (𝑠) = 1 + 𝑐𝑒
−∫(1/𝑠)(𝑑𝑟(𝑠)/𝑑𝑠)𝑑𝑠 (20)

with 𝑟(𝑠) = (1 ± √1 − 4ℎ(𝑠))/2, where ℎ(𝑠) =

(𝑠/ (
𝑘−1

⌈𝑘/2⌉−1
))
1/⌈𝑘/2⌉

and the real positive solution of the
equation 𝑔(𝑦(𝑡)) = 𝑠.

Proof. For odd 𝑘 the exponents of 𝑦(𝑡) and (1 − 𝑦(𝑡)) of the
polynomial𝑔(𝑦(𝑡)) in (7) become equal, that is, 𝑘−⌈𝑘/2⌉+1 =

⌈𝑘/2⌉ = 𝑙, and the polynomial 𝑔(𝑦(𝑡)) could be written as
follows:

𝑔 (𝑦 (𝑡)) = (

𝑘 − 1

⌈
𝑘

2
⌉ − 1

)𝑦(𝑡)
𝑙
(1 − 𝑦 (𝑡))

𝑙
. (21)

Based on (21), the polynomial equation 𝑔(𝑦(𝑡)) = 𝑠 becomes

𝑦 (𝑡) (1 − 𝑦 (𝑡)) = 𝑙√

𝑠

(
𝑘−1

⌈𝑘/2⌉−1
)
. (22)

Let ℎ(𝑠) =
𝑙√𝑠/ (

𝑘−1

⌈𝑘/2⌉−1
), the right-hand side of (22). By

Lemmas 5 and 7, we have 𝑠 ≤ (
𝑘−1

⌈𝑘/2⌉−1
) (1/(2

2⌈𝑘/2⌉
)) which

leads after some algebraic manipulations to 4ℎ(𝑠) ≤ 1. This
means that the discriminant of the quadratic equation (22)
Δ = 1 − 4ℎ(𝑠) is positive, and consequently by applying
the closed-form formula for the solutions of the quadratic
polynomial equation (22), we find that the solutions are the
following:

𝑟1 (𝑠) =
1 + √1 − 4ℎ (𝑠)

2
, 𝑟2 (𝑠) =

1 − √1 − 4ℎ (𝑠)

2
.

(23)

It is obvious that 𝑟1(𝑠)+𝑟2(𝑠) = 1.Thus, 𝑟1(𝑠) and 𝑟2(𝑠) are real
valued functions, where 𝑟1(𝑠) is a monotonically decreasing
function with 𝑤3 ≤ 𝑟1(𝑠) ≤ 1 and 𝑟2(𝑠) is a monotonically
increasing function with 0 ≤ 𝑟2(𝑠) ≤ 𝑤3. By Theorem 10 and
Lemma 11, the roots 𝑟1(𝑠) and 𝑟2(𝑠) are the appropriate roots,
and consequently we set 𝑟(𝑠) = 𝑟2(𝑠) for 𝑦(𝑡) ∈ [0, 0.5] and
𝑟(𝑠) = 𝑟1(𝑠) for 𝑦(𝑡) ∈ (0.5, 1].

Using the chain differentiation rule, we obtain the follow-
ing:

𝑦 (𝑡 (𝑠)) = 𝑟 (𝑠) ⇒ (
𝑑𝑦 (𝑡)

𝑑𝑡
)

𝑡=𝑡(𝑠)

𝑑𝑡 (𝑠)

𝑑𝑠
=

𝑑𝑟 (𝑠)

𝑑𝑠
. (24)

However, since (1 − 𝑡)(𝑑𝑦(𝑡)/𝑑𝑡) = 𝑠 for 𝑡 = 𝑡(𝑠), it follows
that

(
𝑑𝑦 (𝑡)

𝑑𝑡
)

𝑡=𝑡(𝑠)

=
𝑠

1 − 𝑡 (𝑠)
. (25)

Thus, (24) becomes

(
𝑑𝑦 (𝑡)

𝑑𝑡
)

𝑡=𝑡(𝑠)

𝑑𝑡 (𝑠)

𝑑𝑠
=

𝑑𝑟 (𝑠)

𝑑𝑠
⇒

𝑠

1 − 𝑡 (𝑠)

𝑑𝑡 (𝑠)

𝑑𝑠
=

𝑑𝑟 (𝑠)

𝑑𝑠
.

(26)

Solving the differential equation in (26), we obtain the
solution shown in (20) as required.

Corollary 17. Let 𝑎(𝑠) = √1 − 4ℎ(𝑠). Then the solution to (18)
is equal to

𝑡 (𝑠) =

{{{{

{{{{

{

1 + 𝑐(
𝑎 (𝑠) + 1

𝑎 (𝑠) − 1
) 𝑒
𝑝
1
(𝑠)
, 𝑖𝑓 𝑟 (𝑠) = 𝑟1 (𝑠) ,

1 + 𝑐 (
𝑎 (𝑠) − 1

𝑎 (𝑠) + 1
) 𝑒
𝑝
2
(𝑠)
, 𝑖𝑓 𝑟 (𝑠) = 𝑟2 (𝑠) ,

(27)

where 𝑝1(𝑠) and 𝑝2(𝑠) are given by

𝑝1 (𝑠) =

⌈𝑘/2⌉

∑

𝑖=2

2
𝑖−1

(
2⌈𝑘/2⌉−𝑖−1

⌈𝑘/2⌉−𝑖
)

(𝑖 − 1) (
𝑘−1

⌈𝑘/2⌉−1
)

× [
(−1)
𝑖−1

(𝑎 (𝑠) − 1)
𝑖−1

−
1

(𝑎 (𝑠) + 1)
𝑖−1

] ,

𝑝2 (𝑠) =

⌈𝑘/2⌉

∑

𝑖=2

2
𝑖−1

(
2⌈𝑘/2⌉−𝑖−1

⌈𝑘/2⌉−𝑖
)

(𝑖 − 1) (
𝑘−1

⌈𝑘/2⌉−1
)

× [
(−1)
𝑖

(𝑎 (𝑠) − 1)
𝑖−1

+
1

(𝑎 (𝑠) + 1)
𝑖−1

] .

(28)
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Proof. We compute the integral in (20) for 𝑟(𝑠) = 𝑟1(𝑠). Let
𝑙 = ⌈𝑘/2⌉,𝑚 = (

𝑘−1

⌈𝑘/2⌉−1
), and

𝑎 (𝑠) = (1 − 4 (
𝑠

𝑚
)

1/𝑙

)

1/2

, (29)

𝑟 (𝑠) =
1

2
+
1

2
𝑎 (𝑠) . (30)

After some algebraic manipulations, we obtain the derivative
𝑟

(𝑠) of 𝑟(𝑠) as follows:

𝑟

(𝑠) =

1

2
𝑎

(𝑠) . (31)

By (29), we obtain the following expression for 𝑠:

𝑠 =
(1 − 𝑎(𝑠)

2
)
𝑙

𝑚

4𝑙
.

(32)

Multiplying (31) by 1/𝑠 and after some algebraic manipula-
tions, we obtain

1

𝑠
𝑟

(𝑠) =

4
𝑙

2𝑚

𝑎

(𝑠)

(1 − 𝑎(𝑠)
2
)
𝑙
. (33)

Based on (32) and (33), the integral in (20) becomes

∫
1

𝑠
𝑟

(𝑠) =

(−1)
𝑙
4
𝑙

2𝑚
∫

𝑎

(𝑠)

(𝑎(𝑠)
2
− 1)
𝑙
𝑑𝑠. (34)

Setting 𝑎(𝑠) = 𝑤 for convenience, we can form the rational
parts expansion of the rational part of the integral in (34) as
follows:

1

(𝑤2 − 1)
𝑙
=

1

(𝑤 − 1)
𝑙
(𝑤 + 1)

𝑙

=

𝑙

∑

𝑖=1

𝐴 𝑖

(𝑤 − 1)
𝑖
+

𝑙

∑

𝑖=1

𝐵𝑖

(𝑤 + 1)
𝑖

(35)

with the coefficients given, by standard calculus techniques,
by the following:

𝐴 𝑖 =
1

(𝑙 − 𝑖)!
[

𝑑
(𝑙−𝑖)

𝑑𝑤(𝑙−𝑖)
(𝑤 − 1)

𝑙 1

(𝑤 − 1)
𝑙
(𝑤 + 1)

𝑙
]

𝑤=1

=
1

(𝑙 − 𝑖)!
[

𝑑
(𝑙−𝑖)

𝑑𝑤(𝑙−𝑖)

1

(𝑤 + 1)
𝑙
]

𝑤=1

,

𝐵𝑖 =
1

(𝑙 − 𝑖)!
[

𝑑
(𝑙−𝑖)

𝑑𝑤(𝑙−𝑖)
(𝑤 + 1)

𝑙 1

(𝑤 − 1)
𝑙
(𝑤 + 1)

𝑙
]

𝑤=−1

=
1

(𝑙 − 𝑖)!
[

𝑑
(𝑙−𝑖)

𝑑𝑤(𝑙−𝑖)

1

(𝑤 − 1)
𝑙
]

𝑤=−1

(36)

for 𝑖 = 1, . . . , 𝑙.

Since

𝑑
(𝑙−𝑖)

𝑑𝑤(𝑙−𝑖)

1

(𝑤 ± 1)
𝑙
= (−1)

𝑙−𝑖 1

(𝑤 ± 1)
2𝑙−𝑖

(2𝑙 − 𝑖 − 1)!

(𝑙 − 1)!
, (37)

the coefficients 𝐴 𝑖 and 𝐵𝑖 become

𝐴 𝑖 =
1

(𝑙 − 𝑖)!
(−1)
𝑙−𝑖 1

22𝑙−𝑖

(2𝑙 − 𝑖 − 1)!

(𝑙 − 1)!

= (
2𝑙 − 𝑖 − 1

𝑙 − 𝑖
) (−1)

𝑙−𝑖 1

22𝑙−𝑖
,

𝐵𝑖 =
1

(𝑙 − 𝑖)!
(−1)
𝑙−𝑖 1

(−2)
2𝑙−𝑖

(2𝑙 − 𝑖 − 1)!

(𝑙 − 1)!

= (
2𝑙 − 𝑖 − 1

𝑙 − 𝑖
)

1

(−1)
𝑙
22𝑙−𝑖

.

(38)

Based on (34), (35), and (38), the integral in (20) becomes

∫
1

𝑠
𝑟

(𝑠)

=
(−1)
𝑙
4
𝑙

2𝑚
∫[

𝑙

∑

𝑖=1

𝑎

(𝑠) 𝐴 𝑖

(𝑎 (𝑠) − 1)
𝑖
+

𝑙

∑

𝑖=1

𝑎

(𝑠) 𝐵𝑖

(𝑎 (𝑠) + 1)
𝑖
]

=
( 2𝑙−2
𝑙−1

)

𝑚
ln(𝑎 (𝑠) + 1

𝑎 (𝑠) − 1
) +

(−1)
𝑙
4
𝑙

2𝑚

× ∫[

𝑙

∑

𝑖=2

𝑎

(𝑠) 𝐴 𝑖

(𝑎 (𝑠) − 1)
𝑖
+

𝑙

∑

𝑖=2

𝑎

(𝑠) 𝐵𝑖

(𝑎 (𝑠) + 1)
𝑖
]

=
( 2𝑙−2
𝑙−1

)

𝑚
ln(𝑎 (𝑠) + 1

𝑎 (𝑠) − 1
)

+

𝑙

∑

𝑖=2

[
2
𝑖−1

( 2𝑙−𝑖−1
𝑙−𝑖

)

(−1)
𝑖
𝑚

∫
𝑎

(𝑠)

(𝑎 (𝑠) − 1)
𝑖

+
2
𝑖−1

( 2𝑙−𝑖−1
𝑙−𝑖

)

𝑚
∫

𝑎

(𝑠)

(𝑎 (𝑠) + 1)
𝑖
] .

(39)

Since ( 2𝑙−2
𝑙−1

) = 𝑚, after some algebraic manipulations (39) is
rewritten as follows:

∫
1

𝑠
𝑟

(𝑠) = ln(𝑎 (𝑠) + 1

𝑎 (𝑠) − 1
) + 𝑝1 (𝑠) , (40)

where

𝑝1 (𝑠) =

𝑙

∑

𝑖=2

2
𝑖−1

( 2𝑙−𝑖−1
𝑙−𝑖

)

(𝑖 − 1)𝑚

× [
(−1)
𝑖−1

(𝑎 (𝑠) − 1)
𝑖−1

−
1

(𝑎 (𝑠) + 1)
𝑖−1

] .

(41)

For 𝑟(𝑠) = 𝑟2(𝑠), the derivative 𝑟

(𝑠) of 𝑟(𝑠) becomes

𝑟

(𝑠) = −

1

2
𝑎

(𝑠) . (42)
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Applying the previous proof method for 𝑟(𝑠) given by (42),
the integral in (20) becomes

∫
1

𝑠
𝑟

(𝑠) 𝑑𝑠 = ln(𝑎 (𝑠) − 1

𝑎 (𝑠) + 1
) + 𝑝4 (𝑠) , (43)

where

𝑝2 (𝑠) =

𝑙

∑

𝑖=2

2
𝑖−1

( 2𝑙−𝑖−1
𝑙−𝑖

)

(𝑖 − 1)𝑚

× [
(−1)
𝑖

(𝑎 (𝑠) − 1)
𝑖−1

+
1

(𝑎 (𝑠) + 1)
𝑖−1

] .

(44)

Thus, from (20), we obtain the following:

𝑡 (𝑠) =

{{{

{{{

{

1 + 𝑐(
𝑎 (𝑠) + 1

𝑎 (𝑠) − 1
) 𝑒
𝑝
1
(𝑠)
, if 𝑟 (𝑠) = 𝑟1 (𝑠) ,

1 + 𝑐 (
𝑎 (𝑠) − 1

𝑎 (𝑠) + 1
) 𝑒
𝑝
2
(𝑠)
, if 𝑟 (𝑠) = 𝑟2 (𝑠) ,

(45)

completing the proof of the theorem.

We now need to invert the function 𝑡(𝑠) or, equivalently,
to solve (27), with unknown 𝑠. By setting 𝑧 = 1+𝑎(𝑠), (27) for
𝑟(𝑠) = 𝑟2(𝑠) after some algebraic manipulations becomes

𝑧 =
𝑐 (𝑧 − 2)

𝑡 (𝑠) − 1
𝑒
𝑄(𝑧)

, (46)

where 𝑄(𝑧) is the rational function of 𝑧 given by

𝑄 (𝑧) =

𝑙

∑

𝑖=2

2
𝑖−1

( 2𝑙−𝑖−1
𝑙−𝑖

)

(𝑖 − 1)𝑚

×
(−1)
𝑖
𝑧
𝑖−1

+ (𝑧 − 2)
𝑖−1

𝑧𝑖−1(𝑧 − 2)
𝑖−1

.

(47)

With regard to the constant 𝑐, its value may be obtained from
𝑥(0) as follows. Since 𝑦(𝑡) = 𝑥(𝑡)/(1 − 𝑡), then 𝑦(0) = 𝑥(0).
Setting 𝑡 = 0 in 𝑔(𝑦(𝑡)) = 𝑠, we obtain the value for 𝑠. Thus,
using this value of 𝑠, we have established the relation 𝑡(𝑠) = 0,
and we can compute 𝑎(𝑠) and 𝑧. Now we can solve (46) for 𝑐.

Setting

𝑓 (𝑧) =
ln (𝑐 (2 − 𝑧) / (1 − 𝑡 (𝑠)))

𝑒𝑧
+
𝑄 (𝑧)

𝑒𝑧
, (48)

we rewrite (46) as follows:

𝑧 = 𝑒
𝑓(𝑧)𝑒
𝑧

. (49)

Based on Definitions 12, 13, and 14 for 𝑗 = 1, we can rewrite
(49) as follows:

𝑧 = 𝑒
𝑓(𝑧)𝑒
𝑧

⇒ 𝑧𝑒
−𝑓(𝑧)𝑒

𝑧

= 1

⇒ 𝐺 (−𝑓 (𝑧) ; 𝑧) = 1

⇒ 𝑧 = HW (−𝑓 (𝑧) ; 1) .

(50)

Let 𝑙 = ⌈𝑘/2⌉ and 𝑚 = (
𝑘−1

⌈𝑘/2⌉−1
). Since 𝑧 = 1 + 𝑎(𝑠) by

substituting 𝑎(𝑠) and after some algebraic manipulations, we
obtain the following formula for 𝑠:

𝑠 =
𝑚𝑧
𝑙
(𝑧 − 2)

𝑙

4𝑙

=
𝑚HW(−𝑓 (𝑧) ; 1)

𝑙
(HW (−𝑓 (𝑧) ; 1) − 2)

𝑙

4𝑙
.

(51)

Equation (51) gives values of 𝑠 for specific values of 𝑡 through
Hyper-Lambert functions. Specifically, for a certain value of
𝑡, the function𝑓(𝑧) takes a particular form, and through (51),
we obtain a value for 𝑠.Thus, we have found 𝑡−1(𝑠). In [6], (51)
has been derived for 𝑘 = 3.

Based on Theorem 16, Lemma 15, (50), and that 𝑟(𝑠) =

𝑧/2, a solution of the differential equation (13) can be
obtained by

𝑦 (𝑡 (𝑠)) = 𝑟 (𝑠) =
HW (−𝑓 (𝑧) ; 1)

2
. (52)

Equivalently, we can obtain the solution by

𝑦 (𝑡 (𝑠)) = 𝑟(
𝑚HW(−𝑓 (𝑧) ; 1)

𝑙
(HW (−𝑓 (𝑧) ; 1) − 2)

𝑙

4𝑙
)

(53)

with 𝑟(𝑠) = 𝑟2(𝑠).
We will now demonstrate the previous methodology for

𝑘 = 3. Since 𝑙 = ⌈𝑘/2⌉ = 2 and 𝑚 = (
𝑘−1

⌈𝑘/2⌉−1
) = 2, (21)

becomes

𝑔 (𝑦 (𝑡)) = 2𝑦(𝑡)
2
(1 − 𝑦 (𝑡))

2

= 2𝑦(𝑡)
4
− 4𝑦(𝑡)

3
+ 2𝑦(𝑡)

2
.

(54)

From Theorem 16, the real positive solutions 𝑟1(𝑠) and 𝑟2(𝑠)

of 𝑔(𝑦(𝑡)) = 𝑠 for 𝑠 ≤ (1/8) can be written as follows:

𝑟1 (𝑠) =
1 + √1 − 2√2𝑠

2
, 𝑟2 (𝑠) =

1 − √1 − 2√2𝑠

2
.
(55)

Moreover, the rational function 𝑄(𝑧) of 𝑧 involved in (46)
becomes, after some algebraic manipulations, as follows:

𝑄 (𝑧) =
2 (𝑧 − 1)

𝑧 (𝑧 − 2)
. (56)

Thus, the function 𝑓(𝑧) defined by (48) becomes

𝑓 (𝑧) =
ln (𝑐 (2 − 𝑧) / (1 − 𝑡 (𝑠)))

𝑒𝑧
+

2 (𝑧 − 1)

𝑧 (𝑧 − 2) 𝑒𝑧
. (57)
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Finally, the formula for 𝑠 defined by (51) and the solution of
the differential equation (54) defined by (53) can be written
as follows:

𝑠 =
𝑧
2
(𝑧 − 2)

2

8

=
HW(−𝑓 (𝑧) ; 1)

2
(HW (−𝑓 (𝑧) ; 1) − 2)

2

8
.

𝑦 (𝑡 (𝑠)) = 𝑟(
HW(−𝑓 (𝑧) ; 1)

2
(HW (−𝑓 (𝑧) ; 1) − 2)

2

8
) ,

(58)

where 𝑟(⋅) = 𝑟2(𝑠).

4. Nonclosed-Form Solvability Results for
Even Values of 𝑘

In this section, we consider the case where the parameter 𝑘 is
an even integer greater than 2, that is, 𝑘 = 2𝑚, with 𝑚 ≥ 2.
This case is of distinct interest because it does not seem to
be amenable to the methodology we have followed for 𝑘 odd.
In Section 3 where we considered odd values of 𝑘, a key step
in linking the solution of the differential equation with the
class of Hyper-Lambert functions was to find the closed-form
solution 𝑦(𝑡), given 𝑠, of the polynomial equation 𝑔(𝑦(𝑡)) =

𝑠, with 𝑔(𝑦(𝑡)) given by (21). This closed-form solution was
needed in Lemma 15 andTheorem 16.When we attempted to
apply the same methodology for even values of 𝑘 ≥ 4, we
were not able to find a closed-form solution of the equation
𝑔(𝑦(𝑡)) = 𝑠, even for fixed value of 𝑘 (e.g., 𝑘 = 4). Thus, we
focused our attention on investigating the possibility that the
equation does not have a closed-form solution. As it turned
out, this was indeed the case, at least for values of 𝑘 such that
𝑘 + 1 is prime and certain ranges of 𝑠. We believe that this
result may be of independent interest.

Before proving it, we will state three fundamental theo-
rems of Algebra.

Theorem 18 (Eisenstein’s irreducibility criterion). Let 𝑞 be a
prime number, and let 𝑓(𝑥) = 𝑎𝑛𝑥

𝑛
+ ⋅ ⋅ ⋅ + 𝑎1𝑥

1
+ 𝑎0 be a

polynomial of degree 𝑛 with integer coefficients satisfying the
following properties:

(i) 𝑞 does not divide 𝑎𝑛;
(ii) 𝑞 divides 𝑎0, 𝑎1, . . . , 𝑎𝑛−1;
(iii) 𝑞2 does not divide 𝑎0.

Then the polynomial 𝑓 is irreducible over the field of Q of
rational numbers.

Theorem 19. Let 𝐾 be a subfield of R, and let 𝑓 ∈ 𝐾[𝑋] be
an irreducible polynomial of prime degree 𝑛 > 2. If the Galois
group of 𝑓 over 𝐾 is solvable, 𝑓 has either exactly one root in
R or all its roots in R.

Theorem 20. Let 𝑓 be a polynomial with coefficients in a field
𝐾 of characteristic zero. Suppose that 𝑓 is solvable by radicals.
Then the Galois group of Γ𝐾(𝑓) of 𝑓 is a solvable group.

We now state and prove the main result, concerning the
unsolvability, in closed form, of the polynomial equation
𝑔(𝑦(𝑡)) = 𝑠.

Theorem 21. The equation 𝑔(𝑦(𝑡)) = 𝑠 is not solvable by
radicals over Q for 𝑘 = 2𝑚 with 𝑚 ≥ 2, 𝑛 = 𝑘 + 1 a prime,
and 𝑠 = 𝑙/𝑏 a rational number, given in its lower terms (i.e.,
gcd(𝑙, 𝑏) = 1), such that 𝑠 ∈ (0, 𝑔(𝑤3)), 𝑙𝑏 ̸= 0, and 𝑏 is a square
free integer.

Proof. Let 𝑠 = 𝑙/𝑏 ∈ Q, with 𝑙𝑏 ̸= 0. Then, our target poly-
nomial is 𝑝(𝑦(𝑡)) = 𝑔(𝑦(𝑡)) − (𝑙/𝑏). We will, first, show
that 𝑝(𝑦(𝑡)) is irreducible over the set of rational numbers
Q using Theorem 18. We will work, in the following, with
the polynomial 𝑏𝑝(𝑦(𝑡)) in order to have a polynomial
with integer coefficients, as required by the statement of
Theorem 18. The degree of this polynomial according to
Theorem 8 is 𝑛 = 𝑘+1, which has been assumed to be a prime.

We will show, however, that Theorem 18 is not, directly,
applicable to 𝑏𝑝(𝑦(𝑡)) since the first two conditions of the
theorem are not met. The coefficients 𝑎𝑖, 𝑖 = 0, . . . , 𝑛 in
Theorem 18 are as follows:

𝑎𝑖 = 𝑏(
2𝑚 − 1

𝑚 − 1
)(

𝑚

𝑖 − (𝑚 + 1)
) (−1)

𝑖−(𝑚+1)
,

𝑖 = 𝑚 + 1, . . . , 𝑛 = 2𝑚 + 1,

𝑎𝑖 = 0, 𝑖 = 1, . . . , 𝑚,

𝑎0 = −𝑙.

(59)

Since |𝑎𝑛| = 𝑎𝑚+1 = 𝑏 ( 2𝑚−1
𝑚−1

), the first two conditions of
Theorem 18 do not hold. Since 0 is not a root of 𝑝(𝑦(𝑡)), we
can set 𝑦(𝑡) → 1/𝑥, in order to consider the polynomial
𝑓(𝑥) = 𝑏𝑝(1/𝑥), instead of 𝑏𝑝(𝑦(𝑡)). Then each nonzero root
𝑥0 of the polynomial 𝑓(𝑥) corresponds to a nonzero root 𝑦0
of 𝑝(𝑦(𝑡)) and vice versa by the correspondence 𝑦0 ↔ 1/𝑥0.
Consequently, 𝑝(𝑦(𝑡)) is solved by radicals if and only if 𝑓(𝑥)
is solved by radicals.

Thus, from now on we will consider the polynomial
𝑓(𝑥) = 𝑏𝑝(1/𝑥). In order to have the inverse of 1/𝑥, we
will use the polynomial ℎ(𝑥) = 𝑥

2𝑚+1
𝑓(𝑥). We will apply

Theorem 18 to this polynomial because if it applies to it, then
𝑓(𝑥) will be irreducible, as well as, in turn, 𝑝(𝑦(𝑡)).

After some algebraic manipulations, the polynomial
ℎ(𝑥) = 𝑥

2𝑚+1
𝑓(𝑥) can be written as follows:

ℎ (𝑥) = 𝑏 (
2𝑚 − 1

𝑚 − 1
)

𝑚

∑

𝑖=0

(
𝑚

𝑖
) 𝑥
𝑚−𝑖

(−1)
𝑖
− 𝑙𝑥
2𝑚+1

. (60)

Now the coefficients 𝑎𝑖, 𝑖 = 0, . . . , 𝑛 = 2𝑚 + 1 of the
polynomial ℎ(𝑥) in (60) are as follows:

𝑎2𝑚+1 = −𝑙,

𝑎𝑗 = 0, 𝑗 = 𝑚 + 1, . . . , 2𝑚,

𝑎𝑗 = 𝑏(
2𝑚 − 1

𝑚 − 1
)(

𝑚

𝑚 − 𝑗
) (−1)

𝑚−𝑗
, 𝑗 = 0, . . . , 𝑚.

(61)
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In this way, we have decoupled the coefficient 𝑎𝑛 = 𝑎2𝑚+1
from all the rest so as to be feasible to satisfy the first two
conditions ofTheorem 18. Since, by assumption, gcd(𝑙, 𝑏) = 1,
in order to satisfy the first two conditions, it suffices to choose
as 𝑞 any prime divisor of 𝑏. Since 𝑏 is, by assumption, a
square free integer, then the third condition is satisfied too.
Thus,Theorem 18 applies to ℎ(𝑥) in (60) and, thus, to 𝑝(𝑦(𝑡)).
Therefore, 𝑝(𝑦(𝑡)) is irreducible overQ.

We will, now, prove that the number of real roots of ℎ(𝑥)
is neither equal to 1 nor its degree, which is 𝑛 = 𝑘 + 1. From
Theorem 10, since we have assumed that 𝑠 ∈ (0, 𝑔(𝑤3)), it
follows that 𝑔(𝑦(𝑡)) has at least two roots and, thus, ℎ(𝑥) has
also at least two roots because of the relationship between
their roots. We will prove that not all of its roots are real.
Let us assume, towards a contradiction, that ℎ(𝑥) has 2𝑚 + 1

real roots. We can differentiate ℎ(𝑥) 𝑚 times to obtain its
𝑚th order derivative, which is equal to 𝑙((2𝑚+1)!/𝑚!)𝑥

𝑚+1
+

𝑚!𝑏 ( 2𝑚−1
𝑚−1

). If ℎ(𝑥) had 2𝑚 + 1 real roots, then its 𝑚th order
derivative would have, at least, 2𝑚+1−𝑚 = 𝑚+1 ≥ 3 (since
𝑚 ≥ 2, by assumption) real roots.

The roots of 𝑙((2𝑚 + 1)!/𝑚!)𝑥
𝑚+1

+ 𝑚!𝑏 ( 2𝑚−1
𝑚−1

) are the
(𝑚 + 1)th roots of −𝐵/𝐴, with 𝐴 = 𝑙((2𝑚 + 1)!/𝑚!) and
𝐵 = 𝑚!𝑏 ( 2𝑚−1

𝑚−1
). These roots have the form | − 𝐵/𝐴|

1/(𝑚+1)

(cos(±𝜋 + 2𝑑𝜋)/(𝑚 + 1) + 𝑖 sin(±𝜋 + 2𝑑𝜋)/(𝑚 + 1)) with
𝑑 = 0, . . . , 𝑚 (±𝜋 is 𝜋 if −𝐵/𝐴 is positive and −𝜋 if −𝐵/𝐴
is negative).

A root is real if and only if the imaginary part is 0; that
is, (± 𝜋 + 2𝑑𝜋)/(𝑚 + 1) = 𝜋((2𝑑 ± 1)/(𝑚 + 1)) is an integer
multiple 𝜆 of 𝜋. Since 𝑑 ≤ 𝑚, we only need to consider 𝜆 = 1.
Solving (2𝑑±1)/(𝑚+1) = 1, we obtain 𝑑 = (𝑚+1∓1)/2. It is
easy to see that this gives us at most two values for 𝑑: (i) two
values for even𝑚:𝑚/2 (for the “−” sign in (2𝑑 ± 1)/(𝑚 + 1))
and (𝑚+2)/2 (for the “+” sign in (2𝑑±1)/(𝑚+1)) and (ii) no
such value for odd 𝑚. Thus, the 𝑚th order derivative of ℎ(𝑥)
has at most 2 real roots for even𝑚 or no real roots for odd𝑚,
while according to the assumption that ℎ(𝑥) has 2𝑚 + 1 real
roots, it should have at least 𝑚 + 1 ≥ 3 real roots, which is a
contradiction.

Therefore, either there are no real roots of ℎ(𝑥), or the
number of real roots of ℎ(𝑥) is more than 1 but less than its
degree 𝑛 = 2𝑚+ 1. Thus, fromTheorems 19 and 20, it follows
that ℎ(𝑥) is not solvable by radicals overQ.Therefore, 𝑝(𝑦(𝑡))
is not solvable by radicals overQ too.

5. Conclusions and Future Work

In this paper we studied the properties of the solution of the
differential equation

(1 − 𝑡)
𝑑𝑦 (𝑡)

𝑑𝑡
= (

𝑘 − 1

⌈
𝑘

2
⌉ − 1

)𝑦(𝑡)
𝑘−⌈𝑘/2⌉+1

(1 − 𝑦 (𝑡))
⌈𝑘/2⌉

.

(62)

This differential equation arose out of the theoretical analysis
of a security-related bit-agreement protocol (see [1]) and does
not appear to have been documented elsewhere. It can be seen
as a subclass of a natural generalization of the well-known
class of Abel differential equations of the first kind.

In this paper we showed that, for odd 𝑘, the solution of
this equation can be expressed in closed form through the
roots of the polynomial on its right-hand side. Moreover,
the resulting expression can be transformed into a closed-
form expression involving the generalized Hyper-Lambert
functions that were proposed in [3] as a generalization of the
well-known Lambert𝑊 function.

For even values of 𝑘 it was not possible to follow the same
approach since, as we showed, no closed-form expression
exists for the roots of the polynomial, at least when 𝑘 + 1 is
prime. One possible direction for future research is to extend
the proof to cover all value of 𝑘 or show that closed-form
solutions exist for nonprime 𝑘.

Another, more interesting direction would be to see
whether the more general class given in (2) can be attacked
using the strategy proposed in this paper, that is, based on
deriving closed-form solutions of the polynomial on the
right-hand side and linking them with the solution of the
differential equation, at least for certain polynomials𝑓𝑖.There
seems to be very scarce research work on the properties of
(2), and any result towards the determination of its solution
or, at least, the properties of its properties would be of high
importance.
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