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Stability of the first-order neutral delay equation 𝑥

(𝑡) + 𝑎𝑥


(𝑡 − 𝜏) = 𝑏𝑥(𝑡) + 𝑐𝑥(𝑡 − 𝜏) with complex coefficients is studied, by

analyzing the existence of stability switches.

1. Introduction

Delay differential equations (DDEs), and specifically DDEs
of neutral type, appear in different scientific and technical
problems, as in population dynamics, the modeling of net-
works containing lossless transmission lines, or the study of
oscillations in elastic bars (see [1–3]).

The aim of this paper is to characterize the stability of the
equation

𝑥


(𝑡) + 𝑎𝑥


(𝑡 − 𝜏) = 𝑏𝑥 (𝑡) + 𝑐𝑥 (𝑡 − 𝜏) , (1)

where 𝜏 > 0 is a constant delay and 𝑎, 𝑏, and 𝑐 are complex
parameters.

In [4], Cahlon and Schmidt characterized the asymptotic
behavior of the zero solution of the retarded equation with
complex coefficients

𝑥


(𝑡) = 𝑝𝑥 (𝑡) + 𝑞𝑥 (𝑡 − 𝜏) , (2)

by transforming the complex equation into two coupled
real DDEs. In [5], Wei and Zhang considered the same
equation and, by studying the distribution of the roots of
the characteristic equation for the associated real differential
system with delay, analyzed the existence of stability switches
[6–8].

Transforming a complex DDE into two coupled real
DDEs to analyze its stability has some drawbacks, as, in
general, the orders of the characteristic quasipolynomials to
be analyzed double, and, since the study of the distribution

of their roots is much more complicated as their degrees
increase, it becomes very difficult to obtain necessary and
sufficient conditions of stability [1, 9, 10].

To avoid this problem, recently Li et al. [11] presented a
method for directly analyzing the stability of complex DDEs
on the basis of stability switches.Their results generalize those
for real DDEs, thus greatly reducing the complexity of the
analysis. In this paper, the results developed in [11] will be
used to study the stability switches of the zero solution of the
neutral equation (1).

2. Previous Results

For the sake of clarity in the exposition, we recall some results
that will be used later, that may be found in [11].

Consider time-delay systems with a characteristic equa-
tion in the following form:

Δ (𝜆, 𝜏) = 𝑃 (𝜆) + 𝑄 (𝜆) 𝑒
−𝜆𝜏

, (3)

where 𝜏 ≥ 0 and 𝑃(𝜆) and 𝑄(𝜆) are complex polynomial of
order 𝑛 and 𝑚 respectively, with either 𝑛 > 𝑚 or 𝑛 = 𝑚 and
|𝛼| > |𝛽|, where 𝛼, 𝛽 ∈ C are the highest order coefficients of
𝑃(𝜆) and 𝑄(𝜆), respectively. We will also assume that

𝑃 (0) + 𝑄 (0) ̸= 0, (4)

which states that 𝜆 = 0 is not a root of (3), and that 𝑃(𝜆) and
𝑄(𝜆) have no roots on the imaginary axis simultaneously.
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The assumed conditions are those required to use the
result of Li et al. [11] stated below, but in other cases the
stability of the system is mostly understood. Thus, if 𝑛 < 𝑚,
or 𝑛 = 𝑚, and |𝛼| ≤ |𝛽|, there are clusterings of roots on a
vertical line in the right half plane or the imaginary axis, and
in the first of these cases the zero solution is unstable for all
delays. Also, if (4) fails or 𝑃(𝜆) and𝑄(𝜆) have common roots
on the imaginary axis, these common roots, or 𝜆 = 0, are
roots of Δ(𝜆, 𝜏) for all 𝜏, and for all delays the zero solution is
not asymptotically stable.

Consider the function

𝐹 (𝜔) = |𝑃 (𝑖𝜔)|
2
− |𝑄 (𝑖𝜔)|

2
. (5)

If 𝜔
∗

̸= 0 is a zero of 𝐹(𝜔) = 0, then there are an infinite
number of delays 𝜏

𝑗
corresponding to 𝜔

∗ satisfying

Δ (𝑖𝜔
∗
, 𝜏
𝑗
) = 0. (6)

For these critical values, the following theorem [11, Theorem
1] characterizes the variation of the number of zeros with
nonnegative real parts of Δ(𝜆, 𝜏), in terms of the order and
sign of the first nonzero derivative of 𝐹(𝜔) evaluated at 𝜔 =

𝜔
∗, extending to the complex coefficients setting previous

results valid only for real DDEs [8, 12, 13].

Theorem 1. Assume that Δ(𝑖𝜔
∗
, 𝜏
𝑗
) = 0, 𝑗 = 0, 1, 2, . . . Let

𝑁(𝜏) be the number of zeros with nonnegative real parts of
Δ(𝜆, 𝜏), and let 𝑀 be an integer such that 𝐹

(𝑀)
(𝜔
∗
) ̸= 0, and

𝐹
(𝑚)

(𝜔
∗
) = 0 for all 𝑚 < 𝑀. Then,

(a) 𝑁(𝜏) keeps unchanged as 𝜏 increases along 𝜏
𝑗
if 𝑀 is

even,
(b) when𝑀 is odd,𝑁(𝜏) increases by one if 𝜔∗𝐹(𝑀)(𝜔∗) >

0 and decreases by one if 𝜔
∗
𝐹
(𝑀)

(𝜔
∗
) < 0, as 𝜏

increases along 𝜏
𝑗
.

It should be noted that it is possible for a particular delay
𝜏 to produce more than one pure imaginary root, so that, in
Theorem 1, the change in 𝑁(𝜏) refers to the change resulting
from the specific critical value 𝜔

∗.

3. Stability Analysis of the First-Order
Neutral DDE

Consider the complex DDE (1), where

𝑎 = 𝑎
1
+ 𝑖𝑎
2
, 𝑏 = 𝑏

1
+ 𝑖𝑏
2
, 𝑐 = 𝑐

1
+ 𝑖𝑐
2
. (7)

The characteristic equation associated with (1) is

𝜆 + 𝑎𝜆𝑒
−𝜆𝜏

− 𝑏 − 𝑐𝑒
−𝜆𝜏

= 0, (8)

so that

Δ (𝜆, 𝜏) = 𝑃 (𝜆) + 𝑄 (𝜆) 𝑒
−𝜆𝜏

, (9)

where

𝑃 (𝜆) = 𝜆 − 𝑏, 𝑄 (𝜆) = 𝑎𝜆 − 𝑐. (10)

Since the order of both polynomials is 1, we must demand
that

|𝑎| < 1. (11)

As pointed out before, if |𝑎| ≥ 1 there are clusterings of roots
on a vertical line in the right half plane, when |𝑎| > 1, inwhich
case the system is unstable for all delays, or on the imaginary
axis, when |𝑎| = 1. In this last critical case, the stability of
the systems is not so clear, and a detailed, different type of
analysis is required, as carried out in [8, pages 70–72] in the
much simpler setting of real coefficients.

The following lemma gives 𝑁(0), the number of zeros
with nonnegative real parts of Δ(𝜆, 𝜏) when the delay is zero.

Lemma 2. If

(𝑏
1
+ 𝑐
1
) (1 + 𝑎

1
) + (𝑏
2
+ 𝑐
2
) 𝑎
2
< 0, (12)

then 𝑁(0) = 0. Otherwise, 𝑁(0) = 1.

Proof. Consider the equation

Δ (𝜆, 0) = 𝑃 (𝜆) + 𝑄 (𝜆) = 𝜆 − 𝑏 + 𝑎𝜆 − 𝑐 = 0. (13)

Then

𝜆 =

𝑏 + 𝑐

1 + 𝑎

=

(𝑏
1
+ 𝑐
1
) + 𝑖 (𝑏

2
+ 𝑐
2
)

1 + 𝑎
1
+ 𝑖𝑎
2

= ([(𝑏
1
+ 𝑐
1
) (1 + 𝑎

1
) + (𝑏
2
+ 𝑐
2
) 𝑎
2
]

+ 𝑖 [(𝑏
2
+ 𝑐
2
) (1 + 𝑎

1
) − (𝑏
1
+ 𝑐
1
) 𝑎
2
])

× ((1 + 𝑎
1
)
2

+ 𝑎
2

2
)

−1

,

(14)

and therefore

R (𝜆) < 0 ⇐⇒ (𝑏
1
+ 𝑐
1
) (1 + 𝑎

1
) + (𝑏
2
+ 𝑐
2
) 𝑎
2
< 0, (15)

and thus 𝑁(0) = 0. If R(𝜆) ≥ 0, there is only one root with
real part nonnegative, and hence 𝑁(0) = 1.

Now consider the function

𝐹 (𝜔) = |𝑃(𝑖𝜔)|
2
− |𝑄(𝑖𝜔)|

2

= (𝜔 − 𝑏
2
)
2

+ 𝑏
2

1
− (𝑎
1
𝜔 − 𝑐
2
)
2

− (𝑎
2
𝜔 + 𝑐
1
)
2

= 𝜔
2
(1 − 𝑎

2

1
− 𝑎
2

2
) + 𝜔 (2𝑎

1
𝑐
2
− 2𝑏
2
− 2𝑎
2
𝑐
1
)

+ 𝑏
2

1
+ 𝑏
2

2
− 𝑐
2

1
− 𝑐
2

2

= 𝜔
2
(1 − |𝑎|

2
) − 2I (𝑏 + 𝑎𝑐) 𝜔 + |𝑏|

2
− |𝑐|
2
,

(16)

and calculate its zeros. One gets

𝜔 =

I (𝑏 + 𝑎𝑐) ± 𝐵

1 − |𝑎|
2

, (17)

where

𝐵 = √(I (𝑏 + 𝑎𝑐))
2
− (1 − |𝑎|

2
) (|𝑏|
2
− |𝑐|
2
). (18)
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First, we assume that

I (𝑏 + 𝑎𝑐) > 0, (19)

and consider several subcases.
If (I(𝑏 + 𝑎𝑐))

2
− (1 − |𝑎|

2
)(|𝑏|
2
− |𝑐|
2
) < 0, then 𝐹(𝜔) has

no real root, and therefore the stability of the zero solution of
(1) does not change for any 𝜏 > 0.

If (I(𝑏 + 𝑎𝑐))
2
− (1 − |𝑎|

2
)(|𝑏|
2
− |𝑐|
2
) > 0, then 𝐹(𝜔) has

two real roots, 𝜔
+
, and 𝜔

−
, such that

|𝑏|
2
− |𝑐|
2
> 0 ⇒ 𝜔

+
> 𝜔
−
> 0,

|𝑏|
2
− |𝑐|
2
< 0 ⇒ 𝜔

+
> 0 > 𝜔

−
,

|𝑏|
2
− |𝑐|
2
= 0 ⇒ 𝜔

+
> 𝜔
−
= 0,

(20)

this last possibility being excluded from the analysis, since
𝜆 = 0 is a root of (3), a contradiction to (4).

Consider the casewhere𝜔
+
> 𝜔
−
> 0. Substituting𝜆 = 𝑖𝜔

into (8), and separating the real and imaginary parts, one gets

𝜔 − 𝑏
2
+ (𝑎
2
𝜔 + 𝑐
1
) sin𝜔𝜏 + (𝑎

1
𝜔 − 𝑐
2
) cos𝜔𝜏 = 0,

−𝑏
1
+ (𝑎
1
𝜔 − 𝑐
2
) sin𝜔𝜏 − (𝑎

2
𝜔 + 𝑐
1
) cos𝜔𝜏 = 0,

(21)

obtaining the following two sets of values of 𝜏 for which there
are roots,

𝜏
𝑛,1

=

𝜃
1

𝜔
+

+

2𝑛𝜋

𝜔
+

, 𝑛 = 0, 1, 2, . . . , (22)

where 0 ≤ 𝜃
1
< 2𝜋 and

cos 𝜃
1
=

(𝑏
2
− 𝜔
+
) (𝑎
1
𝜔
+
− 𝑐
2
) − 𝑏
1
(𝑎
2
𝜔
+
+ 𝑐
1
)

(𝑎
1
𝜔
+
− 𝑐
2
)
2

+ (𝑎
2
𝜔
+
+ 𝑐
1
)
2

,

sin 𝜃
1
=

(𝑏
2
− 𝜔
+
) (𝑎
2
𝜔
+
+ 𝑐
1
) + 𝑏
1
(𝑎
1
𝜔
+
− 𝑐
2
)

(𝑎
1
𝜔
+
− 𝑐
2
)
2

+ (𝑎
2
𝜔
+
+ 𝑐
1
)
2

,

(23)

𝜏
𝑛,2

=

𝜃
2

𝜔
−

+

2𝑛𝜋

𝜔
−

, 𝑛 = 0, 1, 2, . . . , (24)

where 0 ≤ 𝜃
2
< 2𝜋 and

cos 𝜃
2
=

(𝑏
2
− 𝜔
−
) (𝑎
1
𝜔
+
− 𝑐
2
) − 𝑏
1
(𝑎
2
𝜔
−
+ 𝑐
1
)

(𝑎
1
𝜔
−
− 𝑐
2
)
2

+ (𝑎
2
𝜔
−
+ 𝑐
1
)
2

,

sin 𝜃
2
=

(𝑏
2
− 𝜔
−
) (𝑎
2
𝜔
−
+ 𝑐
1
) + 𝑏
1
(𝑎
1
𝜔
−
− 𝑐
2
)

(𝑎
1
𝜔
−
− 𝑐
2
)
2

+ (𝑎
2
𝜔
−
+ 𝑐
1
)
2

.

(25)

Since

𝐹

(𝜔
+
) = −𝐹


(𝜔
−
) = 𝐵 > 0, (26)

one has

𝜔
+
𝐹

(𝜔
+
) > 0,

𝜔
−
𝐹

(𝜔
−
) < 0.

(27)

Therefore, according toTheorem 1, the number of the charac-
teristic roots with nonnegative real parts increases by one as 𝜏
passes through 𝜏

𝑛,1
and decreases by one as 𝜏 passes through

𝜏
𝑛,2
.
If 𝑁(0) = 0, that is, if the zero solution of (1) is stable for

𝜏 = 0, then it must follow that 𝜏
0,1

< 𝜏
0,2
, since 𝑁(𝜏) cannot

become negative.There are stability switches when the delays
are such that

𝜏
0,1

< 𝜏
0,2

< 𝜏
1,1

< 𝜏
1,2

< . . . . (28)

Since

𝜏
𝑛+1,1

− 𝜏
𝑛,1

=

2𝜋

𝜔
+

<

2𝜋

𝜔
−

= 𝜏
𝑛+1,2

− 𝜏
𝑛,2

, (29)

the intervals become smaller with increasing 𝑛, so that
eventually, for a certain 𝑘 ≥ 1,

𝜏
𝑘−1,1

< 𝜏
𝑘,1

≤ 𝜏
𝑘−1,2

. (30)

Thus, the distribution of delays is

𝜏
0,1

< 𝜏
0,2

< ⋅ ⋅ ⋅ < 𝜏
𝑘−1,1

< 𝜏
𝑘,1

≤ 𝜏
𝑘−1,2

< 𝜏
𝑘+1,1

< ⋅ ⋅ ⋅ ,

(31)

and there is only a finite number of stability switches, with
the system becoming unstable for 𝜏 > 𝜏

𝑘−1,1
. Under these

conditions, if 𝑁(0) = 1, that is, if the zero solution of (1) is
unstable for 𝜏 = 0, the system cannot be stabilized.

If𝑁(0) = 1, stability switches occurwhen the distribution
of delays is

𝜏
0,2

< 𝜏
0,1

< ⋅ ⋅ ⋅ < 𝜏
𝑘−1,2

< 𝜏
𝑘−1,1

< 𝜏
𝑘,1

≤ 𝜏
𝑘,2

< 𝜏
𝑘+1,1

< ⋅ ⋅ ⋅ ,

(32)

in which case there are 𝑘 switches from instability to stability
to instability. Once 𝜏

𝑘,1
≤ 𝜏
𝑘,2
, stability switch stops, so that

the system becomes unstable for 𝜏 > 𝜏
𝑘−1,1

.
The conditions on the delays for the above orderings to be

valid can be formulated directly from (22) to (25).
Now we study the case when 𝜔

+
> 0 > 𝜔

−
. Proceeding

as before, there are two sets of critical values of delays, 𝜏
𝑛,1

and 𝜏
𝑛,2
, corresponding to 𝜔

+
and 𝜔

−
, respectively, but now it

holds that 𝜔
+
𝐹

(𝜔
+
) and 𝜔

−
𝐹

(𝜔
−
) are both positive. Hence,

the number of the characteristic roots with nonnegative real
parts increases by one as 𝜏 passes through 𝜏

𝑛,1
or 𝜏
𝑛,2
. If

𝑁(0) = 0, then there is 𝜏
0,1

such that the zero solution of (1)
is stable for 𝜏 < 𝜏

0,1
and it becomes unstable for 𝜏 > 𝜏

0,1
. If

𝑁(0) = 1, the zero solution of (1) never becomes stable for
any 𝜏 > 0.

To finish the analysis when I(𝑏 + 𝑎𝑐) > 0, let

(I (𝑏 + 𝑎𝑐))
2
− (1 − |𝑎|

2
) (|𝑏|
2
− |𝑐|
2
) = 0, (33)

so that 𝐹(𝜔) has a repeated real root,

𝜔
∗
=

2I (𝑏 + 𝑎𝑐)

1 − |𝑎|
2

> 0. (34)
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For this root, as in the previous cases, there is a set of critical
delays 𝜏

𝑛
. Since 𝐹


(𝜔
∗
) = 0, we have to consider the second

derivative,

𝐹

(𝜔
∗
) = 2 (1 − |𝑎|

2
) ̸= 0. (35)

According to Theorem 1, since 𝑀 = 2 is even, 𝑁(𝜏) keeps
unchanged as 𝜏 increases along 𝜏

𝑛
. We conclude that the

stability of the zero solution of (1) does not change for any
𝜏 > 0.

Finally, consider the case when

I (𝑏 + 𝑎𝑐) < 0. (36)

The analysis and results of this case are much similar to the
previous one, and we will omit the details. There are only
minor differences when

(I (𝑏 + 𝑎𝑐))
2
− (1 − |𝑎|

2
) (|𝑏|
2
− |𝑐|
2
) > 0, (37)

and |𝑏|
2
− |𝑐|
2
> 0.

In this subcase, the function𝐹(𝜔) has two roots, 0 > 𝜔
+
>

𝜔
−
, with corresponding sets of critical delays,

𝜏
𝑛,1

=

𝜃
1

𝜔
+

−

2𝑛𝜋

𝜔
+

, 𝜏
𝑛,2

=

𝜃
2

𝜔
−

−

2𝑛𝜋

𝜔
−

, 𝑛 = 0, 1, 2, . . . ,

(38)

with −2𝜋 ≤ 𝜃
1

< 0 and −2𝜋 ≤ 𝜃
2

< 0 satisfying
the expressions (23) and (25), respectively. It holds that
𝜔
+
𝐹

(𝜔
+
) < 0 and𝜔

−
𝐹

(𝜔
−
) > 0, and hence, fromTheorem 1,

the number of the characteristic roots with nonnegative real
parts decreases by one as 𝜏 passes through 𝜏

𝑛,1
and increases

by one as 𝜏 passes through 𝜏
𝑛,2
. Also, since

𝜏
𝑛+1,2

− 𝜏
𝑛,2

=

−2𝜋

𝜔
−

<

−2𝜋

𝜔
+

= 𝜏
𝑛+1,1

− 𝜏
𝑛,1

, (39)

only a finite number of stability switches may exist.
If 𝑁(0) = 0, then it must follow that 𝜏

0,2
< 𝜏
0,1
, and

there are 𝑘 switches from stability to instability when the
distribution of the critical delays is

𝜏
0,2

< 𝜏
0,1

< ⋅ ⋅ ⋅ < 𝜏
𝑘−1,2

< 𝜏
𝑘,2

≤ 𝜏
𝑘−1,1

< 𝜏
𝑘+1,2

< . . . .

(40)

Once 𝜏
𝑘,2

≤ 𝜏
𝑘−1,1

, stability switch stops and the system
becomes unstable for 𝜏 > 𝜏

𝑘−1,2
.

Similarly, if𝑁(0) = 1, stability switches may occur for the
distribution of critical delays

𝜏
0,1

< 𝜏
0,2

< ⋅ ⋅ ⋅ < 𝜏
𝑘−1,1

< 𝜏
𝑘−1,2

< 𝜏
𝑘,2

≤ 𝜏
𝑘,1

< 𝜏
𝑘+1,2

. . . .

(41)

Once 𝜏
𝑘,2

≤ 𝜏
𝑘,1
, stability switch stops and the system remains

unstable.
In summary, the following theorem has been established.

Theorem 3. Under the hypotheses of Theorem 1, consider the
first-order complex neutral delay equation (1), where 𝑎 satisfies
condition (11).

(a) If I(𝑏 + 𝑎𝑐) ̸= 0, and (I(𝑏 + 𝑎𝑐))
2
− (1 − |𝑎|

2
)(|𝑏|
2
−

|𝑐|
2
) ≤ 0,

(1) if 𝑁(0) = 0, then the zero solution of (1) is stable
for all 𝜏 ≥ 0;

(2) if 𝑁(0) = 1, then the zero solution of (1) is
unstable for all 𝜏 ≥ 0.

(b) IfI(𝑏+𝑎𝑐) ̸= 0, (I(𝑏 + 𝑎𝑐))
2
−(1−|𝑎|

2
)(|𝑏|
2
−|𝑐|
2
) > 0,

and |𝑏|
2
− |𝑐|
2
< 0,

(1) if 𝑁(0) = 0, then there is 𝜏
0,1

such that the zero
solution of (1) is stable for 𝜏 < 𝜏

0,1
and it becomes

unstable for 𝜏 > 𝜏
0,1
;

(2) if 𝑁(0) = 1, the zero solution of (1) is always
unstable.

(c) IfI(𝑏+𝑎𝑐) > 0, (I(𝑏 + 𝑎𝑐))
2
−(1−|𝑎|

2
)(|𝑏|
2
−|𝑐|
2
) > 0,

and |𝑏|
2
− |𝑐|
2
> 0,

(1) if 𝑁(0) = 0 and the distribution of critical delays
is

𝜏
0,1

< 𝜏
0,2

< ⋅ ⋅ ⋅ < 𝜏
𝑘−1,1

< 𝜏
𝑘,1

≤ 𝜏
𝑘−1,2

< 𝜏
𝑘+1,1

< ⋅ ⋅ ⋅ ,

(42)

then the zero solution of (1) is asymptotically
stable for 𝜏 < 𝜏

0,1
and 𝜏 ∈ ⋃

𝑘−2

𝑗=0
(𝜏
𝑗,2

, 𝜏
𝑗+1,1

) and
unstable for 𝜏 ∈ ⋃

𝑘−2

𝑗=0
(𝜏
𝑗,1

, 𝜏
𝑗,2

) and 𝜏 > 𝜏
𝑘−1,1

;
(2) if 𝑁(0) = 1 and the distribution of critical delays

is

𝜏
0,2

< 𝜏
0,1

< ⋅ ⋅ ⋅ < 𝜏
𝑘−1,2

< 𝜏
𝑘−1,1

< 𝜏
𝑘,1

≤ 𝜏
𝑘,2

< 𝜏
𝑘+1,1

< ⋅ ⋅ ⋅ ,

(43)

then the zero solution of (1) is asymptotically
stable for 𝜏 ∈ ⋃

𝑘−1

𝑗=0
(𝜏
𝑗,2

, 𝜏
𝑗,1

) and unstable for
𝜏 < 𝜏
0,2

, 𝜏 ∈ ⋃
𝑘−2

𝑗=0
(𝜏
𝑗,1

, 𝜏
𝑗+1,2

), and 𝜏 > 𝜏
𝑘−1,1

.

(d) IfI(𝑏+𝑎𝑐) < 0, (I(𝑏 + 𝑎𝑐))
2
−(1−|𝑎|

2
)(|𝑏|
2
−|𝑐|
2
) > 0,

and |𝑏|
2
− |𝑐|
2
> 0,

(1) if 𝑁(0) = 0 and the distribution of critical delays
is

𝜏
0,2

< 𝜏
0,1

< ⋅ ⋅ ⋅ < 𝜏
𝑘−1,2

< 𝜏
𝑘,2

≤ 𝜏
𝑘−1,1

< 𝜏
𝑘+1,2

< ⋅ ⋅ ⋅ ,

(44)

then the zero solution of (1) is asymptotically
stable for 𝜏 < 𝜏

0,2
and 𝜏 ∈ ⋃

𝑘−2

𝑗=0
(𝜏
𝑗,1

, 𝜏
𝑗+1,2

), and
unstable for 𝜏 ∈ ⋃

𝑘−2

𝑗=0
(𝜏
𝑗,2

, 𝜏
𝑗,1

) and 𝜏 > 𝜏
𝑘−1,2

;
(2) if 𝑁(0) = 1 and the distribution of critical delays

is

𝜏
0,1

< 𝜏
0,2

< ⋅ ⋅ ⋅ < 𝜏
𝑘−1,1

< 𝜏
𝑘−1,2

< 𝜏
𝑘,2

≤ 𝜏
𝑘,1

< 𝜏
𝑘+1,2

. . . ,

(45)

then the zero solution of (1) is asymptotically
stable for 𝜏 ∈ ⋃

𝑘−1

𝑗=0
(𝜏
𝑗,1

, 𝜏
𝑗,2

) and unstable for
𝜏 < 𝜏
0,1
, 𝜏 ∈ ⋃

𝑘−2

𝑗=0
(𝜏
𝑗,2

, 𝜏
𝑗+1,1

), and 𝜏 > 𝜏
𝑘−1,2

.
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Finally, we will consider the case

I (𝑏 + 𝑎𝑐) = 0, (46)

for which

𝐹 (𝜔) = 𝜔
2
(1 − |𝑎|

2
) + |𝑏|

2
− |𝑐|
2
. (47)

If |𝑏|2 − |𝑐|
2
> 0, then 𝐹(𝜔) has no real root, and therefore

the stability of the zero solution of (1) does not change for any
𝜏 ≥ 0.

If |𝑏|2 − |𝑐|
2
< 0, then 𝐹(𝜔) has two real roots,

𝜔
+
= √

|𝑐|
2
− |𝑏|
2

1 − |𝑎|
2

, 𝜔
−
= −√

|𝑐|
2
− |𝑏|
2

1 − |𝑎|
2

, (48)

with corresponding sets of critical delays

𝜏
𝑛,1

=

𝜃
1

𝜔
+

+

2𝑛𝜋

𝜔
+

, 𝑛 = 0, 1, 2, . . . , (49)

where 0 ≤ 𝜃
1
< 2𝜋, and

cos 𝜃
1
= ((𝑏

2
− √(|𝑐|

2
− |𝑏|
2
) / (1 − |𝑎|

2
))

× (𝑎
1
√(|𝑐|
2
− |𝑏|
2
) / (1 − |𝑎|

2
) − 𝑐
2
))

× (𝑏
2

1
+ (√(|𝑐|

2
− |𝑏|
2
) / (1 − |𝑎|

2
) − 𝑏
2
)

2

)

−1

− (𝑏
1
(𝑎
2
√(|𝑐|
2
− |𝑏|
2
) / (1 − |𝑎|

2
) + 𝑐
1
))

× (𝑏
2

1
+ (√(|𝑐|

2
− |𝑏|
2
) / (1 − |𝑎|

2
) − 𝑏
2
)

2

)

−1

,

sin 𝜃
1
= ((𝑏

2
− √(|𝑐|

2
− |𝑏|
2
) / (1 − |𝑎|

2
))

× (𝑎
2
√(|𝑐|
2
− |𝑏|
2
) / (1 − |𝑎|

2
) + 𝑐
1
))

× (𝑏
2

1
+ (√(|𝑐|

2
− |𝑏|
2
) / (1 − |𝑎|

2
) − 𝑏
2
)

2

)

−1

+ (𝑏
1
(𝑎
1
√(|𝑐|
2
− |𝑏|
2
) / (1 − |𝑎|

2
) − 𝑐
2
))

× (𝑏
2

1
+ (√(|𝑐|

2
− |𝑏|
2
) / (1 − |𝑎|

2
) − 𝑏
2
)

2

)

−1

,

𝜏
𝑛,2

=

𝜃
2

𝜔
−

−

2𝑛𝜋

𝜔
−

, 𝑛 = 0, 1, 2, . . . ,

(50)

where −2𝜋 ≤ 𝜃
2
< 0, and

cos 𝜃
2
= ((𝑏

2
+ √(|𝑐|

2
− |𝑏|
2
) / (1− |𝑎|

2
))

× (−𝑎
1
√(|𝑐|
2
− |𝑏|
2
) / (1−|𝑎|

2
) −𝑐
2
))

× (𝑏
2

1
+ (√(|𝑐|

2
− |𝑏|
2
) / (1 − |𝑎|

2
) + 𝑏
2
)

2

)

−1

− (𝑏
1
(−𝑎
2
√(|𝑐|
2
− |𝑏|
2
) / (1−|𝑎|

2
) +𝑐
1
))

× (𝑏
2

1
+ (√(|𝑐|

2
− |𝑏|
2
) / (1 − |𝑎|

2
) + 𝑏
2
)

2

)

−1

,

sin 𝜃
2
= ((𝑏

2
+ √(|𝑐|

2
− |𝑏|
2
) / (1−|𝑎|

2
))

× (−𝑎
2
√(|𝑐|
2
− |𝑏|
2
) / (1−|𝑎|

2
) +𝑐
1
))

× (𝑏
2

1
+ (√(|𝑐|

2
− |𝑏|
2
) / (1 − |𝑎|

2
) + 𝑏
2
)

2

)

−1

+ (𝑏
1
(−𝑎
1
√(|𝑐|
2
− |𝑏|
2
) / (1−|𝑎|

2
) −𝑐
2
))

× (𝑏
2

1
+ (√(|𝑐|

2
− |𝑏|
2
) / (1 − |𝑎|

2
) + 𝑏
2
)

2

)

−1

.

(51)

In this case, it holds that 𝜔
+
𝐹

(𝜔
+
) and 𝜔

−
𝐹

(𝜔
−
) are

both positive, and hence, fromTheorem 1, the number of the
characteristic roots with nonnegative real parts increases by
one as 𝜏 passes either through 𝜏

𝑛,1
or 𝜏
𝑛,2
. Thus, the following

theorem has been established.

Theorem 4. Under the hypotheses of Theorem 1, consider (1)
satisfying condition (11). If I(𝑏 + 𝑎𝑐) = 0,

(a) if |𝑏|2 − |𝑐|
2
> 0, then the zero solution of (1) is always

stable if 𝑁(0) = 0 and unstable if 𝑁(0) = 1;
(b) if |𝑏|2 − |𝑐|

2
< 0, if 𝑁(0) = 0 then there is 𝜏

0,1
such

that the zero solution of (1) is stable for 𝜏 < 𝜏
0,1

and
it becomes unstable for 𝜏 > 𝜏

0,1
. If 𝑁(0) = 1, the zero

solution of (1) never becomes stable for any 𝜏 ≥ 0.

Acknowledgments

The authors wish to thank the reviewers for useful comments
and suggestions, which improved the paper. F. Rodŕıguez
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