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We study the nonlinear 𝑞-difference equations of fractional order (𝐷𝛼
𝑞
𝑢)(𝑡) + 𝑓(𝑡, 𝑢(𝑡)) = 0, 0 < 𝑡 < 1, (𝐷𝑖

𝑞
𝑢)(0) = 0, (𝐷𝛽

𝑞
𝑢)(1) =

𝑎(𝐷
𝛽

𝑞
𝑢)(𝜂), 0 ≤ 𝑖 ≤ 𝑛 − 2, where 𝐷𝛼

𝑞
is the fractional 𝑞-derivative of the Riemann-Liouville type of order 𝛼, 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝛼 > 2,

1 ≤ 𝛽 ≤ 𝑛 − 2, and 0 ≤ 𝑎 ≤ 1. We obtain the existence and multiplicity results of positive solutions by using some fixed point
theorems. Finally, we give examples to illustrate the results.

1. Introduction

The 𝑞-difference calculus or quantum calculus is an old
subject that was initially developed by Jackson [1, 2]. It is rich
in history and in applications as the reader can find in the
work by Ernst [3]. For some recent existence results on 𝑞-
difference equations, see [4–7] and the references therein.

The fractional 𝑞-difference calculus had its origin in the
works by Al-Salam and Agarwal. Henceforth, fractional 𝑞-
difference equations have gained considerable importance
due to their application in various sciences, such as physics,
chemistry, aerodynamics, biology, economics, control theory,
mechanics, electricity, signal and image processing, bio-
physics, blood flow phenomena, and fitting of experimental
data. It has been a significant development in difference
equations involving fractional 𝑞-derivatives; see [8–11] and
references therein. As well known, fractional differential
equations boundary value problems is currently under strong
research, see [12–21] and references therein. In particular, in
recent years, fractional 𝑞-difference boundary value problem
(BVP) was in its infancy, and many people begin to study
the existence of positive solutions for this kind of BVP; see
[22–27] and references therein.However, there are few related
results available. Lots of work and development should be
done in the future.

Recently, in [16], Li et al. considered the BVP of nonlinear
fractional difference equation

𝐷
𝛼

0+
𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡)) = 0, 0 < 𝑡 < 1,

𝑢 (0) = 0, 𝐷
𝛽

0+
𝑢 (1) = 𝑎𝐷

𝛽

0+
𝑢 (𝜉) ,

(1)

where 1 < 𝛼 ≤ 2, 0 ≤ 𝛽 ≤ 1, 0 ≤ 𝑎 ≤ 1, 𝜉 ∈ (0, 1), and
𝑓 : [0, 1] × [0,∞) → [0,∞) satisfies Caratheodory type
conditions.

More recently, in [23], Ferreira considered the BVP of
fractional 𝑞-difference equation

(𝐷
𝛼

𝑞
𝑦) (𝑥) = −𝑓 (𝑥, 𝑦 (𝑥)) , 0 < 𝑥 < 1,

𝑦 (0) = (𝐷
𝑞
𝑦) (0) = 0, (𝐷

𝑞
𝑦) (1) = 𝛽 ≥ 0,

(2)

where 2 < 𝛼 ≤ 3 and 𝑓 : [0, 1] × 𝑅 → 𝑅 is a nonnegative
continuous function.

Motivated by thework above, in this paper, wewill discuss
the following BVP:

(𝐷
𝛼

𝑞
𝑢) (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡)) = 0, 0 < 𝑡 < 1,

(𝐷
𝑖

𝑞
𝑢) (0) = 0, (𝐷

𝛽

𝑞
𝑢) (1) = 𝑎 (𝐷

𝛽

𝑞
𝑢) (𝜂) , 0 ≤ 𝑖 ≤ 𝑛 − 2,

(3)
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where 𝑛 − 1 < 𝛼 ≤ 𝑛 (𝑛 > 2), 1 ≤ 𝛽 ≤ 𝑛 − 2, 0 < 𝜂 < 1,
0 ≤ 𝑎 ≤ 1, and 𝑓 : [0, 1] × [0,∞) → [0,∞) satisfies
Caratheodory type conditions. We discuss the existence of
positive solutions for BVP(3) and obtain multiplicity results
which extend and improve the known results by using some
fixed point theorems.

2. Preliminary Results

In this section, we introduce definitions and preliminary facts
which are used throughout this paper.

Let 𝑞 ∈ (0, 1) and define

[𝑎]
𝑞
=
1 − 𝑞
𝑎

1 − 𝑞
, 𝑎 ∈ 𝑅. (4)

The 𝑞-analogue of the power function (𝑎 − 𝑏)
𝑛 with 𝑛 ∈

𝑁
0
is

(𝑎 − 𝑏)
(0)

= 1, (𝑎 − 𝑏)
(𝑛)

=

𝑛−1

∏

𝑘=0

(𝑎 − 𝑏𝑞
𝑘

) ,

𝑛 ∈ 𝑁, 𝑎, 𝑏 ∈ 𝑅.

(5)

More generally, if 𝛼 ∈ 𝑅, then

(𝑎 − 𝑏)
(𝛼)

= 𝑎
𝛼

𝑛−1

∏

𝑛=0

𝑎 − 𝑏𝑞
𝑛

𝑎 − 𝑏𝑞𝛼+𝑛
. (6)

Note that, if 𝑏 = 0, then 𝑎(𝛼) = 𝑎
𝛼. The 𝑞-gamma function is

defined by

Γ
𝑞
(𝑥) =

(1 − 𝑞)
(𝑥−1)

(1 − 𝑞)
𝑥−1

, 𝑥 ∈ 𝑅 \ {0, −1, −2, . . .} , (7)

and satisfies Γ
𝑞
(𝑥 + 1) = [𝑥]

𝑞
Γ
𝑞
(𝑥).

Then, let us recall some basic concepts of 𝑞-calculus [28].

Definition 1. For 0 < 𝑞 < 1, we define the 𝑞-derivative of a
real-value function 𝑓 as

(𝐷
𝑞
𝑓) (𝑥) =

𝑓 (𝑥) − 𝑓 (𝑞𝑥)

(1 − 𝑞) 𝑥
,

(𝐷
𝑞
𝑓) (0) = lim

𝑥→0

(𝐷
𝑞
𝑓) (𝑥) .

(8)

Note that lim
𝑞→1

−𝐷
𝑞
𝑓(𝑥) = 𝑓

󸀠

(𝑥).

Definition 2. The higher-order 𝑞-derivatives are defined
inductively as

(𝐷
0

𝑞
𝑓) (𝑥) = 𝑓 (𝑥) ,

(𝐷
𝑛

𝑞
𝑓) (𝑡) = 𝐷

𝑞
(𝐷
𝑛−1

𝑞
𝑓) (𝑡) , 𝑛 ∈ 𝑁.

(9)

Definition 3. The 𝑞-integral of a function 𝑓 in the interval
[0, 𝑏] is given by

(𝐼
𝑞
𝑓) (𝑥) = ∫

𝑥

0

𝑓 (𝑡) 𝑑
𝑞
𝑡

= 𝑥 (1 − 𝑞)

∞

∑

𝑛=0

𝑓 (𝑥𝑞
𝑛

) 𝑞
𝑛

, 𝑥 ∈ [0, 𝑏] .

(10)

If 𝑎 ∈ [0, 𝑏] and 𝑓 is defined in the interval [0, 𝑏], its integral
from 𝑎 to 𝑏 is defined by

∫

𝑏

𝑎

𝑓 (𝑡) 𝑑
𝑞
𝑡 = ∫

𝑏

0

𝑓 (𝑡) 𝑑
𝑞
𝑡 − ∫

𝑎

0

𝑓 (𝑡) 𝑑
𝑞
𝑡. (11)

Similarly as done for derivatives, an operator 𝐼
𝑛

𝑞
can be

defined; namely,

(𝐼
0

𝑞
𝑓) (𝑥) = 𝑓 (𝑥) ,

(𝐼
𝑛

𝑞
𝑓) (𝑥) = 𝐼

𝑞
(𝐼
𝑛−1

𝑞
𝑓) (𝑥) , 𝑛 ∈ 𝑁.

(12)

Observe that

𝐷
𝑞
𝐼
𝑞
𝑓 (𝑥) = 𝑓 (𝑥) , (13)

and if 𝑓 is continuous at 𝑥 = 0, then 𝐼
𝑞
𝐷
𝑞
𝑓(𝑥) = 𝑓(𝑥)−𝑓(0).

We now point out three formulas (
𝑖
𝐷
𝑞
denotes the

derivative with respect to variable 𝑖):

[𝑎 (𝑡 − 𝑠)]
(𝛼)

= 𝑎
𝛼

(𝑡 − 𝑠)
(𝛼)

,

𝑡
𝐷
𝑞
(𝑡 − 𝑠)

(𝛼)

= [𝛼]
𝑞
(𝑡 − 𝑠)

(𝛼−1)

,

𝑥
𝐷
𝑞
∫

𝑥

0

𝑓 (𝑥, 𝑡) 𝑑
𝑞
𝑡 = ∫

𝑥

0

𝑥
𝐷
𝑞
𝑓 (𝑥, 𝑡) 𝑑

𝑞
𝑡 + 𝑓 (𝑞𝑥, 𝑥) .

(14)

Remark 4. Wenote that if𝛼 ≥ 0 and𝑎 ≤ 𝑏 ≤ 𝑡, then (𝑡−𝑎)(𝛼) ≥
(𝑡 − 𝑏)

(𝛼) [19].

Definition 5 (see [9]). Let 𝛼 ≥ 0 and let 𝑓 be a function
defined on [0, 1]. The fractional 𝑞-integral of the Riemann-
Liouville type is (𝐼0

𝑞
𝑓)(𝑥) = 𝑓(𝑥) and

(𝐼
𝛼

𝑞
𝑓) (𝑥) =

1

Γ
𝑞
(𝛼)

∫

𝑥

0

(𝑥 − 𝑞𝑡)
(𝛼−1)

𝑓 (𝑡) 𝑑
𝑞
𝑡,

𝛼 > 0, 𝑥 ∈ [0, 1] .

(15)

Definition 6 (see [11]). The fractional 𝑞-derivative of the
Riemann-Liouville type of 𝛼 ≥ 0 is defined by (𝐷0

𝑞
𝑓)(𝑥) =

𝑓(𝑥) and

(𝐷
𝛼

𝑞
𝑓) (𝑥) = (𝐷

𝑚

𝑞
𝐼
𝑚−𝛼

𝑞
𝑓) (𝑥) , 𝛼 > 0, (16)

where𝑚 is the smallest integer greater than or equal to 𝛼.

Lemma 7 (see [9, 11]). Let 𝛼, 𝛽 ≥ 0 and let 𝑓 be a function
defined on [0, 1]. Then, the next formulas hold:

(1) (𝐼𝛽
𝑞
𝐼
𝛼

𝑞
𝑓)(𝑥) = (𝐼

𝛼+𝛽

𝑞
𝑓)(𝑥),

(2) (𝐷𝛼
𝑞
𝐼
𝛼

𝑞
𝑓)(𝑥) = 𝑓(𝑥).

Remark 8. Assume that 𝑔(𝑡) ∈ [0, 1] and 𝛼, 𝛽 are two con-
stants such that 𝛼 > 2 ≥ 𝛽 ≥ 1. Then

𝐷
𝛽

𝑞
∫

𝑡

0

(𝑡 − 𝑞𝑠)
(𝛼−1)

𝑔 (𝑠) 𝑑
𝑞
𝑠

=
Γ
𝑞
(𝛼)

Γ
𝑞
(𝛼 − 𝛽)

∫

𝑡

0

(𝑡 − 𝑞𝑠)
(𝛼−𝛽−1)

𝑔 (𝑠) 𝑑
𝑞
.

(17)
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Proof. From Lemma 7, we can get

(𝐷
𝛽

𝑞
𝐼
𝛼

𝑞
𝑔) (𝑡) = (𝐷

𝛽

𝑞
𝐼
𝛽

𝑞
𝐼
𝛼−𝛽

𝑞
𝑔) (𝑡) = (𝐼

𝛼−𝛽

𝑞
𝑔) (𝑡) , (18)

so

𝐷
𝛽

𝑞

1

Γ
𝑞
(𝛼)

∫

𝑡

0

(𝑡 − 𝑞𝑠)
(𝛼−1)

𝑔 (𝑠) 𝑑
𝑞
𝑠

=
1

Γ
𝑞
(𝛼 − 𝛽)

∫

𝑡

0

(𝑡 − 𝑞𝑠)
(𝛼−𝛽−1)

𝑔 (𝑠) 𝑑
𝑞
;

(19)

that is, (17) holds. The proof is completed.

Lemma 9 (see [22]). Let 𝛼 > 0 and let 𝑝 be a positive integer.
Then, the following equality holds:

(𝐼
𝛼

𝑞
𝐷
𝑝

𝑞
𝑓) (𝑥) = (𝐷

𝑝

𝑞
𝐼
𝛼

𝑞
𝑓) (𝑥)

−

𝑝−1

∑

𝑘=0

𝑥
𝛼−𝑝+𝑘

Γ
𝑞
(𝛼 + 𝑘 − 𝑝 + 1)

(𝐷
𝑘

𝑞
𝑓) (0) .

(20)

Lemma 10. Let 𝑔(𝑡) ∈ 𝐿[0, 1]; then the unique solution of

(𝐷
𝛼

𝑞
𝑢) (𝑡) + 𝑔 (𝑡) = 0, 0 < 𝑡 < 1,

(𝐷
𝑖

𝑞
𝑢) (0) = 0, (𝐷

𝛽

𝑞
𝑢) (1) = 𝑎 (𝐷

𝛽

𝑞
𝑢) (𝜂) , 0 ≤ 𝑖 ≤ 𝑛 − 2,

(21)

is

𝑢 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑞𝑠) 𝑔 (𝑠) 𝑑
𝑞
𝑠, (22)

where

𝐺 (𝑡, 𝑠)

=
1

ΛΓ
𝑞
(𝛼)

×

{{{{{{{{{{{{{{

{{{{{{{{{{{{{{

{

(1 − 𝑠)
(𝛼−𝛽−1)

𝑡
𝛼−1

−𝑎(𝜂 − 𝑠)
(𝛼−𝛽−1)

𝑡
𝛼−1

−Λ(𝑡 − 𝑠)
(𝛼−1)

, 0 ≤ 𝑠 ≤ min (𝜂, 𝑡) ≤ 1,

(1 − 𝑠)
(𝛼−𝛽−1)

𝑡
𝛼−1

−𝑎(𝜂 − 𝑠)
(𝛼−𝛽−1)

𝑡
𝛼−1

, 0 ≤ 𝑡 ≤ 𝑠 ≤ 𝜂 ≤ 1,

(1 − 𝑠)
(𝛼−𝛽−1)

𝑡
𝛼−1

−Λ(𝑡 − 𝑠)
(𝛼−1)

, 0 ≤ 𝜂 ≤ 𝑠 ≤ 𝑡 ≤ 1,

(1 − 𝑠)
(𝛼−𝛽−1)

𝑡
𝛼−1

, 0 ≤ max (𝑡, 𝜂) ≤ 𝑠 ≤ 1,

(23)

where Λ = 1 − 𝑎𝜂
𝛼−𝛽−1.

Proof. Let 𝑢(𝑡) be a solution of (21); in view of Lemma 7 and
Lemma 9, (21) is equivalent to the integral equation

𝑢 (𝑡) = 𝑐
1
𝑡
𝛼−1

+ 𝑐
2
𝑡
𝛼−2

+ ⋅ ⋅ ⋅ + 𝑐
𝑛
𝑡
𝛼−𝑛

−
1

Γ
𝑞
(𝛼)

∫

𝑡

0

(𝑡 − 𝑞𝑠)
(𝛼−1)

𝑔 (𝑠) 𝑑
𝑞
𝑠,

(24)

where 𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛
are some constants to be determined. The

boundary conditions (𝐷𝑖
𝑞
𝑢)(0) = 0, 0 ≤ 𝑖 ≤ 𝑛 − 2, imply that

𝑐
2
= 𝑐
3
= ⋅ ⋅ ⋅ = 𝑐

𝑛
= 0. Thus,

𝑢 (𝑡) = 𝑐
1
𝑡
𝛼−1

−
1

Γ
𝑞
(𝛼)

∫

𝑡

0

(𝑡 − 𝑞𝑠)
(𝛼−1)

𝑔 (𝑠) 𝑑
𝑞
𝑠. (25)

By Remark 8, we have

(𝐷
𝛽

𝑞
𝑢) (𝑡) = 𝑐

1

Γ
𝑞
(𝛼)

Γ
𝑞
(𝛼 − 𝛽)

𝑡
𝛼−𝛽−1

−
1

Γ
𝑞
(𝛼 − 𝛽)

× ∫

𝑡

0

(𝑡 − 𝑞𝑠)
(𝛼−𝛽−1)

𝑔 (𝑠) 𝑑
𝑞
𝑠.

(26)

For (𝐷𝛽
𝑞
𝑢)(1) = 𝑎(𝐷

𝛽

𝑞
𝑢)(𝜂),

𝑐
1
=

1

(1 − 𝑎𝜂𝛼−𝛽−1) Γ
𝑞
(𝛼)

[∫

1

0

(1 − 𝑞𝑠)
(𝛼−𝛽−1)

𝑔 (𝑠) 𝑑
𝑞
𝑠

−𝑎∫

𝜂

0

(𝜂 − 𝑞𝑠)
(𝛼−𝛽−1)

𝑔 (𝑠) 𝑑
𝑞
𝑠] .

(27)

Hence,

𝑢 (𝑡) =
𝑡
𝛼−1

ΛΓ
𝑞
(𝛼)

[∫

1

0

(1 − 𝑞𝑠)
(𝛼−𝛽−1)

𝑔 (𝑠) 𝑑
𝑞
𝑠

−𝑎∫

𝜂

0

(𝜂 − 𝑞𝑠)
(𝛼−𝛽−1)

𝑔 (𝑠) 𝑑
𝑞
𝑠]

−
1

Γ
𝑞
(𝛼)

∫

𝑡

0

(𝑡 − 𝑞𝑠)
(𝛼−1)

𝑔 (𝑠) 𝑑
𝑞
𝑠

= ∫

1

0

𝐺 (𝑡, 𝑞𝑠) 𝑔 (𝑠) 𝑑
𝑞
𝑠.

(28)

The proof is complete.

Remark 11. For the special case where 𝑎 = 0, it is easy to see
that 𝐺(𝑡, 𝑠) can be written as

𝐺 (𝑡, 𝑠) =
1

Γ
𝑞
(𝛼)

× {
(1 − 𝑠)

(𝛼−𝛽−1)

𝑡
𝛼−1

− (𝑡 − 𝑠)
(𝛼−1)

, 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,

(1 − 𝑠)
(𝛼−𝛽−1)

𝑡
𝛼−1

, 0 ≤ 𝑡 ≤ 𝑠 ≤ 1.

(29)

Lemma 12. Green function 𝐺 in Lemma 10 satisfies the
following conditions:

(i) 𝐺(𝑡, 𝑞𝑠) ≥ 0 for 𝑡, 𝑠 ∈ [0, 1];

(ii) 𝐺(𝑡, 𝑞𝑠) ≤ 𝐺(1, 𝑞𝑠) for 𝑡, 𝑠 ∈ [0, 1];

(iii) 𝐺(𝑡, 𝑞𝑠) ≥ 𝑡
𝛼−1

𝐺(1, 𝑞𝑠) for 𝑡, 𝑠 ∈ [0, 1].
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Proof. Let

𝑔
1
(𝑡, 𝑠) = (1 − 𝑠)

(𝛼−𝛽−1)

𝑡
𝛼−1

− 𝑎(𝜂 − 𝑠)
(𝛼−𝛽−1)

𝑡
𝛼−1

− Λ(𝑡 − 𝑠)
(𝛼−1)

, 0 ≤ 𝑠 ≤ min (𝜂, 𝑡) ≤ 1,

𝑔
2
(𝑡, 𝑠) = (1 − 𝑠)

(𝛼−𝛽−1)

𝑡
𝛼−1

− 𝑎(𝜂 − 𝑠)
(𝛼−𝛽−1)

𝑡
𝛼−1

, 0 ≤ 𝑡 ≤ 𝑠 ≤ 𝜂 ≤ 1,

𝑔
3
(𝑡, 𝑠) = (1 − 𝑠)

(𝛼−𝛽−1)

𝑡
𝛼−1

− Λ(𝑡 − 𝑠)
(𝛼−1)

, 0 ≤ 𝜂 ≤ 𝑠 ≤ 𝑡 ≤ 1,

𝑔
4
(𝑡, 𝑠) = (1 − 𝑠)

(𝛼−𝛽−1)

𝑡
𝛼−1

, 0 ≤ max (𝑡, 𝜂) ≤ 𝑠 ≤ 1.

(30)

We first prove part (i). For 𝑡, 𝑠 ∈ [0, 1], from Remark 4,
for 𝑡 ̸= 0,

𝑔
1
(𝑡, 𝑞𝑠) = (1 − 𝑞𝑠)

(𝛼−𝛽−1)

𝑡
𝛼−1

− 𝑎𝜂
𝛼−𝛽−1

× (1 −
𝑞𝑠

𝜂
)

(𝛼−𝛽−1)

𝑡
𝛼−1

− Λ(1 −
𝑞𝑠

𝑡
)

(𝛼−1)

𝑡
𝛼−1

= Λ𝑡
𝛼−1

[(1 − 𝑞𝑠)
(𝛼−𝛽−1)

− (1 −
𝑞𝑠

𝑡
)

(𝛼−1)

]

+ 𝑎𝜂
𝛼−𝛽−1

𝑡
𝛼−1

[(1 − 𝑞𝑠)
(𝛼−𝛽−1)

− (1 −
𝑞𝑠

𝜂
)

(𝛼−𝛽−1)

]

≥ Λ𝑡
𝛼−1

[(1 − 𝑞𝑠)
(𝛼−𝛽−1)

− (1 − 𝑞𝑠)
(𝛼−1)

]

+ 𝑎𝜂
𝛼−𝛽−1

𝑡
𝛼−1

[(1 − 𝑞𝑠)
(𝛼−𝛽−1)

− (1 − 𝑞𝑠)
(𝛼−𝛽−1)

]

≥ 0.

(31)

Since 𝑔
1
(𝑡, 𝑞𝑠) ≥ 0, it is easy to know 𝑔

2
(𝑡, 𝑞𝑠) ≥ 0, 𝑔

3
(𝑡, 𝑞𝑠) ≥

0, and 𝑔
4
(𝑡, 𝑞𝑠) ≥ 0. Therefore, 𝐺(𝑡, 𝑞𝑠) ≥ 0.

Next, we prove part (ii). Fix 𝑠 ∈ [0, 1], and

𝑡
𝐷
𝑞
𝑔
1
(𝑡, 𝑞𝑠) = [𝛼 − 1]

𝑞
(1 − 𝑞𝑠)

(𝛼−𝛽−1)

𝑡
𝛼−2

− 𝑎𝜂
𝛼−𝛽−1

[𝛼 − 1]
𝑞
(1 −

𝑞𝑠

𝜂
)

(𝛼−𝛽−1)

𝑡
𝛼−2

− Λ[𝛼 − 1]
𝑞
(1 −

𝑞𝑠

𝑡
)

(𝛼−2)

𝑡
𝛼−2

= [𝛼 − 1]
𝑞
𝑡
𝛼−2

{Λ[(1 − 𝑞𝑠)
(𝛼−𝛽−1)

−(1 −
𝑞𝑠

𝑡
)

(𝛼−2)

] + 𝑎𝜂
𝛼−𝛽−1

× [(1 − 𝑞𝑠)
(𝛼−𝛽−1)

−(1 −
𝑞𝑠

𝜂
)

(𝛼−𝛽−1)

]}

≥ [𝛼 − 1]
𝑞
𝑡
𝛼−2

{Λ [(1 − 𝑞𝑠)
(𝛼−𝛽−1)

−(1 − 𝑞𝑠)
(𝛼−2)

]}

≥ 0.

(32)

That is, 𝑔
1
(𝑡, 𝑞𝑠) is increasing function of 𝑡. By the same

way, we can conclude that 𝑔
2
(𝑡, 𝑞𝑠), 𝑔

3
(𝑡, 𝑞𝑠), and 𝑔

4
(𝑡, 𝑞𝑠) are

increasing functions of 𝑡 for fixed 𝑠 ∈ [0, 1]. Thus, 𝐺(𝑡, 𝑞𝑠) ≤
𝐺(1, 𝑞𝑠) for 𝑡, 𝑠 ∈ [0, 1].

Finally, we prove part (iii). Suppose that 0 ≤ 𝑞𝑠 ≤

min{𝑡, 𝜂} ≤ 1; then

𝐺 (𝑡, 𝑞𝑠)

𝐺 (1, 𝑞𝑠)

=
(1−𝑞𝑠)

(𝛼−𝛽−1)

𝑡
𝛼−1

−𝑎(𝜂−𝑞𝑠)
(𝛼−𝛽−1)

𝑡
𝛼−1

−Λ(𝑡−𝑞𝑠)
(𝛼−1)

(1−𝑞𝑠)
(𝛼−𝛽−1)

−𝑎(𝜂−𝑞𝑠)
(𝛼−𝛽−1)

−Λ(1−𝑞𝑠)
(𝛼−1)

=

𝑡
𝛼−1

[(1−𝑞𝑠)
(𝛼−𝛽−1)

−𝑎(𝜂−𝑞𝑠)
(𝛼−𝛽−1)

−Λ(1−𝑞𝑠/𝑡)
(𝛼−1)

]

(1−𝑞𝑠)
(𝛼−𝛽−1)

−𝑎(𝜂−𝑞𝑠)
(𝛼−𝛽−1)

−Λ(1−𝑞𝑠)
(𝛼−1)

≥ 𝑡
𝛼−1

.

(33)

For other circumstances, we also get 𝐺(𝑡, 𝑞𝑠) ≥

𝑡
𝛼−1

𝐺(1, 𝑞𝑠) and this completes the proof.

Remark 13. Let 0 < 𝜏 < 1; then 0 < 𝜏
𝛼−1

< 1 and

min
𝑡∈[𝜏,1]

𝐺 (𝑡, 𝑞𝑠) ≥ 𝜏
𝛼−1

𝐺 (1, 𝑞𝑠) for 𝑠 ∈ [0, 1] . (34)

Lemma 14 (see [29]). Let 𝑋 be a Banach space with 𝐶 ⊂ 𝑋

being closed and convex. Assume that 𝑈 is a relatively open
subset of𝐶with 0 ∈ 𝑈 and𝑇 : 𝑈 → 𝐶 is complete continuous.
Then either

(i) 𝑇 has a fixed point in 𝑈, or
(ii) there exist 𝑢 ∈ 𝜕𝑈 and 𝜆 ∈ (0, 1) with 𝑢 = 𝜆𝑇𝑢.

Lemma 15 (see Krasnoselskii’s [30]). Let𝐸 be a Banach space,
and 𝐾 ∈ 𝐸 is a cone in 𝐸. Assume that Ω

1
and Ω

2
are open

subsets of 𝐸 with 0 ∈ Ω
1
and Ω

1
⊂ Ω
2
. Let 𝑇 : 𝐾 ∩ (Ω

2
\

Ω
1
) → 𝐾 be a completely continuous operator. In addition,

suppose that either

(𝐻
1
) ‖𝑇𝑢‖ ≤ ‖𝑢‖, for all 𝑢 ∈ 𝐾 ∩ 𝜕Ω

1
and ‖𝑇𝑢‖ ≥ ‖𝑢‖, for

all 𝑢 ∈ 𝐾 ∩ 𝜕Ω
2
or

(𝐻
2
) ‖𝑇𝑢‖ ≤ ‖𝑢‖, for all 𝑢 ∈ 𝐾 ∩ 𝜕Ω

2
and ‖𝑇𝑢‖ ≥ ‖𝑢‖, for

all 𝑢 ∈ 𝐾 ∩ 𝜕Ω
1

holds. Then 𝑇 has a fixed point in 𝐾 ∩ (Ω
2
\ Ω
1
).
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Lemma 16 (see [31]). Let 𝑃 be a cone in a real Banach space
𝐸, 𝑃
𝑐
= {𝑥 ∈ 𝑃 : ‖𝑥‖ < 𝑐}, 𝜃 is a nonnegative continuous

concave functional on 𝑃 such that 𝜃 ≤ ‖𝑥‖, for all 𝑥 ∈ 𝑃
𝑐
,

and 𝑃(𝜃, 𝑏, 𝑑) = {𝑥 ∈ 𝑃 : 𝑏 ≤ 𝜃(𝑥), ‖𝑥‖ ≤ 𝑑}. Suppose that
𝑇 : 𝑃
𝑐
→ 𝑃
𝑐
is completely continuous and there exist positive

constants 0 < 𝑎 < 𝑏 < 𝑑 ≤ 𝑐 such that

(𝐻
1
) {𝑥 ∈ 𝑃(𝜃, 𝑏, 𝑑) : 𝜃(𝑥) > 𝑏} ̸= 0 and 𝜃(𝑇𝑥) > 𝑏 for
𝑥 ∈ 𝑃(𝜃, 𝑏, 𝑑),

(𝐻
2
) ‖𝑇𝑥‖ < 𝑎 for 𝑥 ∈ 𝑃

𝑎
,

(𝐻
3
) 𝜃(𝑇𝑥) > 𝑏 for 𝑥 ∈ 𝑃(𝜃, 𝑏, 𝑑) with ‖𝑇𝑥‖ > 𝑑.

Then 𝑇 has at least three fixed points 𝑥
1
, 𝑥
2
, and 𝑥

3
with

‖𝑥‖ < 𝑎, 𝑏 < 𝜃 (𝑥
2
) , 𝑎 <

󵄩󵄩󵄩󵄩𝑥3
󵄩󵄩󵄩󵄩 with 𝜃 (𝑥

3
) < 𝑏. (35)

Remark 17. If 𝑑 = 𝑐, then (𝐻
1
) implies (𝐻

3
).

3. Main Result

In this section, we will consider the question of positive
solutions for BVP (3). At first, we prove some lemmas
required for the main result.

Let 𝐸 = 𝐶[0, 1] be the Banach space endowed with the
norm ‖𝑢‖ = sup

𝑡∈[0,1]
|𝑢(𝑡)|. Let 𝜏 = 𝑞

𝑛 for a given 𝑛 ∈ 𝑁, and
define the cone 𝑃 ⊂ 𝐸 by

𝑃 = {𝑢 ∈ 𝐸 : 𝑢 (𝑡) ≥ 0, min
𝑡∈[𝜏,1]

𝑢 (𝑡) ≥ 𝜏
𝛼−1

‖𝑢‖} . (36)

Let the nonnegative continuous concave functional 𝜃 on
the cone 𝑃 be defined by

𝜃 (𝑥) = min
𝜏≤𝑡≤1

|𝑢 (𝑡)| . (37)

In this paper, we assume that 𝑓 : [0, 1] × [0, +∞) →

[0, +∞] satisfies the following conditions of Caratheodory
type:

(𝐷
1
) 𝑓(𝑡, 𝑢) is Lebesgue measurable with respect to 𝑡 on
[0, 1];

(𝐷
2
) 𝑓(𝑡, 𝑢) is continuous with respect to 𝑢 on [0, +∞).

Theorem 18. Assume that the conditions (𝐷
1
) and (𝐷

2
) hold.

Suppose further that there exists a real-valued function ℎ(𝑡) ∈
𝐿[0, 1] such that |𝑓(𝑡, 𝑢)−𝑓(𝑡, V)| ≤ ℎ(𝑡)|𝑢−V| for almost every
𝑡 ∈ [0, 1] and all 𝑢, V ∈ [0, +∞). If

0 < ∫

1

0

𝐺 (1, 𝑞𝑠) ℎ (𝑠) 𝑑
𝑞
𝑠 < 1, (38)

then there exist unique positive solutions of BVP (3) on [0, 1].

Proof. Consider the operator 𝑇 : 𝑃 → 𝑃 defined by

𝑇𝑢 (𝑡) := ∫

1

0

𝐺 (𝑡, 𝑞𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑
𝑞
𝑠 < 1. (39)

For any 𝑢, V ∈ 𝑃, we have

|𝑇𝑢 (𝑡) − 𝑇V (𝑡)| =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

1

0

𝐺 (𝑡, 𝑞𝑠) (𝑓 (𝑠, 𝑢 (𝑠)) − 𝑓 (𝑠, V (𝑠))) 𝑑
𝑞
𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫

1

0

𝐺 (𝑡, 𝑞𝑠)
󵄨󵄨󵄨󵄨(𝑓 (𝑠, 𝑢 (𝑠)) − 𝑓 (𝑠, V (𝑠)))

󵄨󵄨󵄨󵄨 𝑑𝑞𝑠

≤ ∫

1

0

𝐺 (𝑡, 𝑞𝑠) ℎ (𝑠) |𝑢 (𝑠) − V (𝑠)| 𝑑
𝑞
𝑠

≤ ∫

1

0

𝐺 (1, 𝑞𝑠) ℎ (𝑠) |𝑢 (𝑠) − V (𝑠)| 𝑑
𝑞
𝑠

≤ ‖𝑢 − V‖ ∫
1

0

𝐺 (1, 𝑞𝑠) ℎ (𝑠) 𝑑
𝑞
𝑠 < ‖𝑢 − V‖ .

(40)

This implies that 𝑇 is a contraction mapping. By the Banach
contractionmapping principle, we deduce that𝑇has a unique
fixed pointwhich is obviously a solution of BVP (3).Theproof
is complete.

Corollary 19. Assume that the conditions (𝐷
1
) and (𝐷

2
) hold.

Suppose further that there exists a positive constant 𝐿 ∈

(0, 1/𝐴) with |𝑓(𝑡, 𝑢) − 𝑓(𝑡, V)| ≤ 𝐿|𝑢 − V|, 𝑡 ∈ [0, 1], (𝑢, V) ∈
[0, +∞), where

𝐴 = ∫

1

0

𝐺 (1, 𝑞𝑠) 𝑑
𝑞
𝑠; (41)

then there exists a unique positive solution of BVP (3) on [0, 1].

Corollary 20. Assume that the conditions (𝐷
1
) and (𝐷

2
) hold.

Suppose further that there exists a real-valued function ℎ(𝑡) ∈
𝐿[0, 1] such that |𝑓(𝑡, 𝑢) − 𝑓(𝑡, V)| ≤ ℎ(𝑡)|𝑢 − V|, 𝑡 ∈ [0, 1],
(𝑢, V) ∈ [0, +∞). If

0 < ∫

1

0

ℎ (𝑠) 𝑑
𝑞
𝑠 < ΛΓ

𝑞
(𝛼) , (42)

then there exists a unique positive solution of BVP (3) on [0, 1].

Corollary 21. Assume that the conditions (𝐷
1
) and (𝐷

2
) hold.

Suppose further that there exists a positive constant 𝐿 ∈

(0, ΛΓ
𝑞
(𝛼)) with |𝑓(𝑡, 𝑢) − 𝑓(𝑡, V)| ≤ 𝐿|𝑢 − V|, 𝑡 ∈ [0, 1],

(𝑢, V) ∈ [0, +∞); then there exists a unique positive solution
of BVP (3) on [0, 1].

Next, we discuss multiple solutions of BVP (3).

Lemma 22. Assume that the conditions (𝐷
1
) and (𝐷

2
) hold.

Suppose further that there exist two nonnegative real-valued
functions 𝑚, 𝑛 ∈ 𝐿[0, 1] such that |𝑓(𝑡, 𝑢)| ≤ 𝑛(𝑡) + 𝑚(𝑡)𝑢

for almost every 𝑡 ∈ [0, 1] and all 𝑢, V ∈ [0, +∞). Then the
operation𝑇 : 𝑃 → 𝑃 defined by (39) is completely continuous.
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Proof. We will divide the proof into three parts.

(I) We show that 𝑇 : 𝑃 → 𝑃 is continuous.

For any 𝑢
𝑛
, 𝑢 ∈ 𝑃, 𝑛 = 1, 2, . . ., with lim

𝑛→∞
‖𝑢
𝑛
− 𝑢‖ = 0,

we have

lim
𝑛→∞

𝑢
𝑛
(𝑡) = 𝑢 (𝑡) , 𝑡 ∈ [0, 1] . (43)

Thus

lim
𝑛→∞

𝑓 (𝑡, 𝑢
𝑛
(𝑡)) = 𝑓 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ [0, 1] . (44)

So, we can obtain that

sup
𝑠∈[0,1]

󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢𝑛 (𝑠)) − 𝑓 (𝑠, 𝑢 (𝑠))
󵄨󵄨󵄨󵄨 󳨀→ 0, as 𝑛 󳨀→ ∞.

(45)

On the other hand, we have
󵄨󵄨󵄨󵄨(𝑇𝑢𝑛) (𝑡) − (𝑇𝑢) (𝑡)

󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

1

0

𝐺 (𝑡, 𝑞𝑠) (𝑓 (𝑠, 𝑢
𝑛
(𝑠)) − 𝑓 (𝑠, 𝑢 (𝑠))) 𝑑

𝑞
𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ sup
𝑠∈[0,1]

󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢𝑛 (𝑠)) − 𝑓 (𝑠, 𝑢 (𝑠))
󵄨󵄨󵄨󵄨

× ∫

1

0

𝐺 (𝑡, 𝑞𝑠) 𝑑
𝑞
𝑠.

(46)

It implies that
󵄩󵄩󵄩󵄩𝑇𝑢𝑛 − 𝑇𝑢

󵄩󵄩󵄩󵄩 ≤ sup
𝑠∈[0,1]

󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢𝑛 (𝑠)) − 𝑓 (𝑠, 𝑢 (𝑠))
󵄨󵄨󵄨󵄨

× ∫

1

0

𝐺 (𝑡, 𝑞𝑠) 𝑑
𝑞
𝑠.

(47)

Therefore, ‖𝑇𝑢
𝑛
−𝑇𝑢‖ → 0 as 𝑛 → ∞. This means that 𝑇 is

continuous.

(II) Wewill prove that𝑇maps bounded sets into bounded
sets in 𝑃.

For any 𝜉 > 0, there exists a positive constant 𝑙 > 0 such
that for each 𝑢 ∈ 𝐵

𝜉
= {𝑢 ∈ 𝑃 : ‖𝑢‖ ≤ 𝜉}, we have ‖𝑇𝑢‖ < 𝑙.

By the definition of 𝑇, for each 𝑡 ∈ [0, 1], we get

|𝑇𝑢 (𝑡)| =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

1

0

𝐺 (𝑡, 𝑞𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑
𝑞
𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫

1

0

𝐺 (𝑡, 𝑞𝑠) (𝑛 (𝑠) + 𝑚 (𝑠) 𝑢 (𝑠)) 𝑑
𝑞
𝑠

≤ ∫

1

0

𝐺 (1, 𝑞𝑠) 𝑛 (𝑠) 𝑑
𝑞
𝑠 + ‖𝑢‖∫

1

0

𝐺 (1, 𝑞𝑠)𝑚 (𝑠) 𝑑
𝑞
𝑠

≤ ∫

1

0

𝐺 (1, 𝑞𝑠) 𝑛 (𝑠) 𝑑
𝑞
𝑠 + 𝜉∫

1

0

𝐺 (1, 𝑞𝑠)𝑚 (𝑠) 𝑑
𝑞
𝑠 := 𝑙.

(48)

That is, ‖𝑇𝑢‖ ≤ 𝑙.

(III) We will show that𝑇maps bounded sets into equicon-
tinuous sets of 𝑃.

Let 𝐵
𝜉
⊂ 𝑃 be a bounded set, 𝑡

1
, 𝑡
2
∈ [0, 1] and 𝑡

1
< 𝑡
2
.

For any 𝑢 ∈ 𝐵
𝜉
, we have

󵄨󵄨󵄨󵄨𝑇𝑢 (𝑡2) − 𝑇𝑢 (𝑡1)
󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

1

0

(𝐺 (𝑡
2
, 𝑞𝑠) − 𝐺 (𝑡

1
, 𝑞𝑠)) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑

𝑞
𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫

1

0

󵄨󵄨󵄨󵄨𝐺 (𝑡
2
, 𝑞𝑠) − 𝐺 (𝑡

1
, 𝑞𝑠)

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠))

󵄨󵄨󵄨󵄨 𝑑𝑞𝑠

≤ ∫

1

0

󵄨󵄨󵄨󵄨𝐺 (𝑡
2
, 𝑞𝑠) − 𝐺 (𝑡

1
, 𝑞𝑠)

󵄨󵄨󵄨󵄨 (𝑛 (𝑠) + 𝑚 (𝑠) 𝑢 (𝑠)) 𝑑
𝑞
𝑠

≤ ∫

1

0

󵄨󵄨󵄨󵄨𝐺 (𝑡
2
, 𝑞𝑠) − 𝐺 (𝑡

1
, 𝑞𝑠)

󵄨󵄨󵄨󵄨 (𝑛 (𝑠) + 𝜉𝑚 (𝑠)) 𝑑
𝑞
𝑠.

(49)

Since 𝐺(𝑡, 𝑞𝑠) is continuous on [0, 1] × [0, 1], then 𝐺(𝑡, 𝑞𝑠) is
uniformly continuous in [0, 1] × [0, 1]. Hence, for any 𝜀 > 0,
there exists 𝛿 > 0, whenever |𝑡

2
− 𝑡
1
| < 𝛿, and we have

󵄨󵄨󵄨󵄨𝐺 (𝑡
2
, 𝑞𝑠) − 𝐺 (𝑡

1
, 𝑞𝑠)

󵄨󵄨󵄨󵄨 <
𝜀

1 + ∫
1

0

(𝑛 (𝑠) + 𝜉𝑚 (𝑠)) 𝑑
𝑞
𝑠

.

(50)

So |𝑇𝑢(𝑡
2
) − 𝑇𝑢(𝑡

1
)| < 𝜀; that is, {𝑇𝑢 : 𝑢 ∈ 𝐵

𝜉
} is equicontin-

uous.
By Arzela-Ascoli theorem, we can conclude that 𝑇 is

completely continuous. This completes the proof.

Remark 23. If 𝑓 : [0, 1] × [0,∞) → [0,∞) is continuous, 𝑇
is also completely continuous.

Theorem 24. Assume that all the assumptions of Lemma 22
hold. If

0 < ∫

1

0

𝐺 (1, 𝑞𝑠)𝑚 (𝑠) 𝑑
𝑞
𝑠 < 1, (51)

then BVP (3) has at least one positive solution.

Proof. Let 𝑈 = {𝑢 ∈ 𝑃 : ‖𝑢‖ < 𝑟}, where

𝑟 =
∫
1

0

𝐺 (1, 𝑞𝑠) 𝑛 (𝑠) 𝑑
𝑞
𝑠

1 − ∫
1

0

𝐺 (1, 𝑞𝑠)𝑚 (𝑠) 𝑑
𝑞
𝑠

> 0 (52)

and 𝑇 : 𝑈 → 𝑃, 𝑇𝑢(𝑡) := ∫
1

0

𝐺(𝑡, 𝑞𝑠)𝑓(𝑠, 𝑢(𝑠))𝑑
𝑞
𝑠. From

Lemma 22, 𝑇 is completely continuous.
Assume that there exist 𝑢 ∈ 𝑃 and 𝜆 ∈ (0, 1) such that

𝑢 = 𝜆𝑇𝑢; we claim that ‖𝑢‖ ̸= 𝑟:

𝑢 (𝑡) = 𝜆∫

1

0

𝐺 (𝑡, 𝑞𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑
𝑞
𝑠

≤ 𝜆∫

1

0

𝐺 (𝑡, 𝑞𝑠) (𝑛 (𝑠) + 𝑚 (𝑠) 𝑢 (𝑠)) 𝑑
𝑞
𝑠

≤ 𝜆(∫

1

0

𝐺 (𝑡, 𝑞𝑠) 𝑛 (𝑠) 𝑑
𝑞
𝑠 + ‖𝑢‖∫

1

0

𝐺 (𝑡, 𝑞𝑠)𝑚 (𝑠) 𝑑
𝑞
𝑠) ,

(53)
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and then

‖𝑢‖ ≤ 𝜆(∫

1

0

𝐺 (1, 𝑞𝑠) 𝑛 (𝑠) 𝑑
𝑞
𝑠 + 𝑟∫

1

0

𝐺 (1, 𝑞𝑠)𝑚 (𝑠) 𝑑
𝑞
𝑠)

< 𝑟.

(54)

That is, 𝑢 ∉ 𝜕𝑈. By Lemma 14, 𝑇 has a fixed point 𝑢 ∈ 𝑈.
Therefore, BVP (3) has at least a positive solution. The proof
is complete.

In the following, we set

𝑀 = (∫

1

0

𝐺 (1, 𝑞𝑠) 𝑑
𝑞
𝑠)

−1

,

𝑁 = (∫

1

𝜏

𝜏
𝛼−1

𝐺 (1, 𝑞𝑠) 𝑑
𝑞
𝑠)

−1

.

(55)

Theorem 25. Assume that all the assumptions of Lemma 22
hold. If there exist two positive constants 𝑟

2
> 𝑟
1
> 0 such that

𝑓 (𝑡, 𝑢) ≥ 𝑁𝑟
1

𝑓𝑜𝑟 (𝑡, 𝑢) ∈ [0, 1] × [0, 𝑟
1
] , (56)

𝑓 (𝑡, 𝑢) ≤ 𝑀𝑟
2

𝑓𝑜𝑟 (𝑡, 𝑢) ∈ [0, 1] × [0, 𝑟
2
] , (57)

then BVP (3) has at least one positive solution.

Proof. Because 𝑇 : 𝑃 → 𝑃 is completely continuous, we just
only show that 𝑢 = 𝑇𝑢 has a solution 𝑢(𝑡) > 0 for 𝑡 ∈ [0, 1].

Let Ω
1
= {𝑢 ∈ 𝐸 : ‖𝑢‖ < 𝑟

1
}. For any 𝑢 ∈ 𝑃 ∩ 𝜕Ω

1
, we

know 𝜏
𝛼−1

𝑟
1
≤ 𝑢(𝑡) ≤ 𝑟

1
on [𝜏, 1]. Using (56) and (34), we

have

|𝑇𝑢 (𝑡)| =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

1

0

𝐺 (𝑡, 𝑞𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑
𝑞
𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≥ ∫

1

𝜏

𝐺 (𝑡, 𝑞𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑
𝑞
𝑠

≥ 𝑁𝑟
1
∫

1

𝜏

𝐺 (𝑡, 𝑞𝑠) 𝜏
𝛼−1

𝑑
𝑞
𝑠 = 𝑟
1
= ‖𝑢‖ ,

(58)

which implies that ‖𝑇𝑢‖ ≥ ‖𝑢‖, 𝑢 ∈ 𝑃 ∩ 𝜕Ω
1
.

Let Ω
2
= {𝑢 ∈ 𝐸 : ‖𝑢‖ < 𝑟

2
}. For any 𝑢 ∈ 𝑃 ∩ 𝜕Ω

2
, we get

0 ≤ 𝑢(𝑡) ≤ 𝑟
2
on [0, 1]. Using (57), we have

|𝑇𝑢 (𝑡)| =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

1

0

𝐺 (𝑡, 𝑞𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑
𝑞
𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑀𝑟
2
∫

1

0

𝐺 (1, 𝑞𝑠) 𝑑
𝑞
𝑠 = 𝑟
2
= ‖𝑢‖ ;

(59)

that is, ‖𝑇𝑢‖ ≤ ‖𝑢‖, 𝑢 ∈ 𝑃 ∩ 𝜕Ω
2
.

In view of Lemma 15,𝑇 has a fixed point 𝑢
0
∈ 𝑃∩(Ω

2
\Ω
1
)

which is the solution of BVP (3).

Theorem 26. Assume that all assumptions of Lemma 22 hold.
If there exist constants 0 < 𝐴 < 𝐵 < 𝐶 such that

(𝐺
1
) 𝑓 (𝑡, 𝑢) ≤ 𝑀𝐴, (𝑡, 𝑢) ∈ [0, 1] × [0, 𝐴] ,

(𝐺
2
) 𝑓 (𝑡, 𝑢) ≤ 𝑀𝐶, (𝑡, 𝑢) ∈ [0, 1] × [0, 𝐶] ,

(𝐺
3
) 𝑓 (𝑡, 𝑢) ≥ 𝑁𝐵, (𝑡, 𝑢) ∈ [𝜏, 1] × [𝐵, 𝐶] ,

(60)

hold, then BVP (3) has at least three positive solutions 𝑢
1
, 𝑢
2
,

and 𝑢
3
with

󵄩󵄩󵄩󵄩𝑢1
󵄩󵄩󵄩󵄩 < 𝐴, 𝐵 < 𝜃 (𝑢

2
) <

󵄩󵄩󵄩󵄩𝑢2
󵄩󵄩󵄩󵄩 ≤ 𝐶,

𝐴 <
󵄩󵄩󵄩󵄩𝑢3

󵄩󵄩󵄩󵄩 , 𝜃 (𝑢
3
) ≤ 𝐵.

(61)

Proof. First, if 𝑢 ∈ 𝑃
𝐶
= {𝑢 ∈ 𝑃 : ‖𝑢‖ < 𝐶}, then ‖𝑢‖ ≤ 𝐶. So

0 ≤ 𝑢(𝑡) ≤ 𝐶, 𝑡 ∈ [0, 1]. By (G
2
), we have

|𝑇𝑢 (𝑡)| =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

1

0

𝐺 (𝑡, 𝑞𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑
𝑞
𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑀𝐶∫

1

0

𝐺 (1, 𝑞𝑠) 𝑑
𝑞
𝑠 = 𝐶,

(62)

which implies that ‖𝑇𝑢‖ ≤ 𝐶, 𝑢 ∈ 𝑃
𝐶
. Hence, 𝑇 : 𝑃

𝐶
→

𝑃
𝐶
. In view of Lemma 22, 𝑇 : 𝑃

𝐶
→ 𝑃
𝐶
is completely con-

tinuous.
By using the analogous argument, from (G

1
), we can get

that if 𝑢 ∈ 𝑃
𝐴
, then ‖𝑇𝑢‖ < 𝐴.

Set 𝑢(𝑡) = (𝐵 + 𝐶)/2, 𝑡 ∈ [0, 1], so 𝑢(𝑡) = (𝐵 +

𝐶)/2 ∈ 𝑃(𝜃, 𝐵, 𝐶), 𝜃(𝑢) = (𝐵 + 𝐶)/2 > 𝐵. Therefore, {𝑢 ∈

𝑃(𝜃, 𝐵, 𝐶)|𝜃(𝑢) > 𝐵} ̸= 0.
On the other hand, if 𝑢 ∈ 𝑃(𝜃, 𝐵, 𝐶), then 𝐵 ≤ 𝑢(𝑡) ≤

𝐶, 𝑡 ∈ [𝜏, 1]. By (G
3
), we have

𝜃 (𝑇𝑢) = min
𝑡∈[𝜏,1]

|𝑇𝑢 (𝑡)|

= min
𝑡∈[𝜏,1]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

1

0

𝐺 (𝑡, 𝑞𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑
𝑞
𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≥ min
𝑡∈[𝜏,1]

∫

1

0

𝐺 (𝑡, 𝑞𝑠)𝑁𝐵𝑑
𝑞
𝑠,

≥ 𝑁𝐵∫

1

𝜏

𝜏
𝛼−1

𝐺 (1, 𝑞𝑠) 𝑑
𝑞
𝑠 = 𝐵,

(63)

which implies that 𝜃(𝑇𝑢) > 𝐵, for 𝑢 ∈ 𝑃(𝜃, 𝐵, 𝐶).
By Lemma 16, BVP(3) has at least three positive solutions

𝑢
1
, 𝑢
2
, and 𝑢

3
with

󵄩󵄩󵄩󵄩𝑢1
󵄩󵄩󵄩󵄩 < 𝐴, 𝐵 < 𝜃 (𝑢

2
) <

󵄩󵄩󵄩󵄩𝑢2
󵄩󵄩󵄩󵄩 < 𝐶,

𝐴 <
󵄩󵄩󵄩󵄩𝑢3

󵄩󵄩󵄩󵄩 , 𝜃 (𝑢
3
) < 𝐵.

(64)

The proof is complete.

4. Example

Example 27. Consider the following BVP:

(𝐷
4.5

1/2
𝑢) (𝑡) +

𝑒
𝑡

𝑢

1 + 𝑒𝑡
+ 𝑡
2

+ 1 = 0, 0 < 𝑡 < 1,

(𝐷
𝑖

1/2
𝑢) (0) = 0, (𝐷

1.5

1/2
𝑢) (1) =

1

100
(𝐷
1.5

1/2
𝑢) (

9

10
) ,

0 ≤ 𝑖 ≤ 3.

(65)
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Let 𝑓(𝑡, 𝑢) = 𝑒
𝑡

𝑢/(1 + 𝑒
𝑡

) + 𝑡
2

+ 1, (𝑡, 𝑢) ∈ [0, 1] × [0, +∞),
ℎ(𝑡) = 𝑒

𝑡

/(1 + 𝑒
𝑡

), so |𝑓(𝑡, 𝑢) − 𝑓(𝑡, V)| ≤ ℎ(𝑡)|𝑢 − V|, for
(𝑡, 𝑢), (𝑡, V) ∈ [0, 1] × [0, +∞).

By simple calculation, we get

0 < ∫

1

0

𝐺 (1, 𝑞𝑠) ℎ (𝑠) 𝑑
𝑞
𝑠 ≤

1

ΛΓ
𝑞
(𝛼)

= 0.8471 ⋅ ⋅ ⋅ < 1.

(66)

All conditions ofTheorem 18 are satisfied.Thus, BVP (65) has
a unique positive solution.

Example 28. Consider the following BVP:

(𝐷
4.5

1/2
𝑢) (𝑡) +

1

4
(sin 𝑡 + 1) 𝑢

1 + 𝑢2
+ 𝑡
2

+ 1 = 0, 0 < 𝑡 < 1,

(𝐷
𝑖

1/2
𝑢) (0) = 0, (𝐷

1.5

1/2
𝑢) (1) =

1

100
(𝐷
1.5

1/2
𝑢) (

9

10
) ,

0 ≤ 𝑖 ≤ 3.

(67)

Let 𝑛(𝑡) = 𝑡
2

+1,𝑚(𝑡) = (1/4)(sin 𝑡+1). It is easy to check
that 𝑓(𝑡, 𝑢) ≤ 𝑛(𝑡) + 𝑚(𝑡)𝑢 for (𝑡, 𝑢) ∈ [0, 1] × [0, +∞). Since

0 < ∫

1

0

𝐺 (1, 𝑞𝑠)𝑚 (𝑠) 𝑑
𝑞
𝑠 ≤

1

ΛΓ
𝑞
(𝛼)

⋅
1

2
= 0.4235 ⋅ ⋅ ⋅ < 1,

(68)

byTheorem 24, BVP (67) has at least one positive solution.

Example 29. Consider the following BVP:

(𝐷
2.5

1/2
𝑢) (𝑡) +

𝑢

4
+
sin2𝑡
5

+ 1 = 0, 0 < 𝑡 < 1,

(𝐷
𝑖

1/2
𝑢) (0) = 0, (𝐷

1/2
𝑢) (1) =

1

2
(𝐷
1/2
𝑢) (

3

4
) ,

0 ≤ 𝑖 ≤ 1.

(69)

Let 𝑓(𝑡, 𝑢) = 𝑢/4 + sin2𝑡/5 + 1, (𝑡, 𝑢) ∈ [0, 1] × [0, +∞).
By calculation, we get

𝑀 = (∫

1

0

𝐺 (1, 𝑞𝑠) 𝑑
𝑞
𝑠)

−1

≥ ΛΓ
𝑞
(𝛼) = 1.4809 . . . ,

𝑁 = (∫

1

𝜏

𝜏
𝛼−1

𝐺 (1, 𝑞𝑠) 𝑑
𝑞
𝑠)

−1

≤ 2.414 . . . .

(70)

Choosing 𝑟
1
= 1/3, 𝑟

2
= 1, we have

𝑓 (𝑡, 𝑢) =
𝑢

4
+
sin2𝑡
5

+ 1 ≤ 1.45 ≤ 𝑀𝑟
2
,

(𝑡, 𝑢) ∈ [0, 1] × [0, 𝑟
2
] ,

𝑓 (𝑡, 𝑢) =
𝑢

4
+
sin2𝑡
5

+ 1 ≥ 1 ≥ 𝑁𝑟
1
,

(𝑡, 𝑢) ∈ [0, 1] × [0, 𝑟
1
] .

(71)

By Theorem 25, BVP (69) has at least one positive solution 𝑢
such that 1/3 ≤ ‖𝑢‖ ≤ 1.

Example 30. Consider the following BVP:

(𝐷
2.5

1/2
𝑢) (𝑡) + 𝑓 (𝑡, 𝑢) = 0, 0 < 𝑡 < 1,

(𝐷
𝑖

1/2
𝑢) (0) = 0, (𝐷

1/2
𝑢) (1) =

1

2
(𝐷
1/2
𝑢) (

3

4
) ,

0 ≤ 𝑖 ≤ 1.

(72)

Here,

𝑓 (𝑡, 𝑢) =

{{{

{{{

{

𝑡

4
+ 4𝑢
4

, (𝑡, 𝑢) ∈ [0, 1] × [0, 1] ,

𝑡 + 7

4
+ 𝑢, (𝑡, 𝑢) ∈ [0, 1] × [1, +∞) .

(73)

By Example 29, we have

𝑀 = (∫

1

0

𝐺 (1, 𝑞𝑠) 𝑑
𝑞
𝑠)

−1

≥ ΛΓ
𝑞
(𝛼) = 1.4809 . . . ,

𝑁 = (∫

1

𝜏

𝜏
𝛼−1

𝐺 (1, 𝑞𝑠) 𝑑
𝑞
𝑠)

−1

≤ 2.414 . . . .

(74)

Choosing 𝐴 = 1/2, 𝐵 = 1, 𝐶 = 5, we have

𝑓 (𝑡, 𝑢) =
𝑡

4
+ 4𝑢
4

≤ 0.5 ≤ 𝑀𝐴, (𝑡, 𝑢) ∈ [0, 1] × [0,
1

2
] ,

𝑓 (𝑡, 𝑢) =
𝑡 + 7

4
+ 𝑢 ≤ 7 ≤ 𝑀𝐶, (𝑡, 𝑢) ∈ [0, 1] × [0, 5] ,

𝑓 (𝑡, 𝑢) =
𝑡 + 7

4
+ 𝑢 ≥ 2.875 ≥ 𝑁𝐵, (𝑡, 𝑢) ∈ [

1

2
, 1] × [1, 5] .

(75)
By Theorem 26, BVP (72) has at least three solutions 𝑢

1
, 𝑢
2
,

and 𝑢
3
such that

󵄩󵄩󵄩󵄩𝑢1
󵄩󵄩󵄩󵄩 <

1

2
, 1 < 𝜃 (𝑢

2
) ,

1

2
<
󵄩󵄩󵄩󵄩𝑢3

󵄩󵄩󵄩󵄩 , 𝜃 (𝑢
3
) < 1.

(76)

5. Conclusion

In this paper, we obtain the existence and multiplicity results
of positive solutions of BVP for high-order fractional 𝑞-
difference equations by some fixed point theorems, which
enrich the theories for fractional 𝑞-difference equations,
and provide the theoretical guarantee for the application
of fractional 𝑞-difference equations in every field. In the
future, we will use bifurcation theory, critical point theory,
variationalmethod, andothermethods to continue ourworks
in this area.
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