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For solving Laplace’s equation in circular domains with circular holes, the null field method (NFM) was developed by Chen and
his research group (see Chen and Shen (2009)). In Li et al. (2012) the explicit algebraic equations of the NFMwere provided, where
some stability analysis was made. For the NFM, the conservative schemes were proposed in Lee et al. (2013), and the algorithm
singularity was fully investigated in Lee et al., submitted to Engineering Analysis with Boundary Elements, (2013). To target the
same problems, a new interior field method (IFM) is also proposed. Besides the NFM and the IFM, the collocation Trefftz method
(CTM) and the boundary integral equation method (BIE) are two effective boundary methods. This paper is devoted to a further
study on NFM and IFM for three goals. The first goal is to explore their intrinsic relations. Since there exists no error analysis for
the NFM, the second goal is to drive error bounds of the numerical solutions. The third goal is to apply those methods to Laplace’s
equation in the domains with extremely small holes, which are called actually punctured disks. By NFM, IFM, BIE, and CTM,
numerical experiments are carried out, and comparisons are provided. This paper provides an in-depth overview of four methods,
the error analysis of the NFM, and the intriguing computation, which are essential for the boundary methods.

1. Introduction

For circular domains with circular holes, there exist a number
of papers of boundary methods. In Barone and Caulk [1,
2] and Caulk [3], the Fourier functions are used for the
circular holes for boundary integral equations. In Bird and
Steele [4], the simple algorithms as the collocation Trefftz
method (CTM) in [5, 6] are used. In Ang and Kang [7],
complex boundary elements are studied. Recently, Chen and
his research group have developed the null filed method
(NFM), in which the field nodes 𝑄 are located outside of the
solution domain 𝑆. The fundamental solutions (FS) can be
expanded as the convergent series, and the Fourier functions
are also used to approximate the Dirichlet and Neumann
boundary conditions. Numerous papers have been published
for different physical problems. Since error analysis and

numerical experiments for four boundary methods are our
main concern, we only cite [8–14]. More references of NFM
are also given in [10–12, 14–17].

In [17], explicit algebraic equations of the NFM are
derived, stability analysis is first made for the simple annular
domain with concentric circular boundaries, and numerical
experiments are performed to find the optimal field nodes.
The field nodes can be located on the domain boundary: 𝑄 ∈
𝜕𝑆, if the solutions are smooth enough to satisfy 𝑢 ∈ 𝐻2(𝜕𝑆)
and 𝑢] ∈ 𝐻

1
(𝜕𝑆), where 𝑢] is the normal derivative and

𝐻
𝑘
(𝜕𝑆) (𝑘 = 1, 2) are the Sobolev spaces; see the proof in

[17]. It is discovered numerically that when the field nodes
𝑄 ∈ 𝜕𝑆, the NFM provides small errors and the smallest
condition numbers, compared with all 𝑄 ∈ 𝑆

𝑐. Moreover
for the NFM, the conservative schemes are proposed in [15],
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and the algorithm singularity is fully investigated in [16]. In
fact, the explicit algebraic equations can also be derived from
the Green representation formula with the field nodes inside
the solution domain. This method is called the interior field
method (IFM).

In addition to the NFM and IFM, the collocation Trefftz
method (CTM) and the boundary integral equation method
(BIE) are effective boundary methods too. Three goals are
motivated in this paper. The first goal is to explore the
intrinsic relations of NFM, IFM, CTM, and BIE with an
in-depth overview. So far, there exists no error analysis for
the NFM. The second goal is to derive error bounds of the
numerical solutions by the NFM. The optimal convergence
(or exponential) rates can be achieved. The third goal is to
solve a challenging problem: Laplace’s equation in the circular
domains with extremely small holes, which are called the
actually punctured disks in this paper. Four boundary meth-
ods, NFM, IFM, CTM, and BIE, are employed. Numerical
experiments are carried out, and comparisons are provided.
It is observed that the CTM is more advantageous in the
applications than the others.

Besides, the method of fundamental solutions (MFS) is
also popular in boundary methods, which originated from
Kupradze and Aleksidze [18] in 1964. For theMFS, numerous
computations are reviewed in Fairweather and Karageorghis
[19] and Chen et al. [20], but the error and stability analysis is
developed by Li et al. in [21, 22]. Both the CTM and the MFS
can be applied to arbitrary solution domains. However, the
MFS incurs a severe numerical instability for very elongated
domains [22]. Since the performance of the CTM is better
than that of the MFS, reported elsewhere, we do not carry
out the numerical computation of the MFS in this paper.
Moreover, the null-field method with discrete source (NFM-
DS) is effective and popular in light scattering (see Wriedt
[23]), where the transition (T) matrix is provided in Doicu
and Wriedt [24]. In fact, the null field equation (NFE) of the
Green representation formula in (9) can be employed on a
source outside the solution domain 𝑆, without a need of the
FS expansions, called the Tmatrixmethod [24]. Hence, the T
matrix method is valid for arbitrary solution domains. There
also occurs a severe numerical instability for very elongated
holes (i.e., particles). To improve the stability for this case,
different sources (i.e., discrete sources) may be utilized in the
NFM-DS, by means of the idea of the MFS. The techniques
for improving the stability by the NFM-DS are reported in
many papers; we only cite [23, 25].

This paper is organized as follows. In the next section,
the explicit discrete equations of NFM, IFM, CTM, and BIE
are given, and their relations and overviews are explored.
In Section 3, for the NFM some analysis is studied for
circular domains with concentric circular boundaries. In
Section 4, error bounds are provided without proof for the
NFM with eccentric circular boundaries of simple annular
domains. In Section 5, numerical experiments are carried out
for Laplace’s equation in the actually punctured disks. The
results are reported with comparisons. In the last section, a
few concluding remarks are addressed.

2. The Null Field Method and
Other Algorithms

2.1. The Null Field Method. For simplicity in description of
the NFM, we confine ourselves to Laplace’s equation and
choose the circular domain with one circular hole in this
paper. Denote the disks 𝑆

𝑅
and 𝑆

𝑅
1

with radii 𝑅 and 𝑅
1
,

respectively. Let 𝑆
𝑅
1

⊂ 𝑆
𝑅
, and the eccentric circular domains

𝑆
𝑅
and 𝑆
𝑅
1

mayhave different origins.Hence 2𝑅
1
< 𝑅. Choose

the annular solution domain 𝑆 = 𝑆
𝑅
\ 𝑆
𝑅
1

with the exterior
and the interior boundaries 𝜕𝑆

𝑅
and 𝜕𝑆

𝑅
1

, respectively. The
following Dirichlet problems are discussed by Palaniappan
[26]:

Δ𝑢 =
𝜕
2
𝑢

𝜕𝑥2
+
𝜕
2
𝑢

𝜕𝑦2
= 0 in 𝑆,

𝑢 = 1 on 𝜕𝑆
𝑅
, 𝑢 = 0 on 𝜕𝑆

𝑅
1

.

(1)

In [11], 𝑅 = 2.5 and 𝑅
1
= 1 and the origins of 𝑆

𝑅
and 𝑆
𝑅
1

are
located at (0, 0) and (−𝑅

1
, 0), respectively. In this paper, we fix

𝑅 = 2.5, while 𝑅
1
may be infinitesimal; that is, 𝑅

1
≪ 1.

On the exterior boundary 𝜕𝑆
𝑅
, there exist the approxima-

tions of Fourier expansions:

𝑢 = 𝑢
0
:= 𝑎
0
+

𝑀

∑

𝑘=1

{𝑎
𝑘
cos 𝑘𝜃 + 𝑏

𝑘
sin 𝑘𝜃} on 𝜕𝑆

𝑅
, (2)

𝜕𝑢

𝜕]
= 𝑞
0
:= 𝑝
0
+

𝑀

∑

𝑘=1

{𝑝
𝑘
cos 𝑘𝜃 + 𝑞

𝑘
sin 𝑘𝜃} on 𝜕𝑆

𝑅
, (3)

where 𝑎
𝑘
, 𝑏
𝑘
, 𝑝
𝑘
, and 𝑞

𝑘
are coefficients. On the interior

boundary 𝜕𝑆
𝑅
1

, we have similarly

𝑢 = 𝑢
0
:= 𝑎
0
+

𝑁

∑

𝑘=1

{𝑎
𝑘
cos 𝑘𝜃 + 𝑏

𝑘
sin 𝑘𝜃} on 𝜕𝑆

𝑅
1

, (4)

𝜕𝑢

𝜕]
= −

𝜕𝑢

𝜕𝑟
= 𝑞
0
:= 𝑝
0
+

𝑁

∑

𝑘=1

{𝑝
𝑘
cos 𝑘𝜃+𝑞

𝑘
sin 𝑘𝜃} on 𝜕𝑆

𝑅
1

,

(5)

where 𝑎
𝑘
, 𝑏
𝑘
, 𝑝
𝑘
, and 𝑞

𝑘
are coefficients. In (2)–(5), 𝜃 and 𝜃 are

the polar coordinates of 𝑆
𝑅
and 𝑆
𝑅
1

with the origins (0, 0) and
(−𝑅
1
, 0), respectively, and ] and ] are the exterior normals

of 𝜕𝑆
𝑅
and 𝜕𝑆

𝑅
1

, respectively. The Dirichlet, the Neumann
conditions, and their mixed types on 𝜕𝑆

𝑅
may be given with

known coefficients.
In 𝑆, denote two nodes x = 𝑄 = (𝑥, 𝑦) = (𝜌, 𝜃) and

y = 𝑃 = (𝜉, 𝜂) = (𝑟, 𝜙), where 𝑥 = 𝜌 cos 𝜃, 𝑦 = 𝜌 sin 𝜃,
𝜉 = 𝑟 cos𝜙, and 𝜂 = 𝑟 sin𝜙. Then 𝜌 = √𝑥2 + 𝑦2 and 𝑅 = 𝑟 =

√𝜉2 + 𝜂2. The FS of Laplace’s equation is given by ln𝑃𝑄 =



Abstract and Applied Analysis 3

ln{√𝜌2 − 2𝜌𝑟 cos(𝜃 − 𝜙) + 𝑟2}. From the Green representa-
tion formula, we have different formulas for different loca-
tions of the field nodes 𝑄(x):

∫
𝜕𝑆

{ln |𝑃𝑄|
𝜕𝑢 (y)
𝜕]

− 𝑢 (𝜉)
𝜕 ln |𝑃𝑄|
𝜕]

}𝑑𝜎
𝜉

=

{{

{{

{

−2𝜋𝑢 (𝑄) , 𝑄 ∈ 𝑆,

−𝜋𝑢 (𝑄) , 𝑄 ∈ 𝜕𝑆,

0, otherwise,

(6)

where 𝑃(y) ∈ (𝑆 ∪ 𝜕𝑆) and two kinds of series expansions of
the FS ln |𝑃𝑄| are given by (see [27])

ln |𝑃𝑄|

= ln 󵄨󵄨󵄨󵄨𝑃 (y) − 𝑄 (x)
󵄨󵄨󵄨󵄨

= ln 󵄨󵄨󵄨󵄨𝑃 (𝑟, 𝜙) − 𝑄 (𝜌, 𝜃)
󵄨󵄨󵄨󵄨

=

{{{{

{{{{

{

𝑈
𝑖
(x, y) = ln 𝑟 −

∞

∑
𝑛=1

1

𝑛
(
𝜌

𝑟
)
𝑛

cos 𝑛 (𝜃 − 𝜙) , 𝜌 < 𝑟,

𝑈
𝑒
(x, y) = ln 𝜌 −

∞

∑
𝑛=1

1

𝑛
(
𝑟

𝜌
)

𝑛

cos 𝑛 (𝜃 − 𝜙) , 𝜌 > 𝑟,

(7)

where x = (𝜌, 𝜃) and y = (𝑟, 𝜙). Then we have two kinds of
derivative expansions of FS

𝜕𝑈
𝑖
(x, y)
𝜕𝑟

=
1

𝑟
+

∞

∑
𝑛=1

(
𝜌
𝑛

𝑟𝑛+1
) cos 𝑛 (𝜃 − 𝜙) , 𝜌 < 𝑟,

𝜕𝑈
𝑒
(x, y)
𝜕𝑟

= −

∞

∑
𝑛=1

(
𝑟
𝑛−1

𝜌𝑛
) cos 𝑛 (𝜃 − 𝜙) , 𝜌 > 𝑟,

(8)

where the superscripts “e” and “i” designate the exterior and
interior field nodes x, respectively. Note that the boundary
element method (BEM) is based on the second equation of
the Green formula (6), but the NFM is based on the third
equation (i.e., the null field equation (NFE)) by using the FS
expansions. We have

∫
𝜕𝑆
𝑅
∪𝜕𝑆
𝑅1

𝑈(x, y)
𝜕𝑢 (y)
𝜕]

𝑑𝜎y

= ∫
𝜕𝑆
𝑅
∪𝜕𝑆
𝑅1

𝑢 (y)
𝜕𝑈 (x, y)
𝜕]

𝑑𝜎y, x ∈ 𝑆𝑐,

(9)

where 𝑆𝑐 is the complementary domain of 𝑆∪𝜕𝑆. Substituting
the Fourier expansions (7)–(8) into (9) yields the basic
algorithms of NFM, where the exterior normal of 𝜕𝑆

𝑅
1

is
given by 𝜕𝑈(x, y)/𝜕] = −𝜕𝑈(x, y)/𝜕𝑟. In the Green formula
(9), the field point x = (𝜌, 𝜃) is supposed to locate outside of
the solution domain 𝑆 ∪ 𝜕𝑆 only, so the algorithm of Chen is
called the null field method (NFM) [8, 9, 11]. The field nodes
can also be located on the domain boundary: 𝑄 ∈ 𝜕𝑆, if the
solutions are smooth enough to satisfy 𝑢 ∈ 𝐻2(𝜕𝑆) and 𝑢] ∈
𝐻
1
(𝜕𝑆), where 𝑢] is the normal derivative and 𝐻𝑘(𝜕𝑆) (𝑘 =

1, 2) are the Sobolev spaces; see the rigorous proof in [17]. It is
discovered numerically that when the field nodes𝑄 ∈ 𝜕𝑆, the
NFM provides small errors and condition numbers and has
been widely implemented in many engineering problems.

Denote two systems of polar coordinates by (𝜌, 𝜃) and
(𝜌, 𝜃) with the origins (0, 0) and (𝑥

1
, 𝑦
1
) for 𝑆

𝑅
and 𝑆

𝑅
1

,
respectively. There exist the following conversion formulas:

𝜌 = √(𝜌 cos 𝜃 + 𝑥
1
)
2

+ (𝜌 sin 𝜃 + 𝑦
1
)
2

,

tan 𝜃 =
𝜌 sin 𝜃 + 𝑦

1

𝜌 cos 𝜃 + 𝑥
1

,

(10)

𝜌 = √(𝜌 cos 𝜃 − 𝑥
1
)
2

+ (𝜌 sin 𝜃 − 𝑦
1
)
2

,

tan 𝜃 =
𝜌 sin 𝜃 − 𝑦

1

𝜌 cos 𝜃 − 𝑥
1

.

(11)

First, consider the exterior field nodes x = (𝜌, 𝜃) with 𝜌 >
𝑟 = 𝑅. The first explicit algebraic equations of the NFM are
given for the exterior field nodes (see [17])

Lext (𝜌, 𝜃; 𝜌, 𝜃)

:= −𝑅𝜋

𝑀

∑

𝑘=1

(
𝑅
𝑘−1

𝜌𝑘
) (𝑎
𝑘
cos 𝑘𝜃 + 𝑏

𝑘
sin 𝑘𝜃)

+ 𝑅
1
𝜋

𝑁

∑

𝑘=1

(
𝑅
𝑘−1

1

𝜌
𝑘
)(𝑎
𝑘
cos 𝑘𝜃 + 𝑏

𝑘
sin 𝑘𝜃)

− {2𝜋𝑅 (ln 𝜌) 𝑝
0
− 𝑅𝜋

𝑀

∑

𝑘=1

1

𝑘
(
𝑅

𝜌
)

𝑘

× (𝑝
𝑘
cos 𝑘𝜃 + 𝑞

𝑘
sin 𝑘𝜃) + 2𝜋𝑅

1
(ln 𝜌) 𝑝

0

− 𝑅
1
𝜋

𝑁

∑

𝑘=1

1

𝑘
(
𝑅
1

𝜌
)

𝑘

(𝑝
𝑘
cos 𝑘𝜃 + 𝑞

𝑘
sin 𝑘𝜃)} = 0.

(12)

Next, consider the interior field nodes x = (𝜌, 𝜃)with 𝜌 < 𝑟 =
𝑅
1
. The second explicit algebraic equations of the NFM are

given for the interior field nodes (see [17])

Lint (𝜌, 𝜃; 𝜌, 𝜃)

:= −2𝜋𝑎
0
− 𝑅
1
𝜋

𝑁

∑

𝑘=1

(
𝜌
𝑘

𝑅𝑘+1
1

)(𝑎
𝑘
cos 𝑘𝜃 + 𝑏

𝑘
sin 𝑘𝜃)

+ 2𝜋𝑎
0
+ 𝑅𝜋

𝑀

∑

𝑘=1

(
𝜌
𝑘

𝑅𝑘+1
) (𝑎
𝑘
cos 𝑘𝜃 + 𝑏

𝑘
sin 𝑘𝜃)
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− {2𝜋𝑅
1
ln𝑅
1
𝑝
0
− 𝑅
1
𝜋

𝑁

∑

𝑘=1

1

𝑘
(
𝜌

𝑅
1

)

𝑘

× (𝑝
𝑘
cos 𝑘𝜃+𝑞

𝑘
sin 𝑘𝜃)+2𝜋𝑅 ln𝑅𝑝

0
−𝑅𝜋

𝑀

∑

𝑘=1

1

𝑘
(
𝜌

𝑅
)
𝑘

× (𝑝
𝑘
cos 𝑘𝜃 + 𝑞

𝑘
sin 𝑘𝜃)} = 0.

(13)

Since one of Dirichlet or Neumann conditions is given on
𝜕𝑆
𝑅
and 𝜕𝑆

𝑅
1

, only 2(𝑀 + 𝑁) + 2 coefficients in (2)–(5) are
unknowns. We choose 2𝑀+1 and 2𝑁+1 field nodes located
uniformly on the exterior and the interior circles, respectively,

(𝜌, 𝜃) = (𝑅 + 𝜖, 𝑖Δ𝜃) , 𝑖 = 0, 1, . . . , 2𝑀,

(𝜌, 𝜃) = (𝑅
1
− 𝜖, 𝑖Δ𝜃) , 𝑖 = 0, 1, . . . , 2𝑁,

(14)

where 𝜖 ≥ 0, 0 ≤ 𝜖 < 𝑅
1
, Δ𝜃 = 2𝜋/(2𝑀 + 1), and Δ𝜃 =

2𝜋/(2𝑁 + 1). Denote the explicit equations (12) and (13) by

Lext (𝜌, 𝜃; 𝜌, 𝜃) = 0, Lint (𝜌, 𝜃; 𝜌, 𝜃) = 0. (15)

We obtain 2(𝑀 + 𝑁) + 2 discrete equations from (15)

Lext (𝑅 + 𝜖, 𝑖Δ𝜃; 𝜌𝑖, 𝜃𝑖) = 0, 𝑖 = 0, 1, . . . , 2𝑀,

Lint (𝜌𝑖, 𝜃𝑖; 𝑅1 − 𝜖, 𝑖Δ𝜃) = 0, 𝑖 = 0, 1, . . . , 2𝑁,

(16)

where the corresponding coordinates (𝜌
𝑖
, 𝜃
𝑖
) and (𝜌

𝑖
, 𝜃
𝑖
) are

obtained from (10) and (11). Hence from (16), we obtain the
following linear algebraic equations:

Fx = b, (17)

where the matrices F(∈ 𝑅𝑛×𝑛), the vector x(∈ 𝑅𝑛), and 𝑛 =
2(𝑀+𝑁)+2.The unknown coefficients can be obtained from
(17), if the matrix F is nonsingular. In this paper, we confine
the Dirichlet problems. The study of the Neumann problems
will be reported in a subsequent paper.

Once all the coefficients are known, based on the first
equation of the Green formula (6), the solution at the interior
nodes: x = (𝜌, 𝜃) ∈ 𝑆 is expressed by

𝑢 (x) = 𝑢 (𝜌, 𝜃) =

−
1

2𝜋
∫
𝜕𝑆
𝑅
∪𝜕𝑆
𝑅1

{𝑈 (x, y)
𝜕𝑢 (y)
𝜕]

−𝑢 (𝜉)
𝜕𝑈 (x, y)
𝜕𝑟

}𝑑𝜎y

= −
1

2𝜋
{∫
𝜕𝑆
𝑅

{𝑈
𝑖
(x, y)

𝜕𝑢 (y)
𝜕]

− 𝑢 (y)
𝜕𝑈
𝑖
(x, y)
𝜕𝑟

} 𝑑𝜎y

+∫
𝜕𝑆
𝑅1

{𝑈
𝑒
(x, y)

𝜕𝑢(y)
𝜕]

+𝑢(y)
𝜕𝑈
𝑒
(x, y)
𝜕𝑟

}𝑑𝜎y}

x ∈ 𝑆.
(18)

For (𝜌, 𝜃) ∈ 𝑆, from (2)–(5) and (7)-(8), (2.20) leads to (see
[17])

𝑢
𝑀−𝑁

= 𝑢
𝑀−𝑁

(𝜌, 𝜃) = 𝑢
𝑀−𝑁

(𝜌, 𝜃)

= 𝑎
0
− 𝑅 ln𝑅𝑝

0
− 𝑅
1
ln 𝜌𝑝
0
+
𝑅

2

𝑀

∑

𝑘=1

1

𝑘
(
𝜌

𝑅
)
𝑘

× (𝑝
𝑘
cos 𝑘𝜃 + 𝑞

𝑘
sin 𝑘𝜃) + 𝑅

2

𝑀

∑

𝑘=1

(
𝜌
𝑘

𝑅𝑘+1
)

× (𝑎
𝑘
cos 𝑘𝜃 + 𝑏

𝑘
sin 𝑘𝜃) + 𝑅1

2

𝑁

∑

𝑘=1

1

𝑘
(
𝑅
1

𝜌
)

𝑘

× (𝑝
𝑘
cos 𝑘𝜃 + 𝑞

𝑘
sin 𝑘𝜃) + 𝑅1

2

𝑁

∑

𝑘=1

(
𝑅
𝑘−1

1

𝜌
𝑘
)

× (𝑎
𝑘
cos 𝑘𝜃 + 𝑏

𝑘
sin 𝑘𝜃) , (𝑟, 𝜃) ∈ 𝑆,

(19)

where (𝜌, 𝜃) are also given from (11).

2.2. Conservative Schemes. For some physical problems, the
flux conservation is imperative and essential. The conserva-
tive schemes of NFM can be designed to satisfy exactly the
flux conservation [15]

∫
𝑆
𝑅

(𝑢
𝑀
)] + ∫

𝑆
𝑅1

(𝑢
𝑁
)] = 0. (20)

Substituting (3) and (5) into (20) yields directly

𝑅𝑝
0
+ 𝑅
1
𝑝
0
= 0. (21)

We may use (21) to remove one coefficient, say 𝑝
0
,

𝑝
0
= −

𝑅

𝑅
1

𝑝
0
. (22)

By using (22), (12) and (13) lead to

L
𝐶

ext (𝜌, 𝜃; 𝜌, 𝜃)

:= −𝑅𝜋

𝑀

∑

𝑘=1

(
𝑅
𝑘−1

𝜌𝑘
) (𝑎
𝑘
cos 𝑘𝜃 + 𝑏

𝑘
sin 𝑘𝜃)

+ 𝑅
1
𝜋

𝑁

∑

𝑘=1

(
𝑅
𝑘−1

1

𝜌
𝑘
)(𝑎
𝑘
cos 𝑘𝜃 + 𝑏

𝑘
sin 𝑘𝜃)



Abstract and Applied Analysis 5

− {2𝜋𝑅(ln(
𝜌

𝜌
))𝑝
0
− 𝑅𝜋

𝑀

∑

𝑘=1

1

𝑘
(
𝑅

𝜌
)

𝑘

× (𝑝
𝑘
cos 𝑘𝜃 + 𝑞

𝑘
sin 𝑘𝜃) − 𝑅

1
𝜋

𝑁

∑

𝑘=1

1

𝑘
(
𝑅
1

𝜌
)

𝑘

× (𝑝
𝑘
cos 𝑘𝜃 + 𝑞

𝑘
sin 𝑘𝜃)} = 0,

L
𝐶

int (𝜌, 𝜃; 𝜌, 𝜃)

:= −2𝜋𝑎
0
− 𝑅
1
𝜋

𝑁

∑

𝑘=1

(
𝜌
𝑘

𝑅𝑘+1
1

)

× (𝑎
𝑘
cos 𝑘𝜃 + 𝑏

𝑘
sin 𝑘𝜃) + 2𝜋𝑎

0

+ 𝑅𝜋

𝑀

∑

𝑘=1

(
𝜌
𝑘

𝑅𝑘+1
) (𝑎
𝑘
cos 𝑘𝜃 + 𝑏

𝑘
sin 𝑘𝜃)

− {−𝑅
1
𝜋

𝑁

∑

𝑘=1

1

𝑘
(
𝜌

𝑅
1

)

𝑘

× (𝑝
𝑘
cos 𝑘𝜃 + 𝑞

𝑘
sin 𝑘𝜃)

+ 2𝜋𝑅(ln 𝑅

𝑅
1

)𝑝
0
− 𝑅𝜋

𝑀

∑

𝑘=1

1

𝑘
(
𝜌

𝑅
)
𝑘

× (𝑝
𝑘
cos 𝑘𝜃 + 𝑞

𝑘
sin 𝑘𝜃)} = 0. (23)

Also the interior solution (19) leads to

𝑢
𝐶

𝑀−𝑁
= 𝑢
𝐶

𝑀−𝑁
(𝜌, 𝜃) = 𝑢

𝐶

𝑀−𝑁
(𝜌, 𝜃)

= 𝑎
0
− 𝑅(ln 𝑅

𝑅
1

)𝑝
0
+
𝑅

2

𝑀

∑

𝑘=1

1

𝑘
(
𝜌

𝑅
)
𝑘

× (𝑝
𝑘
cos 𝑘𝜃 + 𝑞

𝑘
sin 𝑘𝜃) + 𝑅

2

𝑀

∑

𝑘=1

(
𝜌
𝑘

𝑅𝑘+1
)

× (𝑎
𝑘
cos 𝑘𝜃 + 𝑏

𝑘
sin 𝑘𝜃) + 𝑅1

2

𝑁

∑

𝑘=1

1

𝑘
(
𝑅
1

𝜌
)

𝑘

× (𝑝
𝑘
cos 𝑘𝜃 + 𝑞

𝑘
sin 𝑘𝜃) + 𝑅1

2

𝑁

∑

𝑘=1

(
𝑅
𝑘−1

1

𝜌
𝑘
)

× (𝑎
𝑘
cos 𝑘𝜃 + 𝑏

𝑘
sin 𝑘𝜃) , (𝑟, 𝜃) ∈ 𝑆.

(24)

Hence, the total number of unknown coefficients is reduced
to 2(𝑀+𝑁)+1. Based on the analysis in [15], to remain good

stability, we still choose 2(𝑀+𝑁) + 2 collocation nodes as in
(16):

𝑤
𝑖
L
𝐶

ext (𝑅 + 𝜀, 𝑖Δ𝜃; 𝜌𝑖, 𝜃𝑖) = 0, 𝑖 = 0, 1, . . . , 2𝑀,

𝑤
𝑖
L
𝐶

int (𝜌𝑖, 𝜃𝑖; 𝑅1 − 𝜀, 𝑖Δ𝜃) = 0, 𝑖 = 1, 2, . . . , 2𝑁,

(25)

where the weights 𝑤
0
= 1, 𝑤

𝑖
= √2 for 𝑖 ≥ 1, Δ𝜃 =

2𝜋/(2𝑀 + 1), and Δ𝜃 = 2𝜋/(2𝑁 + 1). Equation (25) form
an overdetermined system, which can be solved by the QR
method or the singular value decomposition.

2.3. The Interior Field Method. In [17], we prove that when
𝑢 ∈ 𝐻

2
(𝜕𝑆) and 𝑢] ∈ 𝐻

1
(𝜕𝑆), the NFM remains valid for the

field nodes 𝑄 ∈ 𝜕𝑆; that is, 𝜌 = 𝑅 on 𝜕𝑆
𝑅
and 𝜌 = 𝑅

1
on 𝜕𝑆

𝑅
1

and (23) and (24) hold. In fact, wemay use (24) only, because
(23) is obtained directly from the Dirichlet conditions on 𝜕𝑆

𝑅

and 𝜕𝑆
𝑅
1

, respectively. Interestingly, (24) is obtained from the
interior (i.e., the first) Green formula in (6) only. For this
reason, the interior field method (IFM) is named. Evidently,
the IFM is equivalent to the special NFM. Based on this
linkage, the new error analysis in Section 4 is explored.

2.4.The First Kind Boundary Integral Equations. Wemay also
apply the series expansions of FS to the first kind boundary
integral equations. Consider the Dirichlet problem

Δ𝑢 = 0, in Ω = 𝑅
2
\ Γ,

𝑢 = 𝑓, on Γ,

𝑢 (𝑥) = 𝑂 (log |x|) , as |x| 󳨀→ ∞,

(26)

where |x| is the Euclidean distance. In (26), Γ(= ∪𝑑
𝑚=1

Γ
𝑚
) is an

open arc, and each of its edges, Γ
𝑚
(𝑚 = 1, . . . , 𝑑), is assumed

to be smooth. Let 𝐶
Γ
be the logarithmic capacity of Γ. From

the single layer potential theory [28–30], if𝐶
Γ
̸= 1, (26) can be

converted to the first kind boundary integral equation (BIE),

−
1

2𝜋
∫
Γ

V (x) ln 󵄨󵄨󵄨󵄨x − 𝑦
󵄨󵄨󵄨󵄨 𝑑𝑠x = 𝑓 (y) (y ∈ Γ) , (27)

where V(x)(= (𝜕𝑢(x)/𝜕𝑛−) − (𝜕𝑢(x)/𝜕𝑛+)) is the unknown
function and 𝜕𝑢/𝜕𝑛± denote the normal derivatives along the
positive and negative sides of Γ. If𝐶

Γ
̸= 1, there exists a unique

solution of (27), see [28]. As soon as V(x) is solved from (27),
the solution 𝑢(x) (x ∈ Ω) of (26) can be evaluated by

𝑢 (x) = − 1
2𝜋

∫
Γ

V (x) ln 󵄨󵄨󵄨󵄨x − y󵄨󵄨󵄨󵄨 𝑑𝑠x (y ∈ Ω) . (28)
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For the smooth solution 𝑢, we have V(x) = 2(𝜕𝑢/𝜕]), where ]
is the normal of Γ. We may assume the Fourier expansions of
V on Γ

V (𝑠) = V+ (𝑠) = 𝑞⋆
0

:= 𝑝
⋆

0
+

𝑀

∑

𝑘=1

{𝑝
⋆

𝑘
cos 𝑘𝜃 + 𝑞⋆

𝑘
sin 𝑘𝜃} on 𝜕𝑆

𝑅
,

V (𝑠) = V− (𝑠) = 𝑞⋆
0

:= 𝑝
⋆

0
+

𝑁

∑

𝑘=1

{𝑝
⋆

𝑘
cos 𝑘𝜃 + 𝑞⋆

𝑘
sin 𝑘𝜃} on 𝜕𝑆

𝑅
1

,

(29)

where 𝑝⋆
𝑘
, 𝑞
⋆

𝑘
, 𝑝
⋆

𝑘
, and 𝑞⋆

𝑘
are the coefficients. We have from

[17]
𝑢 (x) = 𝑢 (𝜌, 𝜃)

= −
1

2𝜋
∫
𝜕𝑆
𝑅
∪𝜕𝑆
𝑅1

𝑈(x, y) V (y) 𝑑𝜎y

= −
1

2𝜋
{∫
𝜕𝑆
𝑅

𝑈
𝑖
(x, y) V (y) 𝑑𝜎y

+∫
𝜕𝑆
𝑅1

𝑈
𝑒
(x, y) V (y) 𝑑𝜎y} , x ∈ 𝑆,

(30)
to give

𝑢
𝑀−𝑁

(𝜌, 𝜃) = −𝑅 ln𝑅𝑝⋆
0
− 𝑅
1
ln 𝜌𝑝⋆
0
+
𝑅

2

𝑀

∑

𝑘=1

1

𝑘
(
𝜌

𝑅
)
𝑘

× (𝑝
⋆

𝑘
cos 𝑘𝜃 + 𝑞⋆

𝑘
sin 𝑘𝜃) + 𝑅1

2

𝑁

∑

𝑘=1

1

𝑘
(
𝑅
1

𝜌
)

𝑘

× (𝑝
⋆

𝑘
cos 𝑘𝜃 + 𝑞⋆

𝑘
sin 𝑘𝜃) , (𝑟, 𝜃) ∈ 𝑆.

(31)

Note that the derivation of (31) in the first kind BIE is simpler,
because we do not need the series expansions of 𝜕𝑈𝑖(x, y)/𝜕𝑟
and 𝜕𝑈𝑒(x, y)/𝜕𝑟.This advantage is very important for elastic-
ity problems, because the displacement conditions are much
simpler than the traction ones.

2.5. The Collocation Trefftz Method. We also use the colloca-
tion Trefftz method (CTM). For (1), the particular solutions
of CTM are given by (see [6])

𝑢
𝑀−𝑁

(𝜌, 𝜃; 𝜌, 𝜃) = 𝑎
0
+

𝑀

∑

𝑖=1

(
𝜌

𝑅
)
𝑖

(𝑎
𝑖
cos 𝑖𝜃 + 𝑏

𝑖
sin 𝑖𝜃)

+ 𝑎
0
ln 𝜌 +

𝑁

∑

𝑖=1

(
𝑅
1

𝜌
)

𝑖

× (𝑎
𝑖
cos 𝑖𝜃 + 𝑏

𝑖
sin 𝑖𝜃) ,

𝜌 ≤ 𝑅, 𝜌 ≥ 𝑅
1
,

(32)

where 𝑎
𝑖
, 𝑏
𝑖
, 𝑎
𝑖
, and 𝑏

𝑖
are the coefficients. Evidently, the

admissible functions (19) of the IFM and (31) of the first kind
BIE are the special cases of (32). Equation (31) may be written
as (32) with the following relations of coefficients:

𝑎
0
:= −𝑅 ln𝑅𝑝⋆

0
, 𝑎

0
:= −𝑅

1
𝑝
⋆

0
,

𝑎
𝑘
:=

𝑅

2𝑘
𝑝
⋆

𝑘
, 𝑏

𝑘
:=

𝑅

2𝑘
𝑞
⋆

𝑘
,

𝑎
𝑘
:=
𝑅
1

2𝑘
𝑝
⋆

𝑘
, 𝑏

𝑘
:=
𝑅
1

2𝑘
𝑞
⋆

𝑘
.

(33)

Equation (19) can also be written as (32) with

𝑎
0
:= 𝑎

IFM
0

− 𝑅 ln𝑅𝑝IFM
0
, 𝑎

0
:= −𝑅

1
𝑝
IFM
0
,

𝑎
𝑘
:=

𝑅

2𝑘
𝑝
IFM
𝑘

+
1

2
𝑎
IFM
𝑘
, 𝑏

𝑘
:=

𝑅

2𝑘
𝑞
IFM
𝑘

+
1

2
𝑏
IFM
𝑘

,

𝑎
𝑘
:=
𝑅
1

2𝑘
𝑝
IFM
𝑘

+
1

2
𝑎
IFM
𝑘
, 𝑏

𝑘
:=
𝑅
1

2𝑘
𝑞
IFM
𝑘

+
1

2
𝑏
IFM
𝑘
,

(34)

where 𝑝IFM
𝑘
, 𝑞

IFM
𝑘
, . . . are the coefficients in (19) of the IFM.

Therefore, we may classify the IFM and the first kind
BIE into the TM family, and their analysis may follow the
framework in [6]. However, the particular solutions (32)
can be applied to arbitrary shaped domains, for example,
simply ormultiple-connected domains, but the functions (19)
and (31) are confined themselves to the circular domains
with circular holes only. The four boundary methods, NFM,
IFM, BIE, and CTM, are described together, with their
explicit algebraic equations. The relations of their expansion
coefficients are discovered at the first time.Moreover, Figure 1
shows clear relations among NFM, IFM, BIE, and CTM.The
intrinsic relations have been provided to fulfill the first goal
of this paper.

To close this section, we describe the CTM. Denote𝑉
𝑀−𝑁

the set of (32), and define the energy

𝐼 (𝑢) = ∫
Γ

(V − 𝑓)
2

, (35)

where Γ = 𝜕𝑆 and 𝑓 is the known function of Dirichlet
boundary conditions. Then the solution 𝑢

𝑀−𝑁
of the Trefftz

methods (TM) can be obtained by

𝐼 (𝑢
𝑀−𝑁

) = min
V∈𝑉
𝑀−𝑁

𝐼 (V) . (36)

The TM solution 𝑢
𝑀−𝑁

also satisfies
󵄩󵄩󵄩󵄩𝑢 − 𝑢𝑀−𝑁

󵄩󵄩󵄩󵄩0,Γ = min
V∈𝑉
𝑀−𝑁

‖𝑢 − V‖0,Γ. (37)

When the integral in (35) involves numerical approximation,
the modified energy is defined as

𝐼 (V) =
̂
∫
Γ

(V − 𝑓)
2

, (38)

where ̂∫
Γ
is the numerical approximations of ∫

Γ
by some

quadrature rules, such as the central or the Gaussian rule.
Hence, the numerical solution 𝑢̂

𝑀−𝑁
∈ 𝑉
𝑀−𝑁

is obtained by

𝐼 (𝑢̂
𝑀−𝑁

) = min
V∈𝑉
𝑀−𝑁

𝐼 (V) . (39)
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IFM

IFM

With
FS expansions

With
FS expansions

New

BIE

CTM

NFM

BEM

Green formulas
ℒ(u, 𝜃) =

0,

−2𝜋u(𝜃),

Q ∈ S

−𝜋u(𝜃),

Q ∈ 𝜕S

Q → 𝜕S

Q (S ∪ 𝜕S)∈/

Figure 1: Relations among NFM, IFM, BIE, and CTM.

Wemay also establish the collocation equations directly from
the Dirichlet condition to yield

𝑢̂
𝑀−𝑁

(𝑃
𝑗
) = 𝑓
𝑀−𝑁

(𝑃
𝑗
) , 𝑃

𝑗
∈ Γ. (40)

Following [6], (40) is just equivalent to (38).

3. Preliminary Analysis of the NFM

In this section, a preliminary analysis of the NFM is made
for concentric circular boundaries. In the next section, error
analysis of the NFM with 𝜖 = 𝜖 = 0 is explored for eccentric
circular boundaries. Consider the simple domains of 𝑆 =

𝑆
𝑅
\ 𝑆
𝑅
1

, where 𝑆
𝑅
and 𝑆
𝑅
1

have the same origin. For the same
origin 𝑂 of 𝑆

𝑅
and 𝑆
𝑅
1

, the same polar coordinates (𝜌, 𝜃) are
used, and the general solutions in 𝑆

𝑅
\ 𝑆
𝑅
1

can be denoted by

𝑢 (𝜌, 𝜃) = 𝑎
∗

0
+

∞

∑

𝑘=1

𝜌
𝑘
{𝑎
∗

𝑘
cos 𝑘𝜃 + 𝑏∗

𝑘
sin 𝑘𝜃} + 𝑎∗

0
ln 𝜌

+

∞

∑

𝑘=1

𝜌
−𝑘
{𝑎
∗

𝑘
cos 𝑘𝜃 + 𝑏

∗

𝑘
sin 𝑘𝜃} ,

(41)

where 𝑎∗
𝑖
, 𝑏
∗

𝑖
, 𝑎
∗

𝑖
, 𝑏
∗

𝑖
are true coefficients and 𝑅

1
≤ 𝜌 ≤ 𝑅.

Then their derivatives are given by

𝜕

𝜕𝜌
𝑢 (𝜌, 𝜃) =

∞

∑

𝑘=1

𝑘𝜌
𝑘−1

{𝑎
∗

𝑘
cos 𝑘𝜃 + 𝑏∗

𝑘
sin 𝑘𝜃} + 𝑎∗

0

1

𝜌

−

∞

∑

𝑘=1

𝑘𝜌
−𝑘−1

{𝑎
∗

𝑘
cos 𝑘𝜃 + 𝑏

∗

𝑘
sin 𝑘𝜃} .

(42)

When 𝜌 = 𝑅, from (41) and (42), we have

𝑢 (𝜌, 𝜃)
󵄨󵄨󵄨󵄨𝜌=𝑅 = 𝑎

∗

0
+

∞

∑

𝑘=1

𝑅
𝑘
{𝑎
∗

𝑘
cos 𝑘𝜃 + 𝑏∗

𝑘
sin 𝑘𝜃} + 𝑎∗

0
ln𝑅

+

∞

∑

𝑘=1

𝑅
−𝑘
{𝑎
∗

𝑘
cos 𝑘𝜃 + 𝑏

∗

𝑘
sin 𝑘𝜃} ,

𝜕

𝜕𝜌
𝑢 (𝜌, 𝜃)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜌=𝑅
=

∞

∑

𝑘=1

𝑘𝑅
𝑘−1
{𝑎
∗

𝑘
cos 𝑘𝜃 + 𝑏∗

𝑘
sin 𝑘𝜃} + 𝑎∗

0

1

𝑅

−

∞

∑

𝑘=1

𝑘𝑅
−𝑘−1

{𝑎
∗

𝑘
cos 𝑘𝜃 + 𝑏

∗

𝑘
sin 𝑘𝜃} .

(43)

Comparing (43) with (2) and (3), we have the following
equalities of coefficients:

𝑎
0
= 𝑎
∗

0
+ 𝑎
∗

0
ln𝑅,

𝑎
𝑘
= 𝑅
𝑘
𝑎
∗

𝑘
+ 𝑅
−𝑘
𝑎
∗

𝑘
,

𝑏
𝑘
= 𝑅
𝑘
𝑏
∗

𝑘
+ 𝑅
−𝑘
𝑏
∗

𝑘
,

(44)

𝑝
0
= 𝑎
∗

0

1

𝑅
,

𝑝
𝑘
= 𝑘 {𝑅

𝑘−1
𝑎
∗

𝑘
− 𝑅
−𝑘−1

𝑎
∗

𝑘
} ,

𝑞
𝑘
= 𝑘 {𝑅

𝑘−1
𝑏
∗

𝑘
− 𝑅
−𝑘−1

𝑏
∗

𝑘
} ,

(45)

where 𝑎
𝑘
, 𝑏
𝑘
, 𝑝
𝑘
, and 𝑞

𝑘
are the coefficients of the NFM in

Section 2.1.
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Also, when 𝜌 = 𝑅
1
, from (41) and (42), we have

𝑢 (𝜌, 𝜃)
󵄨󵄨󵄨󵄨𝜌=𝑅
1

= 𝑎
∗

0
+

∞

∑

𝑘=1

𝑅
𝑘

1
{𝑎
∗

𝑘
cos 𝑘𝜃 + 𝑏∗

𝑘
sin 𝑘𝜃}

+ 𝑎
∗

0
ln𝑅
1

+

∞

∑

𝑘=1

𝑅
−𝑘

1
{𝑎
∗

𝑘
cos 𝑘𝜃 + 𝑏

∗

𝑘
sin 𝑘𝜃} ,

𝜕

𝜕𝜌
𝑢 (𝜌, 𝜃)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜌=𝑅
1

=

∞

∑

𝑘=1

𝑘𝑅
𝑘−1

1
{𝑎
∗

𝑘
cos 𝑘𝜃 + 𝑏∗

𝑘
sin 𝑘𝜃} + 𝑎∗

0

1

𝑅
1

−

∞

∑

𝑘=1

𝑘𝑅
−𝑘−1

1
{𝑎
∗

𝑘
cos 𝑘𝜃 + 𝑏

∗

𝑘
sin 𝑘𝜃} .

(46)

Comparing (46) with (4) and (5), we have

𝑎
0
= 𝑎
∗

0
+ 𝑎
∗

0
ln𝑅
1
,

𝑎
𝑘
= 𝑅
𝑘

1
𝑎
∗

𝑘
+ 𝑅
−𝑘

1
𝑎
∗

𝑘
,

𝑏
𝑘
= 𝑅
𝑘

1
𝑏
∗

𝑘
+ 𝑅
−𝑘

1
𝑏
∗

𝑘
,

(47)

𝑝
0
= −𝑎
∗

0

1

𝑅
1

,

𝑝
𝑘
= −𝑘 {𝑅

𝑘−1

1
𝑎
∗

𝑘
− 𝑅
−𝑘−1

1
𝑎
∗

𝑘
} ,

𝑞
𝑘
= −𝑘 {𝑅

𝑘−1

1
𝑏
∗

𝑘
− 𝑅
−𝑘−1

1
𝑏
∗

𝑘
} ,

(48)

where 𝑎
𝑘
, 𝑏
𝑘
, 𝑝
𝑘
, and 𝑞

𝑘
are also the coefficients of the NFM

in Section 2.1.
On the other hand, when (𝜌, 𝜃) = (𝜌, 𝜃), we have from the

first original equation (12)

− 𝑅𝜋

𝑀

∑

𝑘=1

(
𝑅
𝑘−1

𝜌𝑘
) (𝑎
𝑘
cos 𝑘𝜃 + 𝑏

𝑘
sin 𝑘𝜃)

+ 𝑅
1
𝜋

𝑁

∑

𝑘=1

(
𝑅
𝑘−1

1

𝜌𝑘
)(𝑎
𝑘
cos 𝑘𝜃 + 𝑏

𝑘
sin 𝑘𝜃)

= 2𝜋𝑅 (ln 𝜌) 𝑝
0
− 𝑅𝜋

𝑀

∑

𝑘=1

1

𝑘
(
𝑅

𝜌
)

𝑘

× (𝑝
𝑘
cos 𝑘𝜃 + 𝑞

𝑘
sin 𝑘𝜃) + 2𝜋𝑅

1
(ln 𝜌) 𝑝

0

− 𝑅
1
𝜋

𝑁

∑

𝑘=1

1

𝑘
(
𝑅
1

𝜌
)

𝑘

(𝑝
𝑘
cos 𝑘𝜃 + 𝑞

𝑘
sin 𝑘𝜃) .

(49)

Then for 𝜌 ≥ 𝑅, we obtain the following equalities, based on
the orthogonality of trigonometric functions:

(ln 𝜌) (𝑅𝑝
0
+ 𝑅
1
𝑝
0
) = 0, (50)

𝑅
𝑘
𝑎
𝑘
− 𝑅
𝑘

1
𝑎
𝑘
=
1

𝑘
𝑅
𝑘+1
𝑝
𝑘
+
1

𝑘
𝑅
𝑘+1

1
𝑝
𝑘
, (51)

𝑅
𝑘
𝑏
𝑘
− 𝑅
𝑘

1
𝑏
𝑘
=
1

𝑘
𝑅
𝑘+1
𝑞
𝑘
+
1

𝑘
𝑅
𝑘+1

1
𝑞
𝑘
. (52)

Similarly, from the second equation (13),

− 2𝜋𝑎
0
− 𝑅
1
𝜋

𝑁

∑

𝑘=1

(
𝜌
𝑘

𝑅𝑘+1
1

)(𝑎
𝑘
cos 𝑘𝜃 + 𝑏

𝑘
sin 𝑘𝜃)

+ 2𝜋𝑎
0
+ 𝑅𝜋

𝑀

∑

𝑘=1

(
𝜌
𝑘

𝑅𝑘+1
) (𝑎
𝑘
cos 𝑘𝜃 + 𝑏

𝑘
sin 𝑘𝜃)

= 2𝜋𝑅
1
ln𝑅
1
𝑝
0
− 𝑅
1
𝜋

𝑁

∑

𝑘=1

1

𝑘
(
𝜌

𝑅
1

)

𝑘

× (𝑝
𝑘
cos 𝑘𝜃 + 𝑞

𝑘
sin 𝑘𝜃) + 2𝜋𝑅 ln𝑅𝑝

0

− 𝑅𝜋

𝑀

∑

𝑘=1

1

𝑘
(
𝜌

𝑅
)
𝑘

(𝑝
𝑘
cos 𝑘𝜃 + 𝑞

𝑘
sin 𝑘𝜃) .

(53)

Then for 𝜌 ≤ 𝑅
1
, we obtain

𝑎
0
− 𝑎
0
= 𝑅 ln𝑅𝑝

0
+ 𝑅
1
ln𝑅
1
𝑝
0
, (54)

1

𝑅𝑘
𝑎
𝑘
−
1

𝑅𝑘
1

𝑎
𝑘
= −

1

𝑘

1

𝑅𝑘−1
𝑝
𝑘
−
1

𝑘

1

𝑅𝑘−1
1

𝑝
𝑘
, (55)

1

𝑅𝑘
𝑏
𝑘
−
1

𝑅𝑘
1

𝑏
𝑘
= −

1

𝑘

1

𝑅𝑘−1
𝑞
𝑘
−
1

𝑘

1

𝑅𝑘−1
1

𝑞
𝑘
. (56)

Below, we prove that the true coefficients can be obtained
directly from the NFM based on (50)–(52) for 𝜌 ≥ 𝑅 and
on (54)–(56) for 𝜌 ≤ 𝑅

1
. Outline of the proof is as follows.

We will prove that the true solutions satisfy (50)–(52) and
(54)–(56) of the NFM. Based on the analysis in [16], when
𝑅 ̸= 1, there exists a unique solution of the special NFM with
𝜖 = 𝜖 = 0. Therefore, the true coefficients can be determined
by the IFM uniquely.

First to show (50). The consistent condition is given by

∫
𝜕𝑆
𝑅

𝜕𝑢

𝜕]
+ ∫
𝜕𝑆
𝑅1

𝜕𝑢

𝜕]
= 2𝜋𝑅𝑝

0
+ 2𝜋𝑅

1
𝑝
0
= 0. (57)

Equation (57) can also be obtained from (45) and (48).
Equations (57) and (50) are equivalent if ln 𝜌 ̸= 0 (i.e., 𝜌 ̸= 1),
which is also the necessary condition of nonsingularity of
matrix F in (17) [16]. Based on (57), the conservative schemes
are proposed in [15]. Equation (54) is shown next. We have
from (44) and (47)

𝑎
0
− 𝑎
0
= 𝑎
∗

0
ln𝑅 − 𝑎∗

0
ln𝑅
1

= 𝑅 ln𝑅(
𝑎
∗

0

𝑅
) + 𝑅

1
ln𝑅
1
(−

𝑎
∗

0

𝑅
1

)

= 𝑅 ln𝑅𝑝
0
+ 𝑅
1
ln𝑅
1
𝑝
0
,

(58)

where we have used (45) and (48).
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Equations (51) and (55) are shown below. Denote them in
matrix form

(

𝑅
𝑘
−𝑅
𝑘

1

1

𝑅𝑘
−
1

𝑅𝑘
1

)(

𝑎
𝑘

𝑎
𝑘

) =
1

𝑘
(

𝑅
𝑘+1

𝑅
𝑘+1

1

−
1

𝑅𝑘−1
−

1

𝑅𝑘−1
1

)(

𝑝
𝑘

𝑝
𝑘

) ,

(59)

and denote from (44) and (47)

(

𝑎
𝑘

𝑎
𝑘

) = (
𝑅
𝑘
𝑅
−𝑘

𝑅
𝑘

1
𝑅
−𝑘

1

)(

𝑎
∗

𝑘

𝑎
∗

𝑘

) , (60)

where 𝑎∗
𝑘
and 𝑎∗
𝑘
are true expansion coefficients. Also denote

from (45) and (48)

(

𝑝
𝑘

𝑝
𝑘

) = 𝑘(
𝑅
𝑘−1

−𝑅
−𝑘−1

−𝑅
𝑘−1

1
𝑅
−𝑘−1

1

)(

𝑎
∗

𝑘

𝑎
∗

𝑘

) . (61)

By substituting (60) and (61) into (59), its left-hand side leads
to

(

𝑅
𝑘
−𝑅
𝑘

1

1

𝑅𝑘
−
1

𝑅𝑘
1

)(

𝑎
𝑘

𝑎
𝑘

) = (

𝑅
𝑘
−𝑅
𝑘

1

1

𝑅𝑘
−
1

𝑅𝑘
1

)(
𝑅
𝑘
𝑅
−𝑘

𝑅
𝑘

1
𝑅
−𝑘

1

)(

𝑎
∗

𝑘

𝑎
∗

𝑘

)

= (
𝑅
2𝑘
− 𝑅
2𝑘

1
0

0 𝑅
−2𝑘

− 𝑅
−2𝑘

1

)(

𝑎
∗

𝑘

𝑎
∗

𝑘

) .

(62)

The right-hand side of (59) leads to

1

𝑘
(

𝑅
𝑘+1

𝑅
𝑘+1

1

−
1

𝑅𝑘−1
−

1

𝑅𝑘−1
1

)(

𝑝
𝑘

𝑝
𝑘

)

=
1

𝑘
(

𝑅
𝑘+1

𝑅
𝑘+1

1

−
1

𝑅𝑘−1
−

1

𝑅𝑘−1
1

)𝑘(

𝑅
𝑘−1

−𝑅
−𝑘−1

−𝑅
𝑘−1

1
𝑅
−𝑘−1

1

)(

𝑎
∗

𝑘

𝑎
∗

𝑘

)

= (
𝑅
2𝑘
− 𝑅
2𝑘

1
0

0 𝑅
−2𝑘

− 𝑅
−2𝑘

1

)(

𝑎
∗

𝑘

𝑎
∗

𝑘

) .

(63)

The second equality of the right-hand sides of (62) and (63)
yield (59).The proof for the validity of (52) and (56) is similar.
We write these important results as a proposition.

Proposition 1. For the concentric circular domains, when 𝜌 =
𝑅+𝜖 ̸= 1, the leading coefficients are exact by the NFM, and the
solution errors result only from the truncations of their Fourier
expansions.

4. Error Bounds of the NFM with 𝜖 = 𝜖 = 0

The NFM with the field nodes 𝑄 ∈ 𝜕𝑆 (i.e., 𝜖 = 𝜖 = 0)
located on the domain boundary is the most important
application for Chen’s publications (see [8–14]). We will
provide the errors bounds under the Sobolev norms of this
special NFM for circular domains with eccentric circular
boundaries without proof. Based on the equivalence of the
special NFM and the CTM, we may follow the framework
of analysis of Treffez method in [6]. The Sobolev norms for
Fourier functions are provided in Kreiss and Oliger [31],
Pasciak [32], and Canuto and Quarteroni [33].

Let the domain 𝑆 be divided into two subdomains 𝑆ext and
𝑆
int with an interface boundary Γ

0
∈ 𝑆. We have 𝑆 = 𝑆

ext
∪

𝑆
int
∪ Γ
0
and 𝑆ext ∩ 𝑆int = 0, where 𝜕𝑆ext = 𝜕𝑆

𝑅
∪ Γ
0
and 𝜕𝑆int =

𝜕𝑆
𝑅
1

∪ Γ
0
. We assume that the true solutions have different

regularities

𝑢 ∈ 𝐻
𝑝+(1/2)

(𝑆
ext
) , 𝑢 ∈ 𝐻

𝜎+(1/2)
(𝑆

int
) , (64)

where 𝑝 ≥ 2 and 𝜎 ≥ 2. Then there are different regularities
on the boundary

𝑢 ∈ 𝐻
𝑝
(𝜕𝑆

ext
) , 𝑢] ∈ 𝐻

𝑝−1
(𝜕𝑆

ext
) ,

𝑢 ∈ 𝐻
𝜎
(𝜕𝑆

int
) , 𝑢] ∈ 𝐻

𝜎−1
(𝜕𝑆

int
) ,

(65)

where ] and ] are the exterior normal to 𝜕𝑆ext and 𝜕𝑆int,
respectively.Therefore, the true solutions can be expressed by
the Fourier expansions on 𝜕𝑆

𝑅

𝑢 (𝜌, 𝜃)
󵄨󵄨󵄨󵄨𝜕𝑆
𝑅

= 𝑎
∘

0
+

∞

∑

𝑘=1

(𝑎
∘

𝑘
cos 𝑘𝜃 + 𝑏∘

𝑘
sin 𝑘𝜃) , (66)

𝜕

𝜕𝜌
𝑢 (𝜌, 𝜃)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜕𝑆
𝑅

= 𝑝
∘

0
+

∞

∑

𝑘=1

(𝑝
∘

𝑘
cos 𝑘𝜃 + 𝑞∘

𝑘
sin 𝑘𝜃) , (67)

where 𝑎∘
𝑘
, 𝑏
∘

𝑘
, 𝑝
∘

𝑘
, 𝑞
∘

𝑘
, are the true boundary coefficients. Simi-

larly, we have

𝑢 (𝜌, 𝜃)
󵄨󵄨󵄨󵄨󵄨𝜕𝑆
𝑅1

= 𝑎
∘

0
+

∞

∑

𝑘=1

(𝑎
∘

𝑘
cos 𝑘𝜃 + 𝑏

∘

𝑘
sin 𝑘𝜃) ,

𝜕

𝜕]
𝑢 (𝜌, 𝜃)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜕𝑆
𝑅1

= 𝑝
∘

0
+

∞

∑

𝑘=1

(𝑝
∘

𝑘
cos 𝑘𝜃 + 𝑞∘

𝑘
sin 𝑘𝜃) ,

(68)

where 𝑎∘
𝑘
, 𝑏
∘

𝑘
, 𝑝
∘

𝑘
, 𝑞
∘

𝑘
, are the true boundary coefficients.

Denote finite terms of the Fourier expansions on 𝜕𝑆
𝑅
in

(66) and (67) by

𝑢
𝑀
= 𝑢
𝑀
(𝜌, 𝜃)

󵄨󵄨󵄨󵄨󵄨𝜕𝑆
𝑅

= 𝑎
∘

0
+

𝑀

∑

𝑘=1

(𝑎
∘

𝑘
cos 𝑘𝜃 + 𝑏∘

𝑘
sin 𝑘𝜃) ,

𝑢
𝑀

𝜌
=
𝜕

𝜕𝜌
𝑢
𝑀
(𝜌, 𝜃)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜕𝑆
𝑅

= 𝑝
∘

0
+

𝑀

∑

𝑘=1

(𝑝
∘

𝑘
cos 𝑘𝜃 + 𝑞∘

𝑘
sin 𝑘𝜃) ;

(69)
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Table 1: The errors and condition numbers by the conservative schemes of the IFM, where 𝑅 = 2.5 and 𝛿 = 𝑢 − 𝑢
𝑀−𝑁

.

𝑅
1

(𝑀,𝑁) ‖𝛿‖
∞,𝜕𝑆

‖𝛿‖
0,𝜕𝑆

Cond Cond eff
1 (24, 12) 1.52 (−8) 1.54 (−8) 8.48 (1) 2.70 (1)
0.5 (24, 12) 4.90 (−11) 4.70 (−11) 2.64 (2) 1.30 (2)
0.1 (24, 8) 6.81 (−12) 6.67 (−12) 1.62 (3) 9.21 (2)
0.1 (24, 7) 6.81 (−12) 6.67 (−12) 1.39 (3) 7.89 (2)
0.1 (24, 6) 6.81 (−12) 6.83 (−12) 1.16 (3) 6.58 (2)
0.1 (24, 5) 2.40 (−10) 9.34 (−11) 9.34 (2) 5.26 (2)
0.1 (24, 4) 1.58 (−8) 6.10 (−9) 7.05 (2) 3.95 (2)
10
−2 (24, 6) 3.69 (−12) 3.62 (−12) 1.97 (4) 1.16 (4)

10
−2 (24, 5) 6.69 (−12) 3.62 (−12) 1.57 (4) 9.26 (3)

10
−2 (24, 4) 3.69 (−12) 3.62 (−12) 1.18 (4) 6.94 (3)

10
−2 (24, 3) 6.10 (−10) 7.63 (−11) 7.91 (3) 4.63 (3)

10
−2 (24, 2) 4.80 (−7) 6.00 (−8) 3.98 (3) 2.31 (3)

10
−3 (24, 5) 2.58 (−12) 2.53 (−12) 2.22 (5) 1.32 (5)

10
−3 (24, 4) 2.58 (−12) 2.53 (−12) 1.67 (5) 9.93 (4)

10
−3 (24, 3) 2.58 (−12) 2.53 (−12) 1.11 (5) 6.62 (4)

10
−3 (24, 2) 3.35 (−9) 1.33 (−10) 5.58 (4) 3.31 (4)

10
−3 (24, 1) 3.52 (−5) 1.39 (−6) 1.09 (2) 7.90 (1)

10
−4 (24, 5) 1.98 (−12) 1.94 (−12) 2.87 (6) 1.72 (6)

10
−4 (24, 4) 1.98 (−12) 1.94 (−12) 2.15 (6) 1.29 (6)

10
−4 (24, 3) 1.98 (−12) 1.95 (−12) 1.44 (6) 8.62 (5)

10
−4 (24, 2) 2.57 (−11) 1.97 (−12) 7.20 (5) 4.31 (5)

10
−4 (24, 1) 2.70 (−6) 3.38 (−8) 1.40 (2) 1.03 (2)

Table 2: The leading coefficients by the conservative schemes of the IFM, where 𝑅 = 2.5.

𝑅
1

(𝑀,𝑁) 𝑝
0

𝑝
1

𝑝
1

1 (24, 12) 5.770780163555825 (−1) −5.770780163555787 (−1) 7.213475204444549 (−1)
0.5 (24, 12) 2.806196474263354 (−1) −2.358350543983467 (−1) 2.834834114319612 (−1)
0.1 (24, 8) 1.313991926276972 (−1) −1.053200366713576 (−1) 1.254266057498590 (−1)
0.1 (24, 7) 1.313991926276972 (−1) −1.053200366713574 (−1) 1.254266057498546 (−1)
0.1 (24, 6) 1.313991926276971 (−1) −1.053200366713574 (−1) 1.254266057498543 (−1)
0.1 (24, 5) 1.313991926276971 (−1) −1.053200366713575 (−1) 1.254266057498583 (−1)
0.1 (24, 4) 1.313991926276965 (−1) −1.053200366713555 (−1) 1.254266057489581 (−1)
10
−2 (24, 6) 7.480685008050482 (−2) −5.984662000415889 (−2) 7.124623469104319 (−2)

10
−2 (24, 5) 7.480685008050478 (−2) −5.984662000415886 (−2) 7.124623469102030 (−2)

10
−2 (24, 4) 7.480685008050478 (−2) −5.984662000415891 (−2) 7.124623469102347 (−2)

10
−2 (24, 3) 7.480685008050478 (−2) −5.984662000415888 (−2) 7.124623469085235 (−2)

10
−2 (24, 2) 7.480685008030524 (−2) −5.984662000262044 (−2) 7.124614851570256 (−2)

10
−3 (24, 5) 5.228968294193471 (−2) −4.183175432150129 (−2) 4.979970933244982 (−2)

10
−3 (24, 4) 5.228968294193472 (−2) −4.183175432150129 (−2) 4.979970933242725 (−2)

10
−3 (24, 3) 5.228968294193472 (−2) −4.183175432150130 (−2) 4.979970933271582 (−2)

10
−3 (24, 2) 5.228968294193472 (−2) −4.183175432150118 (−2) 4.979970873003448 (−2)

10
−3 (24, 1) 5.228968256993316 (−2) −4.183174605594654 (−2)

10
−4 (24, 5) 4.019180446935835 (−2) −3.215344363673135 (−2) 3.827790910656165 (−2)

10
−4 (24, 4) 4.019180446935836 (−2) −3.215344363673130 (−2) 3.827790910851808 (−2)

10
−4 (24, 3) 4.019180446935834 (−2) −3.215344363673132 (−2) 3.827790910677455 (−2)

10
−4 (24, 2) 4.019180446935835 (−2) −3.215344363673135 (−2) 3.827790909840129 (−2)

10
−4 (24, 1) 4.019180446716058 (−2) −3.215344357372844 (−2)
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Table 3: The errors and condition numbers by the original IFM,
where 𝑅 = 2.5 and 𝛿 = 𝑢 − 𝑢

𝑀−𝑁
.

𝑅
1

(𝑀,𝑁) ‖𝛿‖
∞,𝜕𝑆

‖𝛿‖
0,𝜕𝑆

Cond Cond eff
1 (24, 12) 8.94 (−9) 8.87 (−9) 1.38 (2) 1.85 (1)
0.5 (24, 12) 4.90 (−11) 4.70 (−11) 2.67 (2) 4.61 (1)
0.1 (24, 6) 6.81 (−12) 6.67 (−12) 8.32 (2) 5.19 (1)
10
−2 (24, 3) 3.69 (−12) 3.63 (−12) 5.20 (3) 4.54 (1)

10
−4 (24, 2) 1.98 (−12) 1.94 (−12) 3.88 (5) 5.57 (1)

also denote the circle ℓ
𝑟
= {(𝜌, 𝜃) | 𝜌 = 𝑟, 0 ≤ 𝜃 ≤ 2𝜋}. For

𝜕𝑆
𝑅
= ℓ
𝑅
, for the solution (66), the Sobolev norms are defined

as

|𝑢|0,ℓ
𝑅

= 𝜋𝑅{(𝑎
∘

0
)
2

+

∞

∑

𝑘=1

[(𝑎
∘

𝑘
)
2

+ (𝑏
∘

𝑘
)
2

]}

1/2

,

|𝑢|
𝑝,ℓ
𝑅

= 𝜋𝑅{

∞

∑

𝑘=1

𝑘
2𝑝
[(𝑎
∘

𝑘
)
2

+ (𝑏
∘

𝑘
)
2

]}

1/2

, 𝑝 ≥ 1,

‖𝑢‖𝑝,ℓ
𝑅

= {

𝑝

∑

𝑘=0

|𝑢|
2

𝑘,ℓ
𝑅

}

1/2

.

(70)

We have the following lemma, whose proof can be found in
Canuto et al. [33, 34].

Lemma 2. Let (64) be given, for 𝜕𝑆
𝑅
= ℓ
𝑅
; there exist the

bounds of the remainders of (69)
󵄩󵄩󵄩󵄩󵄩
𝑢 − 𝑢
𝑀󵄩󵄩󵄩󵄩󵄩𝑞,𝜕𝑆

𝑅

≤ 𝐶
1

𝑀𝑝−𝑞
|𝑢|𝑝,𝜕𝑆

𝑅

, 0 ≤ 𝑞 ≤ 𝑝,

󵄩󵄩󵄩󵄩󵄩
𝑢
𝜌
− 𝑢
𝑀

𝜌

󵄩󵄩󵄩󵄩󵄩𝑞,𝜕𝑆
𝑅

≤ 𝐶
1

𝑀𝑝−𝑞−1
󵄨󵄨󵄨󵄨󵄨
𝑢
𝜌

󵄨󵄨󵄨󵄨󵄨𝑝−1,𝜕𝑆
𝑅

, 0 ≤ 𝑞 ≤ 𝑝 − 1,

(71)

where 𝐶 is a constant independent of𝑀.

Also denote the finite terms of the Fourier expansions on
𝜕𝑆
𝑅
1

in (68) by

𝑢
𝑁
= 𝑢
𝑁
(𝜌, 𝜃)

󵄨󵄨󵄨󵄨󵄨𝜕𝑆
𝑅1

= 𝑎
∘

0
+

𝑁

∑

𝑘=1

(𝑎
∘

𝑘
cos 𝑘𝜃 + 𝑏

∘

𝑘
sin 𝑘𝜃) ,

𝑢
𝑁

] =
𝜕

𝜕]
𝑢 (𝜌, 𝜃)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜕𝑆
𝑅1

= 𝑝
∘

0
+

𝑁

∑

𝑘=1

(𝑝
∘

𝑘
cos 𝑘𝜃 + 𝑞∘

𝑘
sin 𝑘𝜃) .

(72)

We can prove the following lemma similarly.

Lemma 3. Let (64) be given, for 𝜕𝑆
𝑅
1

= ℓ
𝑅
1

; there exist the
bounds of the remainders of (72)

󵄩󵄩󵄩󵄩󵄩
𝑢 − 𝑢
𝑁󵄩󵄩󵄩󵄩󵄩𝑞,𝜕𝑆

𝑅1

≤ 𝐶
1

𝑁𝑝−𝑞
|𝑢|𝑝,𝜕𝑆

𝑅1

, 0 ≤ 𝑞 ≤ 𝑝,

󵄩󵄩󵄩󵄩󵄩
𝑢] − 𝑢

𝑁

]

󵄩󵄩󵄩󵄩󵄩𝑞,𝜕𝑆
𝑅1

≤ 𝐶
1

𝑁𝑝−𝑞−1
󵄨󵄨󵄨󵄨𝑢]
󵄨󵄨󵄨󵄨𝑝−1,𝜕𝑆

𝑅1

, 0 ≤ 𝑞 ≤ 𝑝 − 1,

(73)

where 𝐶 is a constant independent of𝑁.

We have the following theorem.

Theorem 4. Let (64) and 𝑅 ̸= 1 hold. For the solution 𝑢
𝑁,𝑀

from the TM in (36), there exists the error bound

󵄩󵄩󵄩󵄩𝑢 − 𝑢𝑁,𝑀
󵄩󵄩󵄩󵄩0,𝜕𝑆 ≤ 𝐶{

1

𝑀𝑝
|𝑢|𝑝,𝜕𝑆

𝑅

+
1

𝑁𝜎
|𝑢|𝜎,𝜕𝑆

𝑅1

} , (74)

where 𝐶 is a constant independent of𝑁 and𝑀.

Next, we study the errors of the interpolant solutions from
(16) of the NFM with 𝜖 = 𝜖 = 0,

Lext (𝑅, 𝑖Δ𝜃; 𝜌𝑖, 𝜃𝑖) = 0, 𝑖 = 0, 1, . . . , 2𝑀,

Lint (𝜌𝑖, 𝜃𝑖; 𝑅1, 𝑖Δ𝜃) = 0, 𝑖 = 0, 1, . . . , 2𝑁,

(75)

where the uniform nodes Δ𝜃 = 2𝜋/(2𝑀 + 1) and Δ𝜃 =

2𝜋/(2𝑁 + 1). Equation (75) is equivalent to

𝑢̂
𝑀−𝑁

(𝑅, 𝑖Δ𝜃; 𝜌
𝑖
, 𝜃
𝑖
) = 𝑢
0
(𝜃
𝑖
) , 𝑖 = 0, 1, . . . , 2𝑀,

𝑢̂
𝑀−𝑁

(𝜌
𝑖
, 𝜃
𝑖
; 𝑅
1
, 𝑖Δ𝜃) = 𝑢

0
(𝜃
𝑖
) , 𝑖 = 0, 1, . . . , 2𝑁,

(76)

where 𝑢
0
and 𝑢

0
are given in (2) and (4). We have the

following theorem.

Theorem 5. Let (64) and 𝑅 ̸= 1 hold. For the NFM with 𝜖 =
𝜖 = 0 and the uniform nodes, the interpolant solutions 𝑢̂

𝑀−𝑁

from (76) have the same error bound of (74)

󵄩󵄩󵄩󵄩𝑢 − 𝑢̂𝑁,𝑀
󵄩󵄩󵄩󵄩0,𝜕𝑆 ≤ 𝐶{

1

𝑀𝑝
|𝑢|𝑝,𝜕𝑆

𝑅

+
1

𝑁𝜎
|𝑢|𝜎,𝜕𝑆

𝑅1

} , (77)

where 𝐶 is a constant independent of𝑁 and𝑀.

5. Numerical Experiments

5.1. IFM and Its Conservative Schemes. In this paper, we
choose the NFM with 𝜖 = 𝜖 = 0, which is equivalent to
the IFM, and its conservative schemes of [15]. For (1) with
symmetry, the explicit interior solution (24) is simplified as

𝑢
𝐶

𝑀−𝑁
(𝜌, 𝜃) = 𝑎

0
− 𝑅(ln 𝑅

𝑅
1

)𝑝
0
+
𝑅

2

𝑀

∑

𝑘=1

1

𝑘
(
𝜌

𝑅
)
𝑘

𝑝
𝑘
cos 𝑘𝜃

+
𝑅
1

2

𝑁

∑

𝑘=1

1

𝑘
(
𝑅
1

𝜌
)

𝑘

𝑝
𝑘
cos 𝑘𝜃, (𝜌, 𝜃) ∈ 𝑆.

(78)

In [17], when 𝑢 ∈ 𝐻2(𝑆), we may choose the field nodes to be
located on the solution boundary for (78): (𝜌, 𝜃) ∈ 𝜕𝑆

𝑅
and
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Table 4: The leading coefficients by the original IFM, where 𝑅 = 2.5.

𝑅
1

(𝑀,𝑁) 𝑝
0

𝑝
1

𝑝
0

𝑝
1

1 (24, 12) 5.770780163555844 (−1) −5.770780163555829 (−1) −1.442695040888961 (0) 7.213475204444735 (−1)
0.5 (24, 12) 2.806196474263354 (−1) −2.358350543983468 (−1) −1.403098237131676 (0) 2.834834114319622 (−1)
0.1 (24, 6) 1.313991926276971 (−1) −1.053200366713573 (−1) −3.284979815692429 (0) 1.254266057498605 (−1)
10
−2 (24, 3) 7.480685008050476 (−2) −5.984662000415886 (−2) −1.870171252012620 (1) 7.124623469101694 (−2)

10
−4 (24, 2) 4.019180446935834 (−2) −3.215344363673133 (−2) −1.004795111733959 (3) 3.827790910389037 (−2)

Table 5:The errors and condition numbers by the simple particular
solutions of the CTM, where 𝑅 = 2.5 and 𝛿 = 𝑢 − 𝑢

𝑀−𝑁
.

𝑅
1

(𝑀,𝑁) ‖𝛿‖
∞,𝜕𝑆

‖𝛿‖
0,𝜕𝑆

Cond Cond eff
1 (24, 12) 1.58 (−9) 1.57 (−9) 7.62 3.03
0.5 (24, 12) 8.68 (−12) 8.32 (−12) 4.59 3.93
0.1 (24, 5) 1.21 (−12) 1.19 (−12) 1.31 (1) 1.21 (1)
10
−2 (24, 3) 6.54 (−13) 6.41 (−13) 5.17 (1) 4.39 (1)

10
−3 (24, 2) 4.57 (−13) 4.48 (−13) 1.93 (2) 1.57 (2)

10
−4 (24, 1) 3.51 (−13) 3.44 (−13) 6.44 (2) 5.11 (2)

(𝜌, 𝜃) ∈ 𝜕𝑆
𝑅
1

. Then we obtain two boundary equations of the
conservative schemes of the IFM from (78), (2), and (4)

L
𝐶

ext (𝑅, 𝜃; 𝜌, 𝜃) = −𝑅(ln
𝑅

𝑅
1

)𝑝
0
+
𝑅

2

M
∑

𝑘=1

1

𝑘
𝑝
𝑘
cos 𝑘𝜃

+
𝑅
1

2

𝑁

∑

𝑘=1

1

𝑘
(
𝑅
1

𝜌
)

𝑘

𝑝
𝑘
cos 𝑘𝜃

= 0, (𝑟, 𝜃) ∈ 𝜕𝑆
𝑅
,

L
𝐶

int (𝜌, 𝜃; 𝑅1, 𝜃) := 𝑎0 − 𝑎0 − 𝑅(ln
𝑅

𝑅
1

)𝑝
0

+
𝑅

2

𝑀

∑

𝑘=1

1

𝑘
(
𝜌

𝑅
)
𝑘

𝑝
𝑘
cos 𝑘𝜃

+
𝑅
1

2

𝑁

∑

𝑘=1

1

𝑘
𝑝
𝑘
cos 𝑘𝜃

= 0, (𝑟, 𝜃) ∈ 𝜕𝑆
𝑅
1

.

(79)

The coefficients 𝑝
0
, 𝑝
𝑘
, 𝑝
𝑘
are unknowns, and the total num-

ber of unknowns is𝑀 + 𝑁 + 1. Based on [15], to bypass the
pseudosingularity, we still choose𝑀+𝑁+ 2 equations from
(79)

𝑤
𝑖
L
𝐶

ext (𝑅, 𝑖Δ𝜃; 𝜌𝑖, 𝜃𝑖) = 0, 𝑖 = 0, 1, . . . ,𝑀,

𝑤
𝑖
L
𝐶

int (𝜌𝑖, 𝜃𝑖; 𝑅1, 𝑖Δ𝜃) = 0, 𝑖 = 0, 1, . . . , 𝑁,

(80)

where 𝜖 ≥ 0, 0 ≤ 𝜖 < 𝑅
1
, Δ𝜃 = 2𝜋/(2𝑀 + 1) and

Δ𝜃 = 2𝜋/(2𝑁 + 1). The weights 𝑤
0
= 1 and 𝑤

𝑖
= √2

are defined for 𝑖 ≥ 1, based on the stability analysis in [17].

The overdetermined system of (80) is denoted by the linear
algebraic equations

Fx = b, (81)

where F ∈ 𝑅𝑚×𝑛 with 𝑛 = 𝑀 + 𝑁 + 1 and 𝑚 = 𝑀 + 𝑁 + 2.
The traditional condition number and the effective condition
number in [35] are defined by

Cond =
𝜎max
𝜎min

, Cond eff =
‖b‖

𝜎min ‖x‖
, (82)

where 𝜎max and 𝜎min are the maximal and the minimal
singular values of the matrix F in (81), respectively.

Next, we use the original IFM (i.e., the original NFMwith
𝜖 = 𝜖 = 0). The particular solutions (78) are replaced by

𝑢
𝑀−𝑁

(𝜌, 𝜃) = 𝑎
0
− 𝑅 ln 𝑅𝑝

0
− 𝑅
1
ln 𝜌𝑝
0

+
𝑅

2

𝑀

∑

𝑘=1

1

𝑘
(
𝜌

𝑅
)
𝑘

𝑝
𝑘
cos 𝑘𝜃

+
𝑅
1

2

𝑁

∑

𝑘=1

1

𝑘
(
𝑅
1

𝜌
)

𝑘

𝑝
𝑘
cos 𝑘𝜃, (𝑟, 𝜃) ∈ 𝑆.

(83)

In (83), both 𝑝
0
, 𝑝
0
are also unknown variables, and the total

number of unknowns is now 𝑀 + 𝑁 + 2. Then 𝑚 = 𝑛 =

𝑀 +𝑁 + 2 in (81).
Consider themodel problemwith𝑅 = 2.5 and𝑅

1
= 1 and

then shrink the interior hole 𝑆
𝑅
1

by decreasing radius𝑅
1
from

1 down to 10−4.This reflects that Laplace’s equationmay occur
in an actually punctured disk, where there may be a very
small hole but not as a solitary point. For the conservative
schemes of the IFM, the errors, condition numbers, and the
leading coefficients are listed in Tables 1 and 2, where 𝛿 =

𝑢−𝑢
𝑀−𝑁

. For𝑅
1
= 0.1, 0.01, 0.001, 0.0001, the optimal results

are marked in bold. We also note that when 𝑅
1
decreases, the

errors decrease and the condition numbers increase. Table 2
lists the leading coefficients, 𝑝

0
, 𝑝
1
, and 𝑝

1
. All tables are

computed by MATLAB with double precision.
As for the computations by the original IFM, the errors,

condition numbers, and the leading coefficients are listed
in Tables 3 and 4, where only the optimal results are listed.
Comparing Table 3 with Table 1, the differences in terms
of errors and condition number are insignificant, but the
effective condition numbers are much smaller by the original
IFM. Strictly speaking, the conservative schemes satisfy the
flux conservative law exactly, but the original IFM does not.
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Table 6: The leading coefficients by the CTM, where 𝑅 = 2.5.

𝑅
1

(𝑀,𝑁) 𝑎
0

𝑎
1

𝑎
0

𝑎
1

1 (24, 12) −3.219280948873607 (−1) −7.213475204444795 (−1) 1.442695040888962 (0) 3.606737602222373 (−1)
0.5 (24, 12) 3.571770447036389 (−1) −2.947938179979336 (−1) 7.015491185658381 (−1) 7.087085285799036 (−2)
0.1 (24, 5) 6.990003440487363 (−1) −1.316500458391969 (−1) 3.284979815692430 (−1) 6.271330287492891 (−3)
10
−2 (24, 3) 8.286379414763349 (−1) −7.480827500519865 (−2) 1.870171252012619 (−1) 3.562311734550295 (−4)

10
−3 (24, 2) 8.802186203691674 (−1) −5.228969290187686 (−2) 1.307242073548369 (−1) 2.489985466613060 (−5)

10
−4 (24, 1) 9.079315551685712 (−1) −4.019180454591526 (−2) 1.004795111733959 (−1) 1.913895455111127 (−6)

Table 7: The errors and condition numbers by the BIE, where 𝑅 = 2.5 and 𝛿 = 𝑢 − 𝑢
𝑀−𝑁

.

𝑅
1

(𝑀,𝑁) ‖𝛿‖
∞,𝜕𝑆

‖𝛿‖
0,𝜕𝑆

Cond Cond eff
1 (24, 12) 8.94 (−9) 8.87 (−9) 1.38 (2) 2.66 (1)
0.5 (24, 12) 4.90 (−11) 4.70 (−11) 2.67 (2) 6.41 (1)
0.1 (24, 5) 7.27 (−12) 7.00 (−12) 7.36 (2) 8.71 (1)
10
−2 (24, 3) 3.69 (−12) 3.63 (−12) 5.20 (3) 1.12 (2)

10
−3 (24, 2) 2.58 (−12) 2.53 (−12) 3.88 (4) 1.22 (2)

10
−4 (24, 2) 1.98 (−12) 1.94 (−12) 3.88 (5) 1.59 (2)

10.10.010.0001 0.50.001

Conservative
Original
CTM

10
−7

10
−8

10
−9

10
−10

10
−11

10
−12

10
−13

R1

‖𝛿
‖ ∞

,𝜕
S

Figure 2:The curves of ‖𝛿‖
∞,𝜕𝑆

via 𝑅
1
by the conservative schemes,

the original IFM, and the CTM.

5.2.The CTMand the BIE. Bymeans of symmetry, we choose
the simple particular solutions in the CTM

𝑢
𝑀−𝑁

(𝜌, 𝜃; 𝜌, 𝜃) = 𝑎
0
+

𝑀

∑

𝑖=1

(
𝜌

𝑅
)
𝑖

𝑎
𝑖
cos 𝑖𝜃 + 𝑎

0
ln 𝜌

+

𝑁

∑

𝑖=1

(
𝑅
1

𝜌
)

𝑖

𝑎
𝑖
cos 𝑖𝜃, 𝜌 ≤ 𝑅, 𝜌 ≥ 𝑅
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Figure 3: The curves of Cond via 𝑅
1
by the conservative schemes,

the original IFM, and the CTM.

where 𝑎
𝑖
and 𝑎

𝑖
are the true coefficients and (𝜌, 𝜃) and (𝜌, 𝜃)

are the polar coordinates with the origins (0, 0) and (−1, 0),
respectively. We have also carried out the computation by
CTMandBIE andhave given their results in Tables 5, 6, 7, and
8. Comparing Table 7 of the BIE with Table 3 of the original
IFM, the errors and the condition numbers are the same, but
the effective condition numbers are slightly different.Thenwe
conclude that the performance of the original IFM and BIE
is the same. For comparisons of different methods, we draw
their curves of errors and condition numbers in Figures 2 and
3, and it is clear that CTM is the best.
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Table 8: The leading coefficients by the BIE, where 𝑅 = 2.5.

𝑅
1

(𝑀,𝑁) 𝑝
⋆

0
𝑝
⋆

1
𝑝
⋆

0
𝑝
⋆

1

1 (24, 12) 1.405353491806680 (−1) −5.770780163555832 (−1) −1.442695040888961 (0) 7.213475204444746 (−1)
0.5 (24, 12) −1.559230197485811 (−1) −2.358350543983469 (−1) −1.403098237131677 (0) 2.834834114319625 (−1)
0.1 (24, 5) −3.051434745472195 (−1) −1.053200366713573 (−1) −3.284979815692429 (0) 1.254266057498587 (−1)
10
−2 (24, 3) −3.617358170944118 (−1) −5.984662000415891 (−2) −1.870171252012620 (1) 7.124623469100554 (−2)

10
−3 (24, 2) −3.842529842329820 (−1) −4.183175432150123 (−2) −1.307242073548368 (2) 4.979970933294560 (−2)

10
−4 (24, 2) −3.963508627055583 (−1) −3.215344363673110 (−2) −1.004795111733959 (3) 3.827790910431746 (−2)

6. Concluding Remarks

To close this paper, let us make a few concluding remarks.
(1) By following [17] for the NFM, we propose the interior

field method (IFM). Since all boundary methods can be
applied to any annular domains, theymay be used for circular
domains with circular holes; in this paper, we employ the
first kind boundary integral equation (BIE) in [30] and the
collocation Trefftz method (CTM) in [6]. The relations of
expansion coefficients among NFM, IFM, BIE, and CTM are
found. The intrinsic relations among them are discovered, to
show that the IFM and the BIE are special cases of CTM.
Section 2 yields an in-depth overview of four methods for
circular domains with circular holes.

(2) For the NFM, some stability analysis in [17] was
made for concentric circular boundaries. The error analysis
of the NFM is challenging. Sections 3 and 4 are devoted to
the error analysis of the NFM. In Section 3, a preliminary
analysis is provided. In Section 4, for the special NFM with
𝜖 = 𝜖 = 0, the error bounds are provided without proof.
The optimal convergence rates can be achieved. The error
analysis is important and valid in wide applications, because
the special NFM offers the best numerical performance in
convergence and stability; see [17].

(3) Numerical experiments are carried out for a chal-
lenging problem of the actually punctured disks. We choose
NFM, IFM, CTM, and BIE and their conservative schemes.
Numerical results are reported from 𝑅

1
= 1 down to

𝑅
1
= 10

−4. Note that the popular methods, such as the
finite element method (FEM), the finite difference method
(FDM), and the boundary element method (BEM), may fail
to handle this problem. The actually punctured disks may be
regarded as a kind of singularity problems, and the localmesh
refinements and other innovations of FEM, FDM, and BEM
are indispensable. However, their algorithms are complicated
and troublesome; see [5]. Consequently, the computation of
this paper enriches the boundary methods [6].

(4) Numerical comparisons of different methods are
imperative in real application. Though their numerical per-
formances are basically the same, the CTM is best in accu-
racy, stability, and simplicity of algorithms. Moreover, the
CTM can always circumvent the degenerate scale problems
encountered in NFM, IFM, and BIE. More importantly, the
CTM can be applied to any shape domains and singularity
problems (see [5, 6]). In summary, three goalsmotivated have
been fulfilled.
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