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The dynamics of a coupled optoelectronic feedback loops are investigated. Depending on the coupling parameters and the feedback
strength, the system exhibits synchronized asymptotically stable equilibrium and Hopf bifurcation. Employing the center manifold
theorem and normal form method introduced by Hassard et al. (1981), we give an algorithm for determining the Hopf bifurcation
properties.

1. Introduction

In recent research [1–5], it is found that even if several
individual systems behave chaotically, in the case where the
systems are identical, by proper coupling, the systems can
be made to evolve toward a situation of exact isochronal
synchronism. Synchronization phenomena are common in
coupled semiconductor systems, and they are important
examples of oscillators in general, and many works are con-
cerned with coupled semiconductor systems [6–15].

We consider a feedback loop comprises a semiconductor
laser that serves as the optical source, a Mach-Zehnder elec-
trooptic modulator, a photoreceiver, an electronic filter, and
an amplifier. The dynamics of the feedback loop can be
modeled by the delay differential equations [14, 15]:
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Here, 𝑥
1
(𝑡) is the normalized voltage signal applied to the

electrooptic modulator, 𝜏 is the feedback time delay, 𝛾
1
and

𝛾
2
are the filter low-pass and high-pass corner frequencies, 𝛽

is the dimensionless feedback strength, they are all positive
constants, and 𝜑

0
is the bias point of the modulator.

Depending on the value of the feedback strength 𝛽 and
delay 𝜏, the loop, which is modeled by system (1), is capable
of producing dynamics ranging from periodic oscillations to
high-dimensional chaos [1, 14, 15].

We couple two nominally identical optoelectronic feed-
back loops unidirectionally, that is, the transmitter affects
the dynamics of the receiver but not vice versa. Thus, the
equations of motion describing the coupled system are given
by (1) for the transmitter and
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for the receiver. In (2), 𝑘 > 0 denotes the coupling strength.
Wewill find that with the variety of 𝑘, the dynamical behavior
of the coupled system can be different, while the feedback
strength 𝛽 keeps the same value.

The paper is organized as follows. In Section 2, using
the method presented in [16], we study the stability, and
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the local Hopf bifurcation of the equilibrium of the coupled
system (1) and (2) by analyzing the distribution of the roots
of the associated characteristic equation. In Section 3, we
use the normal form method and the center manifold theory
introduced by Hassard et al. [17] to analyze the direction,
stability and the period of the bifurcating periodic solutions at
critical values of 𝛽. In Section 4, some numerical simulations
are carried out to illustrate the results obtained from the
analysis. In Section 5, we come to some conclusion about the
effect caused by the variety of parameters.

2. Stability Analysis

In this section, we consider the linear stability of the nonlin-
ear coupled system

d𝑥
1
(𝑡)

d𝑡
= − (𝛾

1
+ 𝛾
2
) 𝑥
1
(𝑡) − 𝛾

2
𝑦
1
(𝑡)

− 𝛽𝛾
2
cos2 [𝑥

1
(𝑡 − 𝜏) + 𝜑

0
] ,

d𝑦
1
(𝑡)

d𝑡
= 𝛾
1
𝑥
1
(𝑡) ,

d𝑥
2
(𝑡)

d𝑡
= − (𝛾

1
+ 𝛾
2
) 𝑥
2
(𝑡) − 𝛾

2
𝑦
2
(𝑡)

− 𝛽𝛾
2
cos2 [𝑘𝑥

1
(𝑡 − 𝜏) + (1 − 𝑘) 𝑥

2
(𝑡 − 𝜏) + 𝜑

0
] ,

d𝑦
2
(𝑡)

d𝑡
= 𝛾
1
𝑥
2
(𝑡) .

(3)

It is easy to see that 𝐸(0, −𝛽cos2𝜑
0
, 0, −𝛽cos2𝜑

0
) is the

only equilibrium of system (3). Linearizing system (3) around
𝐸 and denote 𝛿 = sin 2𝜑

0
, we get the linearization system

d𝑥
1
(𝑡)

d𝑡
= − (𝛾

1
+ 𝛾
2
) 𝑥
1
(𝑡) − 𝛾

2
𝑦
1
(𝑡) + 𝛽𝛿𝛾

2
𝑥
1
(𝑡 − 𝜏) ,

d𝑦
1
(𝑡)

d𝑡
= 𝛾
1
𝑥
1
(𝑡) ,

d𝑥
2
(𝑡)

d𝑡
= − (𝛾

1
+ 𝛾
2
) 𝑥
2
(𝑡) − 𝛾

2
𝑦
2
(𝑡)

+ 𝑘𝛽𝛿𝛾
2
𝑥
1
(𝑡 − 𝜏) + (1 − 𝑘) 𝛽𝛿𝛾

2
𝑥
2
(𝑡 − 𝜏) ,

d𝑦
2
(𝑡)

d𝑡
= 𝛾
1
𝑥
2
(𝑡) ,

(4)

and the characteristic equation of system (4)
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Figure 1: The points of intersection of 𝑓
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which is equivalent to
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Notice that when 𝛽 = 0, (5) becomes
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whose roots are
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So, we have the following lemma.
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asymptotically stable when 𝛽 = 0.

Next, we regard 𝛽 as the bifurcation parameter to investi-
gate the distribution of roots of (6) and (7).
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From Figure 1, we know that 𝜔
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following lemma.
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similar to the proof of Lemma 3, we have the following
conclusion.



4 Abstract and Applied Analysis

Lemma 5. 𝛼(𝛽
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then from previous lemmas and the Hopf bifurcation the-
orem for functional differential equations [18], we have the
following results on stability and bifurcation to system (3).

Theorem6. For system(3), the equilibrium𝐸 is asymptotically
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3. The Direction and Stability of
the Hopf Bifurcation

In Section 2 we obtained some conditions under which
system (3) undergoes the Hopf bifurcation at some critical
values of 𝛽. In this section, we study the direction, stability,
and the period of the bifurcating periodic solutions. The
method we used is based on the normal form method and
the center manifold theory introduced by Hassard et al. [17].
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Let i𝜔∗ be the root of the characteristic equation associate
with the linearization of system (30) when 𝛽 = 𝛽

∗. For
𝜙 = (𝜙

1
, 𝜙
2
, 𝜙
3
, 𝜙
4
) ∈ C, let

𝐿
𝜇
(𝜙) = 𝐵𝜙 (0) + 𝐶𝜙 (−𝜏) , (32)

where

𝐵 = (

− (𝛾
1
+ 𝛾
2
) −𝛾
2

0 0

𝛾
1

0 0 0

0 0 − (𝛾
1
+ 𝛾
2
) −𝛾
2

0 0 𝛾
1

0

) ,

𝐶 = (

𝛽𝛿𝛾
2
0 0 0

0 0 0 0

𝑘𝛽𝛿𝛾
2
0 (1 − 𝑘) 𝛽𝛿𝛾

2
0

0 0 0 0

) .

(33)

By the Rieze representation theorem, there exists a 4 × 4
matrix, 𝜂(𝜃, 𝜇) (−𝜏 ≤ 𝜃 ≤ 0), whose elements are of bounded
variation functions such that

𝐿
𝜇
(𝜙) = ∫

0

−𝜏

d𝜂 (𝜃, 𝜇) 𝜙 (𝜃) , 𝜙 ∈ C. (34)

In fact, we can choose

𝜂 (𝜃, 𝜇) =

{
{

{
{

{

𝐵, 𝜃 = 0,

0, 𝜃 ∈ (−𝜏, 0)

−𝐶, 𝜃 = −𝜏.

(35)

Then, (30) is satisfied.
For 𝜙 ∈ C, define the operator 𝐴(𝜇) as

𝐴 (𝜇) 𝜙 (𝜃) =

{
{
{
{

{
{
{
{

{

d𝜙 (𝜃)
d𝜃

, 𝜃 ∈ [−𝜏, 0) ,

∫

0

−𝜏

d𝜂 (𝑡, 𝜇) 𝜙 (𝑡) , 𝜃 = 0,

(36)

and 𝑅(𝜇)𝜙 as

𝑅 (𝜇) 𝜙 (𝜃) = {

0, 𝜃 ∈ [−𝜏, 0) ,

𝑓 (𝜇, 𝜙) , 𝜃 = 0,

(37)

where
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𝑓 (𝜇, 𝜙) = 𝛽
∗
𝛾
2

(

(

(

(

(

(

(

(

(

(

(

(

(

𝜌𝜙
2

1
(−𝜏) −

2

3

𝛿𝜙
3

1
(−𝜏) + 𝑂 (4)

0

𝑘
2
𝜌𝜙
2

1
(−𝜏) + 𝑘 (1 − 𝑘) 𝜌𝜙

1
(−𝜏) 𝜙

3
(−𝜏)

+(1 − 𝑘)
2
𝜌𝜙
2

3
(−𝜏) −

2

3

𝑘
3
𝛿𝜙
3

1
(−𝜏) − 2𝑘

2
(1 − 𝑘) 𝛿𝜙

2

1
(−𝜏) 𝜙

3
(𝑡 − 𝜏)

−2𝑘(1 − 𝑘)
2
𝛿𝜙
1
(−𝜏) 𝜙

2

3
(−𝜏) −

2

3

(1 − 𝑘)
3
𝛿𝜙
3

3
(−𝜏) + 𝑂 (4)

0

)

)

)

)

)

)

)

)

)

)

)

)

)

. (38)

Then, system (30) is equivalent to the following operator
equation:

�̇�
𝑡
= 𝐴 (𝜇) 𝑢

𝑡
+ 𝑅 (𝜇) 𝑢

𝑡
, (39)

where 𝑢(𝑡) = (𝑥
1
(𝑡), 𝑦
1
(𝑡), 𝑥
2
(𝑡), 𝑦
2
(𝑡))
𝑇, 𝑢
𝑡
= 𝑢(𝑡 + 𝜃), for

𝜃 ∈ [−𝜏, 0].
For 𝜓 ∈ C1([0, 𝜏],R4), define

𝐴
∗
𝜓 (𝑠) =

{
{
{
{

{
{
{
{

{

−

d𝜓 (𝑠)
d𝑠

, 𝑠 ∈ (0, 𝜏] ,

∫

0

−𝜏

𝜓 (−𝜉) d𝜂 (𝜉, 0) , 𝑠 = 0.

(40)

For 𝜙 ∈ C[−𝜏, 0] and 𝜓 ∈ C[0, 𝜏], define the bilinear
form

⟨𝜓 (𝑠) , 𝜙 (𝜃)⟩ = 𝜓 (0) 𝜙 (0)

− ∫

0

−𝜏

∫

𝜃

0

𝜓 (𝜉 − 𝜃) d𝜂 (𝜃) 𝜙 (𝜉) d𝜉,
(41)

where 𝜂(𝜃) = 𝜂(𝜃, 0). Then, 𝐴(0) and 𝐴
∗ are adjoint

operators.
Let 𝑞(𝜃) and 𝑞∗(𝑠) be eigenvectors of 𝐴(0) and 𝐴

∗

associated to 𝑖𝜔∗ and −𝑖𝜔∗, respectively. It is not difficult with
verify that

𝑞 (𝜃) = (1,

𝛾
1

𝑖𝜔
∗
, 1,

𝛾
1

𝑖𝜔
∗
)

𝑇

𝑒
𝑖𝜔
∗

𝜃
,

𝑞
∗
(𝑠) =

1

𝐷

(1,

𝛾
2

𝑖𝜔
∗
, 1,

𝛾
2

𝑖𝜔
∗
) 𝑒
𝑖𝜔
∗

𝑠
,

(42)

where

𝐷 = 2 +

2𝛾
1
𝛾
2

𝜔
∗2

+ 2𝛽
∗
𝛿𝛾
2
𝜏𝑒
−i𝜔∗𝜏

. (43)

Then, ⟨𝑞∗(𝑠), 𝑞(𝜃)⟩ = 1, ⟨𝑞∗(𝑠), 𝑞(𝜃)⟩ = 0.
Let 𝑢
𝑡
be the solution of (39) and define

𝑧 (𝑡) = ⟨𝑞
∗
, 𝑢
𝑡
⟩ , 𝑊 (𝑡, 𝜃) = 𝑢

𝑡
(𝜃) − 2Re {𝑧 (𝑡) 𝑞 (𝜃)} .

(44)

On the center manifoldC
0
, we have

𝑊(𝑡, 𝜃) = 𝑊 (𝑧 (𝑡) , 𝑧 (𝑡) , 𝜃) , (45)

where

𝑊(𝑧, 𝑧, 𝜃) = 𝑊
20

𝑧
2

2

+𝑊
11
𝑧𝑧 +𝑊

02

𝑧
2

2

+ ⋅ ⋅ ⋅ , (46)

𝑧 and 𝑧 are local coordinates for center manifold C
0
in the

direction of 𝑞∗ and 𝑞∗. Note that 𝑊 is real if 𝑢
𝑡
is real. We

only consider real solutions.
For solution 𝑢

𝑡
inC
0
, since 𝜇 = 0, we have

�̇� (𝑡) = 𝑖𝜔
∗
𝑧 + ⟨𝑞

∗
(𝜃) , 𝑓 (0,𝑊 + 2Re {𝑧 (𝑡) 𝑞 (𝜃)})⟩

= 𝑖𝜔
∗
𝑧 + 𝑞
∗
(0) , 𝑓 (0,𝑊 (𝑧, 𝑧, 0) + 2Re {𝑧 (𝑡) 𝑞 (0)})

= 𝑖𝜔
∗
𝑧 + 𝑞
∗
(0) 𝑓
0
(𝑧, 𝑧) .

(47)

We rewrite this equation as

�̇� (𝑡) = 𝑖𝜔
∗
𝑧 + 𝑔 (𝑧, 𝑧) , (48)

where

𝑔 (𝑧, 𝑧) = 𝑔
20

𝑧
2

2

+ 𝑔
11
𝑧𝑧 + 𝑔

02

𝑧
2

2

+ 𝑔
21

𝑧
2
𝑧

2

⋅ ⋅ ⋅ . (49)

By (39) and (48), we have

�̇� = �̇�
𝑡
− �̇�𝑞 −

̇
𝑧𝑞

= {

𝐴𝑊 − 2Re {𝑞∗ (0) 𝑓
0
𝑞 (𝜃)} , 𝜃 ∈ [−𝜏, 0) ,

𝐴𝑊 − 2Re {𝑞∗ (0) 𝑓
0
𝑞 (0)} + 𝑓

0
, 𝜃 = 0,

= 𝐴𝑊 +𝐻 (𝑧, 𝑧, 𝜃) ,

(50)
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Figure 2: 𝛾
1
= 0.1, 𝛾

2
= 2.5, 𝜏 = 1.5, 𝑘 = 1.9, whichmeans that condition (𝐻

1
) holds, and𝛽 = 0.7 < 𝛽

0
.The initial value is (0.1, −0.5, 0.1, −0.5).

where

𝐻(𝑧, 𝑧, 𝜃) = 𝐻
20
(𝜃)

𝑧
2

2

+ 𝐻
11
(𝜃) 𝑧𝑧 + 𝐻

02
(𝜃)

𝑧
2

2

+ ⋅ ⋅ ⋅ .

(51)

Expanding the above series and comparing the coefficients,
we obtain

(𝐴 − 2𝑖𝜔
∗
𝐼)𝑊
20
(𝜃) = −𝐻

20
(𝜃) ,

𝐴𝑊
11
(𝜃) = −𝐻

11
(𝜃) , . . . .

(52)

Notice that

𝑞 (𝜃) = (1,

𝛾
1

𝑖𝜔
∗
, 1,

𝛾
1

𝑖𝜔
∗
)

𝑇

𝑒
𝑖𝜔
∗

𝜃
,

𝑢
𝑡
(𝜃) = 𝑧𝑞 (𝜃) + 𝑧𝑞 (𝜃) + 𝑊 (𝑧, 𝑧, 𝜃) ,

(53)

where

𝑊
(𝑖)
(𝑧, 𝑧, 𝜃) = 𝑊

(𝑖)

20
(𝜃)

𝑧
2

2

+𝑊
(𝑖)

11
(𝜃) 𝑧𝑧

+𝑊
(𝑖)

02
(𝜃)

𝑧
2

2

+ ⋅ ⋅ ⋅ , 𝑖 = 1, 2, 3, 4.

(54)

Combing (38) and by straightforward computation, we can
obtain the coefficients which will be used in determining the
important quantities:

𝑔
20
=

2𝛽
∗
𝛾
2
𝜌

𝐷

𝑒
−2𝑖𝜔
∗

𝜏
(𝑘
2
− 𝑘 + 2) ,

𝑔
11
=

2𝛽
∗
𝛾
2
𝜌

𝐷

(𝑘
2
− 𝑘 + 2) ,

𝑔
02
=

2𝛽
∗
𝛾
2
𝜌

𝐷

𝑒
2𝑖𝜔
∗

𝜏
(𝑘
2
− 𝑘 + 2) ,

𝑔
21
=

2𝛽
∗
𝛾
2

𝐷

{
{
{
{
{

{
{
{
{
{

{

𝜌(𝑒
𝑖𝜔
∗

𝜏
𝑊
(1)

20
(−𝜏) + 2𝑒

−𝑖𝜔
∗

𝜏
𝑊
(1)

11
(−𝜏))

+ 𝑘
2
𝜌 (𝑒
𝑖𝜔
∗

𝜏
𝑊
(1)

20
(−𝜏) + 2𝑒

−𝑖𝜔
∗

𝜏
𝑊
(1)

11
(−𝜏))

+ 𝑘 (1 − 𝑘) 𝜌

× (𝑒
−𝑖𝜔
∗

𝜏
𝑊
(3)

11
(−𝜏) + 𝑒

𝑖𝜔
∗

𝜏
𝑊
(3)

20
(−𝜏)

2

+𝑒
𝑖𝜔
∗

𝜏
𝑊
(1)

20
(−𝜏)

2

+ 𝑒
−𝑖𝜔
∗

𝜏
𝑊
(1)

11
(−𝜏))
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Figure 3: 𝛾
1
= 0.1, 𝛾

2
= 2.5, 𝜏 = 1.5, 𝑘 = 1.9, whichmeans that condition (𝐻

1
) holds, and𝛽 = 1.2 > 𝛽

0
.The initial value is (0.1, −0.5, 0.1, −0.5).

+ (1 − 𝑘)
2
𝜌 (2𝑒
−𝑖𝜔
∗

𝜏
𝑊
(3)

11
(−𝜏)

+𝑒
𝑖𝜔
∗

𝜏
𝑊
(3)

20
(−𝜏) ) − 4𝛿𝑒

−𝑖𝜔
∗

𝜏

}
}
}
}
}

}
}
}
}
}

}

.

(55)

We still need to compute𝑊
20
(𝜃) and𝑊

11
(𝜃), for 𝜃 ∈ [−𝜏, 0).

We have

𝐻(𝑧, 𝑧, 𝜃) = −𝑞
∗
(0) 𝑓
0
𝑞 (𝜃) − 𝑞

∗
(0) 𝑓
0
𝑞 (𝜃)

= −𝑔 (𝑧, 𝑧) 𝑞 (𝜃) − 𝑔 (𝑧, 𝑧) 𝑞 (𝜃) .

(56)

Comparing the coefficients about𝐻(𝑧, 𝑧, 𝜃) gives that

𝐻
20
(𝜃) = −𝑔

20
𝑞 (𝜃) − 𝑔

02
𝑞 (𝜃) ,

𝐻
11
= −𝑔
11
𝑞 (𝜃) − 𝑔

11
𝑞 (𝜃) .

(57)

Then, from (52), we get

�̇�
20
(𝜃) = 2𝑖𝜔

∗
𝑊
20
(𝜃) + 𝑔

20
𝑞 (𝜃) + 𝑔

02
𝑞 (𝜃) ,

�̇�
11
(𝜃) = 𝑔

11
𝑞 (𝜃) + 𝑔

11
𝑞 (𝜃) ,

(58)

which implies that

𝑊
20
(𝜃) =

𝑔
20
𝑞 (0)

−𝑖𝜔
∗
𝑒
𝑖𝜔
∗

𝜃
+

𝑔
02
𝑞 (0)

−3𝑖𝜔
∗
𝑒
−𝑖𝜔
∗

𝑗
𝜃
+ 𝐸𝑒
2i𝜔∗
𝑗
𝜃
,

𝑊
11
(𝜃) =

𝑔
11
𝑞 (0)

𝑖𝜔
∗

𝑒
𝑖𝜔
∗

𝜃
+

𝑔
11
𝑞 (0)

−𝑖𝜔
∗
𝑒
−𝑖𝜔
∗

𝜃
+ 𝐹.

(59)

Here, 𝐸 and 𝐹 are both four-dimensional vectors and can be
determined by setting 𝜃 = 0 in 𝐻(𝑧, 𝑧, 𝜃). In fact, from (38)
and

𝐻(𝑧, 𝑧, 0) = −2Re {𝑞∗ (0) 𝑓
0
𝑞 (0)} + 𝑓

0
, (60)

we have
𝐻
20
(0) = − 𝑔

20
𝑞 (0) − 𝑔

02
𝑞 (0)

+ 2𝛽
∗
𝛾
2
𝜌𝑒
−2𝑖𝜔
∗

𝜏
(1, 0, 𝑘

2
− 𝑘 + 1, 0)

𝑇

,

𝐻
11
(0) = − 𝑔

11
𝑞 (0) − 𝑔

11
𝑞 (0)

+ 2𝛽
∗
𝛾
2
𝜌(1, 0, 𝑘

2
− 𝑘 + 1, 0)

𝑇

.

(61)

It follows from (52) and the definition of 𝐴 that

𝛽
∗
𝐵𝑊
20
(0) + 𝛽

∗
𝐶𝑊
20
(−𝜏) = 2𝑖𝜔

∗
𝑊
20
(0) − 𝐻

20
(0) ,

𝛽
∗
𝐵𝑊
11
(0) + 𝛽

∗
𝐶𝑊
11
(−𝜏) = −𝐻

11
(0) ,

(62)
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Figure 4: 𝛾
1
= 0.1, 𝛾

2
= 2.5, 𝜏 = 1.5, 𝑘 = 3, which means that condition (𝐻

2
) holds, and 𝛽 = 0.6 < 𝛽

0
. The initial value is

(0.1, −0.5, 0.1, −0.5).

which implies that

𝐸 = (𝐵 + 𝑒
−2𝑖𝜔
∗

𝜏
𝐶 − 2𝑖𝜔

∗I)
−1

×

[

[

[

[

[

[

𝐵(

𝑔
20
𝑞 (0)

𝑖𝜔
∗

+

𝑔
02
𝑞 (0)

3𝑖𝜔
∗
)

+ 𝐶(

𝑔
20
𝑞 (0)

𝑖𝜔
∗

𝑒
−𝑖𝜔
∗

𝜏
+

𝑔
02
𝑞 (0)

3𝑖𝜔
∗
𝑒
𝑖𝜔
∗

𝜏
)

+

1

𝛽
∗
(𝑔
20
𝑞 (0) + 𝑔

02
𝑞 (0))

×2𝛽
∗
𝛾
2
𝜌𝑒
−2𝑖𝜔
∗

𝜏
(1, 0, 𝑘

2
− 𝑘 + 1, 0)

𝑇

]

]

]

]

]

]

,

𝐹 = (𝐵 + 𝐶)
−1
[𝐵(

𝑔
11
𝑞 (0)

−𝑖𝜔
∗

+

𝑔
11
𝑞 (0)

𝑖𝜔
∗

)

+ 𝐶(

𝑔
11
𝑞 (0)

−𝑖𝜔
∗
𝑒
−𝑖𝜔
∗

𝜏
+

𝑔
11
𝑞 (0)

𝑖𝜔
∗

𝑒
𝑖𝜔
∗

𝜏
)

+

1

𝛽
∗
(𝑔
11
𝑞 (0) + 𝑔

11
𝑞 (0))

−2𝛽
∗
𝛾
2
𝜌(1, 0, 𝑘

2
− 𝑘 + 1, 0)

𝑇

] .

(63)

Consequently, the above 𝑔
21
can be expressed by the param-

eters and delay in system (30). Thus, we can compute the
following quantities:

𝑐
1
(0) =

𝑖

2𝜔
∗
(𝑔
20
𝑔
11
− 2





𝑔
11






2

−

1

3





𝑔
20






2

) +

𝑔
21

2

,

𝜇
2
= −

Re 𝑐
1
(0)

Re 𝜆 (𝛽∗)
,

𝛽
2
= 2Re 𝑐

1
(0) ,

𝑇
2
= −

Im 𝑐
1
(0) + 𝜇

2
Im 𝜆

(𝛽
∗
)

𝜔
∗

,

(64)

which determine the properties of bifurcating periodic solu-
tions at the critical value 𝜏

0
. The direction and stability of the
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Figure 5: 𝛾
1
= 0.1, 𝛾

2
= 2.5, 𝜏 = 1.5, 𝑘 = 3, which means that condition (𝐻

2
) holds, and 𝛽

0
< 𝛽 = 0.7 < 𝛽

0
. The initial value is

(0.1, −0.5, 0.1, −0.5).

Hopf bifurcation in the center manifold can be determined
by 𝜇
2
and 𝛽

2
, respectively. In fact, if 𝜇

2
> 0 (𝜇

2
< 0), then

the bifurcating periodic solutions are forward (backward);
the bifurcating periodic solutions on the center manifold are
stable (unstable) if 𝛽

2
< 0 (𝛽

2
> 0); and 𝑇

2
determines

the period of the bifurcating periodic solutions: the period
increases (decreases) if 𝑇

2
> 0 (𝑇

2
< 0).

From the discussion in Section 2, we have known that
Re 𝜆(𝛽

𝑗
) > 0; therefore; we have the following result.

Theorem 7. The direction of the Hopf bifurcation for system
(3) at the equilibrium 𝐸(0, −𝛽cos2𝜑

0
, 0, −𝛽cos2𝜑

0
) when 𝛽 =

𝛽
∗ is forward (backward), and the bifurcating periodic solu-

tions on the center manifold are stable (unstable) if Re(𝑐
1
(0)) <

0 (> 0). Particularly, the stability of the bifurcation periodic
solutions of system (3) and the reduced equations on the center
manifold are coincident at the first bifurcation value 𝛽 = 𝛽

0
.

4. Numerical Simulations
In this section, we will carry out numerical simulations on
system (3) at special values of 𝛽. We choose a set of data as
follows:

𝛾
1
= 0.1, 𝛾

2
= 2.5, 𝜑

0
=

𝜋

4

, 𝜏 = 1.5, (65)

which are the same as those in [1]. Then, 𝛿 = 1, 𝜌 = 0.

Then, we can obtain

𝜔
0

⋅

= 0.2225, 𝜔
1

⋅

= 3.5677, . . . ,

𝜛
0

⋅

= 1.7294, 𝜛
1

⋅

= 5.5531, . . . ,

𝛽
0

⋅

= 1.1008, 𝛽
1

⋅

= 1.7434, . . . ,

𝛽
0

⋅

= 1.3534, 𝛽
1

⋅

= 2.5235, . . . , 𝑘 = 1.9,

𝛽
0

⋅

= 0.6093, 𝛽
1

⋅

= 1.1356, . . . , 𝑘 = 3.

(66)

From the analysis in Section 2, we know that 𝛽(𝛽) is
increasing with respect to 𝜔(𝜛) when 𝜔(𝜛) > 𝛾

1
𝛾
2
, which

means that

𝛽
0
= min {𝛽

𝑗
} , 𝛽

0
= min {𝛽

𝑗
} , 𝑗 = 0, 1, 2, . . . , (67)

that is, 𝛽
0
(𝛽
0
) is the first critical value at which system (3)

undergoes a Hopf bifurcation.
When 𝑘 = 1.9, by the previous results, it follows that

𝜆

(𝛽
0
)

⋅

= 0.2440 − 0.0491i, 𝑐
1
(0)

⋅

= −0.5373 + 0.1082i,

𝜇
2

⋅

= 2.2020, 𝛽
2

⋅

= −1.0746, 𝑇
2
= −0.0018.

(68)
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Figure 6: 𝛾
1
= 0.1, 𝛾

2
= 2.5, 𝜏 = 1.5, 𝑘 = 3, which means that condition (𝐻

2
) holds, and 𝛽 = 1.2 > 𝛽

0
> 𝛽
0
. The initial value is

(0.1, −0.5, 0.1, −0.5).

Hence, we arrive at the following conclusion: the equi-
librium 𝐸 is asymptotically stable when 𝛽 ∈ [0, 1.1008) and
unstable when 𝛽 ∈ (1.1008, +∞), and, at the first critical
value, the bifurcating periodic solutions are asymptotically
stable, and the direction of the bifurcation is forward (see
Figures 2 and 3).

When 𝑘 = 3, we can get

𝜆

(𝛽
0
)

⋅

= 0.9004 + 0.0924i, 𝑐
1
(0)

⋅

= −1.9116 + 0.7930i,

𝜇
2

⋅

= 2.1231, 𝛽
2

⋅

= −3.8232, 𝑇
2
= −0.5720.

(69)

Then, we have the following: the equilibrium 𝐸 is asymp-
totically stable when 𝛽 ∈ [0, 0.6093), and unstable when
𝛽 ∈ (0.6093, +∞), and, at the first critical value, the
bifurcating periodic solutions are asymptotically stable, and
the direction of the bifurcation is forward (see Figures 4, 5,
and 6).

5. Conclusion

Ravoori et al. [1] explored an experimental system of two
nominally identical optoelectronic feedback loops coupled
unidirectionally, which are described by system (3). In the
experiment, they found that depending on the value of the

feedback strength 𝛽 and delay 𝜏, system (1) is capable of
producing dynamics ranging from periodic oscillations to
high-dimensional chaos [14, 15].

This paper investigates the stability and the existence
of periodic solutions. We find that with the variety of the
coupling strength 𝑘, even if all other parameters keep the
same, the dynamical behavior can change greatly. In fact,
it is clear that the first two equations, 𝑥

1
(𝑡) and 𝑦

1
(𝑡) are

uncoupled with equations 𝑥
2
(𝑡) and 𝑦

2
(𝑡), so system (1) are

independent of (2), which means that coupling strength 𝑘
does not appear in (1). The characteristic equation of (1)
has the same form as (6), so the first critical value 𝛽

0
is

independent of 𝑘. The analysis of characteristic equation (7)
shows that the value of 𝑘 can affect the first critical value
𝛽
0
definitely. And we draw a conclusion that when 𝑘 is in

an interval, in which 𝛽
0
< 𝛽
0
holds, solutions of system (1)

and (2) keep synchronous; when 𝑘 belongs to the interval,
in which 𝛽

0
< 𝛽
0
holds, solutions of system (1) and (2) can

also keep synchronous with 𝛽 < 𝛽
0
, while they lose their

synchronization when 𝛽 > 𝛽
0
, no matter whether 𝛽 < 𝛽

0

or not.
As a result, the modulation of the coupling strengths 𝑘

together with the feedback strength 𝛽 would be an efficient
and an easily implementable method to control the behavior
of the coupled chaotic oscillators.
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