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We are concerned with oscillation of solutions of a class of nonlinear fractional differential equations with damping term. Based
on a generalized Riccati function and inequality technique, we establish some new oscillation criteria for it. Some applications are

also presented for the established results.

1. Introduction

Fractional differential equations are generalizations of classi-
cal differential equations of integer order, and one can find
their applications in many fields of science and engineering.
In the last few decades, research for various aspects of
fractional differential equations, for example, the existence,
uniqueness, and stability of solutions of fractional differential
equations, the numerical methods for fractional differential
equations, and so on, has been paid much attention by
many authors (e.g., we refer the reader to see [1-8] and
the references therein). In these investigations, we notice
that very little attention is paid to oscillation of fractional
differential equations. Recent results in this direction include
Chen’s work [9], in which some new oscillation criteria are
established for the following fractional differential equation:

[r(D*x )]
0 (1)
—q(f)f<L (V—t)f“y(v)dv)zo, t>0,

where r and g are positive functions and # is a quotient of
two odd positive numbers.

In this paper, we are concerned with oscillation of
solutions of the following nonlinear (2+«)-order fractional
differential equation with damping term:

(a0 [r®Dx®)]) +p®[(r) Dx®)]"
w )
a0 7([ 7 €-0x@de) <0 e fro0),

where a € Cl([to,oo),R+), r € CZ([tO,oo),R+), pq €
C([ty,00),R,), f € C(R, R) satisfying xf(x) > 0, f(x)/x" >
L > 0 for x+0, y is a quotient of two odd positive
integers, a € (0, 1), D*x(t) denotes the Liouville right-sided
fractional derivative of order « of x, and D*x(t) = —(1/T(1 -

)(d/dt) [ (& - ) “x(E)dE.

A nontrivial solution of (2) is said to be oscillatory
if it is neither eventually positive nor eventually negative;
otherwise, it is nonoscillatory. Equation (2) is said to be
oscillatory in case all its solutions are oscillatory.

Motivated by the idea in [10], we will establish some new
oscillation criteria for (2) by a generalized Riccati function
and inequality technique in Section 2, and we will present
some applications for our results in Section 3. Throughout
this paper, R denotes the set of real numbers and R, =
(0,00). For more details about the theory of fractional



differential equations, we refer the reader to [11-13]. For the
sake of convenience, in the rest of this paper, we set X(t) =

€ =D x(OdE A®) = [, (p(9)/a()ds,

t 1
0, (t,a) = J —ds,

£0, (s,a)
B [eA(S)a (S)]l/y 62 (t,a) = J 1 ds.

a 1(s)
(3)
2. Main Results

The following lemmas are useful for proving our results.

Lemma 1. Assume that x is a solution of (2). Then, X'(t) =
-T(1 — a)D%x(t).

Lemma 2. Assume that x is an eventually positive solution of
(2) and

Jto [eA®q (s)] e @
® 1
J-to mds = 00, (5)

(o] L (o] ; o0 A(S) l/y -
Jtn r(§) L LAma(T) J e q(s)ds] dr d§ = oo.
(6)

Then, there exists a sufficiently large T such that
(r()D*x () <0 on [T,00) 7)

and either D*x(t) < 0 on [T, 00) or lim, _, ., X(£) = 0.

Proof. Since x is an eventually positive solution of (2), there
exists ¢, such that x(¢) > 0 on [t;,00). So X(¢) > 0 on [t;, 00)
and we have

(a [ D ®)]")
=e*(a®[(r ) D°x (t)),]y)’
+e*p ) [(r)D*x (1)']

= A0 {(a @) [(r () D*x (t))']y>,

(8)

+p® [(r®D*x )]}

=g () F (X (1) = Le*Pq (1) X () > 0.

Then, eA(t)a(t)[(r(t)Dfx(t))']V is strictly increasing on
[t;,00), and thus (r(t)Dfx(t))' is eventually of one sign. We
claim that (r(t)Dfx(t))' < 0 on [t,,00), where t, > t is
sufficiently large. Otherwise, assume there exists a sufficiently
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large t; > t, such that (r(H)D*x(t)) > 0 on [t5,00). Then, for
t € [t;,00), we have

r(t) DEx (1) = r (t;) D%x (t5)

J»t [eA(S)a (s)] 1/y(r (s) D*x (s))’
= ds

3 [e4a(s)]"”
) )
> [ (t;)] 7 (r (t5) Dx (1))
t 1
x L —[eA<5)a O /y'ds.
By (4), we have
tlirrgor ) D%x (t) = oo, (10)

which implies, for some sufficiently large ¢, > t5, D%x(t) > 0,
t € [ty,00). By Lemma 1, we have

X(t) - X(ty) = It X' (s)ds
ty
t
=-T(1 —(x)J- D%x (s)ds
: (11)
)  r(s) Dx (s)
=-T(1 -« L Tds
o !
<-T(1-a)r(ty) D*x(t,) L mds.
By (5), we obtain lim, , X (t#) = —o0, which contradicts

X(t) > 0 on [f,00). So (r(t)D%x(t))" < 0 on [t,,00).
Thus, D*x(t) is eventually of one sign. Now, we assume that
D%x(t) > 0,t € [ts, 00), for some sufficiently t; > t,. Then,
by Lemmal, X'(t) < 0fort € [t5,00). Since X(t) > O,
furthermore we have lim, , (X(¢t) = f > 0. We claim that
B = 0. Otherwise, assume that 3 > 0. Then, X(t) > f8 on
[t5,00), and, for t € [t5,00), by (8) we have

(eA(t)a ® [(r (t) D% (t))/]y)' > Le*Pq (1) X" (1)

> LY g (t).

Substituting ¢ with s in (12), an integration for (12) with
respect to s from ¢ to co yields

~ ") [(r Dix )]

> - lim ) [(r)Dx(1)']"

o (13)
+ LB J e*9q(s) ds

t
t

> LpY J e*9q(s) ds;
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which means

[ 1/
(r(®) Dfx(t))' < —Ll/yﬂ[ J; eA(S)q(s)ds] V.

(14)

eA®q (1)

Substituting t with 7 in (14), an integration for (14) with
respect to 7 from f to co yields

- r(t)D¥x (1)
< —tlirrgor (t) D%x (t)

0 0 1/
- Ll/yﬁ J [ ! J eA(s)q (s) ds] ydT (15)
¢

eADg (1) ),

<-L'"B J;OO [ !

eAMq (1)

[ l/V
J eA(S)q (s) ds] dr;

that is,

X' () <-L""T(1 - oc)ﬁ$

xjt oy L eq(s)ds T.

Substituting ¢ with & in (16), an integration for (16) with
respect to & from ¢ to t yields

(16)

X (1) - X(ts5)

<-L''"T(1-a)p

tL o) 1 0 AG) :|1/y
XLr(ﬁ) L [eA(T)a(T) J e™Vq(s)ds| drdé.

17)
By (6), one can see that lim, , X(t) = —oo, which is a
contradiction. So the proof is complete. O

Lemma 3. Assume that x is an eventually positive solution of
(2) such that

(r®Dx(#) <0, Dx(t)<0 on [t;,0), (8)

where t, >t is sufficiently large. Then, one has

ra-wo, (tt)[e*Pa®)]” () Dx 1)

X'(t) > - 0

X(6) 2 -T(1- )6, (61,) ["Pa®)] " (r t) Dx (1))
(19)

Proof. By Lemma 2, we obtain that eA(t)a(t)[(r(t)Dfx(t))']y
is strictly increasing on [t;, 00). So

r(®)D*x (t) <r(t) D*x (t) —r (t;) D*x (t,)

Jf [*9a ()] [r (5) D% ()]
= ds
t

1 [e4@a (s)] Wy
(20)

A(D) 1/y " (! 1
< [e*Pam)] " (r (1) D x (1)) L —[eA(S)a o ds
=0, (61,) ["Ya)] " (r ) D x ) .

Using Lemma 1, we obtain that

r-wb, (64) [*Pa®)]” (r @) D2x ®)

X' @t)=- O

(21)
Then,
X (t)

>X(t)-X(t)

. J L1 -6, (s.ty) [*a ()] (r () Dx (s))' .
f r(s)
b (st1)

tl)ds

> I(1-a [eA(t)a(t)]l/y(r (t) D*x (t))’ J: r(ZS)

=-T(1-a)6,(tt,)[*Va (t)]l/y(r (t) D*x (1))
(22)
O

Lemma 4 ([14, Theorem 41]). Assume that A and B are
nonnegative real numbers. Then,
AMBY' - A*<(A-1)BY, VA> 1L (23)

Theorem 5. Assume (4)-(6) hold and there exist two functions
p € C'([ty,00),R,) and € C'([t,, 00), [0, 00)) such that

| {rrwawe-pon ©

WP ()T (1 -a)b, (s, T) "M (5)
r(s)

~([r+1) 7" ) p T (1-0) 6, (5, T)

()0 9]"")

x((y + I)Y+1[F (1-a)p(s)0; (s, T)]yr (S))_l} ds
= OO,
(24)

for all sufficiently large T. Then, every solution of (2) is
oscillatory or satisfies lim, _, . X (t) = 0.
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Proof. Assume (2) has a nonoscillatory solution x on [fy,00). By Lemma 3 and the definition of f, we get that
Without loss of generality, we may assume x(f) > 0 on
[t,,00), where t, is sufficiently large. By Lemma 2, we have
(r()D%x(t))" < 0,t € [ty,00), where t, > t, is sufficiently @' () <—Lp(t)q(t)e
large, and either D*x(¢) < 0 on [t,,00) or lim, _, ., X(t) = 0.

A(t)

Define the generalized Riccati function as follows: _ (YP (OT(1-a)6, (t.1,) [ eA0g t)] 1/y
A(t) o 1Y o / A(t) o 1Y
@ [(r () D*x (t) x (r()Dix (t))'a (t) e[ (r (1) D x (1)']
w(t)=p(t){—e ‘ [(;y(t) : )] +’I(t)]>. (25) )
x (r X" 1)
Then, for t € [t,,00), we have N P—(t)w(t)+p(t) ’1: )
p ()
§0) _
w L) g - ()T (1-) 6, (t.t,)
, eABa (1) [(r (t) D*x (t))’]y r®
— 1+(1/y) !
X7 (t) y [—(%—n(t))] +Z((tt))w(t)+p(t)17’ 0
A () [(r () D*x 1)'] ' o
+p(t) - X7 () :—Lp(t)q(t)eA(t)—yp(t)r(l_a) 1(t’t2)
r(f)
+p O @) +p®)n @) am ey )
PPt |2 g0 ERew 0 0.
AW . NG p () p ()
=0 {(x 0 (*a [0 D)) 27)

-1 1o AW P ! Y)
pXT O X (e alt) [(r (1) DZx (1) ] Using the following inequality (see [15, Equation (2.17)])

(7 )]+ 20 6)+p &)y (1)
( ( )) } p(t) w P n (u B V)1+(1/y) > u1+(1/y) + )l/vlJr(l/y) _ <1 + %) Vl/}’u, (28)

= —p (1) { (x 0 {ao[copx0)])

we obtain
A(t) (o4 "y
e p (t) [(r (t) D_x (t)) ] }) w (t) 1+(1/)’) w1+(1/V) (t) 1 14+(1/)
2 ()7L [m a ”(t)] = pam (p) Y O
X (X (t)) . (29)
pXP 0 X (0)e*Oa o) [(r () D (1) ] - < 14 l) e
_ 14 p(t)
X2 (t)
. o ( t)w 05 p® ’7, " A combination of (27) and (29) yields the following:
p (1)
C pa® V(X 1) W' (1)
= XV (t) i (t)
<-Lpq®) ) + L0 )+ p 1) (1)
Yo (&) X' (t)a(t)e*®[(r (t) D*x (t))']y prIaie pry TP
" Xr() T -6, (1)
40) r ()

+ mw () + P (t) n (). w1+(1/y) t) 1 L) 1 }71/)/ () w(t)
(26) x P (1) +; Ok <1+_> o)
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=-Lp)q®) e +pt)q (1)

pMTA-a)6, (t,) 7 (1)
. r®)
yp®OTA-a), (t,t,) "7 (1)
r(t) P (1)
s (y+ )" (1) p(OT (1-a) 6, (t,1,)+7 (1) p’ oy
rt)p )

(t).
(30)

Setting

/\:1+l,
Y

CypOT (-0, (t,1,) Y (1)
- r(t) P1+(1/y) )

AA

>

BA—I

_ L /(y+D)
=Y

y Y+ )" ) p(OT (A -a)8, (t,t,) +7 (1) p' (t)

(y+ 1) [T =a)pt)0, (£,)] Y Vriem )
(31

Using Lemma 4 in (30), we get that
o' (1)
<-Lpt)q() e + p(t)n (1)

pT (A -a)0, (tt,) 7P ()
) r(6)

. [+ )7 O p(OT (- a) 0, (t,1,)+r () p' O]
G+ )™M ra-a)p®)6, (1)) @) '

(32)

Substituting ¢ with s in (32), an integration for (32) with
respect to s from ¢, to t yields

t
L [1p©a© e - pn

p(ST(1-a)8, (s,t,)n" M (s)
' r(s)

~([0+)7" @ pOT -0, (5.)

+r(s)p' 9]"")

< ((r+ )" P - @) p(9)6, (s 1)]'r(s)) " | s

<w(t)-w(t) <w(t,),
(33)

which contradicts (24). So the proof is complete. O

Theorem 6. Assume (4)-(6) hold and, for all sufficiently large
T)

| Aze@a©e pen' ©

L PO A-)]0, (5 T) O (s, T) 1 (s)
r(s)

~ ({2 ) n(s) LA -6, (s TVO) (5, T)

+r(s)p ©})

X (4T (1 -], (5T)6) ' (5 T)r () p(s)) | ds

= 00,
(34)

where p and n are defined as in Theorem 5. Then, every
solution of (2) is oscillatory or satisfies lim, _, . X (t) = 0.

Proof. Assume (2) has a nonoscillatory solution x on [, 00).
Without loss of generality, we may assume x(t) > 0
on [t;,00), where t, is sufficiently large. By Lemma 2, we
have (r()D%x(t))’ < 0,t ¢ [t,, 00), where t, > t; is
sufficiently large, and either D*x(f) < 0 on [t,,00) or
lim, ,  X(t) = 0. Let w(t) be defined as in Theorem 5.
Proceeding as in Theorem 5, we obtain (26). By Lemma 3, we
have the following observation:

X' (1)

X (t)

(-6, (t.1) [*Ya®)] " (r 0 D% (1)’
= FOX (1)

C T-w)8, (66) [ m)] (- (1) D% (1)
T () XY (t)

x XV (1)

L1 -6, (66) [¢*Pa®)]” (- () Dx 1)’
=" r (O X7 (6)
xfra-we, (66 [a ] 0 Dx (t))'}y_1
[T(1-a)]"6, (t,t,) 00" (t,1,)
- r(t)
1 ea(t) [(r () D%x (t))’]y }
X .

X7 (¢)

(35)



Using (35) in (26) we get that
W' (t)

an_ PO [LA-a)]"0, (t.1,) 0" (t,t,)
r(t)

{ A0a @) [(r ) D> (1)']" }2
X

<-Lp(t)q(t)e

X7 (1)

P ()
p ()

+ w()+p ) )

A PO [T (1-0))"6, (t,,) 63 (1,1,)
r(t)

=-Lp(t)q(t)e
w(t)

X[ 0 ()]

=-Lp(t)q(t)e

(O -8 (51,) 60 (1) 7 ()
r(t)
_ yIC (1 -0, (t.t,) eg_l (t, tz)wz )
r(®)p(t)

L 2000 O -], (1,1,) O (tt,)+r () p' (8)
r(6) p (D)

pl (1)

()w(t)+p(t)f1'(t)

A(t)

xwt)+pt) (t)

A(f)

<-Lpt)g®)e™ +pt)y (1)

PO A-a))6, (1,1,) 0" (t.1,) 1 ()
r(®)

+ {2y ) () [T (1-)]0, (t,1,) 65 (t:1,)

w0 p o))

x (4y[T (1= )10, (1,£,)00 (1, t,)r(D)p(t))
(36)

Substituting ¢ with s in (36), an integration for (36) with
respect to s from ¢, to t yields

| {Le@ae™ - pon ©

L P () [T (-], (s, tz)egil (s,t,) 1 (s)
r(s)

-)]"0, (s,1,) 6}~

- ({Zyp ($)n(s) [T (1 (s, ty)

+r(s)p' 0)})
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x (4917 (1 - @))6, (5,106} (5, 1)r(9)p(s)) | ds

<w(t)-w() <w(t),
(37)

which contradicts (34). So the proof is complete. O

Theorem 7. Define D = {(t,s) | t > s > t,}. Assume (4)-(6)
hold and there exists a function H € CY(D, R) such that

H(t,t) =0, fort=>t,, H(t,s) >0, fort>s=>t,,

(38)

H has a nonpositive continuous partial derivative H.(t, s), and

lim [
oo H(t,to)

X {L: H (t,s)

x {1999 e = p9 (9

— )0, (s, T) ) (s)
r(s)

~([G+) 7" p T (1 - )8, (5 T)

LPOIa

+r(s)p' (9]"")

x((p+ )" A-w)ps)6, (s 1]

xr(s))’l}ds}

(39)

for all sufficiently large T, where p and n are defined as in
Theorem 5. Then, every solution of (2) is oscillatory or satisfies
lim, _,  X(t) =

Proof. Assume (2) has a nonoscillatory solution x on [, 00).
Without loss of generality, we may assume x(t) > 0 on
[t,,00), where t, is sufficiently large. By Lemma 2, we have
either D*x(t) < 0 on [t,,00), for some sufficiently large
t, > t, or lim, , X (¢#) = 0. Now we assume D*x(¢) < 0.
Let w(t) be defined as in Theorem 5. By (32), we have

Lp(t)q(t) e - p(t)y' (1)
L POT(-x06, (t,£,) ) (1)
r(t)
[ nrOpmra-wo (L) +rep 0]
(+ )" T A-a)p®6, (t.1,)]"r (1)

<-o' ().

(40)
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Substituting ¢ with s in (40), multiplying both sides by H(t, s),
and then integrating with respect to s from ¢, to ¢t yield

Lt H (t,s)

2

x{1p 99 e = p (9

p(s)T(1-a) 0, (s,8,) 7 (s)
' r(s)

~([G+ D" ©pOT1-06, (5.1

+7(s) p' (S)]yﬂ)
x((y+ )" [T Q-0 p(s)6; (s, tz)]yr(s))_l} ds

<- J-t H(t,s)w' (s)ds = H(t,t,) w(t,)
t

t
+J HS' (t,s) w(s) As
t

2

<H(tLt)w(t,) <H(tty)w(t,).
(41)

Then

J: H(bs)

{10996 e - p 9

p(s)T (1 =)0, (s,t,) 7MY (s)
' r(s)

~([G+ D" ©pOT -6, (s)

+rs)p' 9]")

x((r+ )" P - @) p )6, (s 1)'r(s)) | s

- fz Hs)

0

x {Lp ©)q(5) ™~ p(s)77 (s)

p()T(1—a)b, (s,t,)n M (s)
' r(s)

- ([(y + 1) (s)p(s) T (1 - ) B, (s1,)

+7(s)p' (S)]yﬂ)

-1

X ((y+1)wrl [T (1-a)p(s)6 (s, tz)]yr(s)) } ds

+ J:Z H(t,s)

x {19996 e = p (9

1% (S) T (1 - (X) 91 (S, tz) ;71"'(1/}’) (S)
' r(s)

[+ D1 @ pOTA -6, (5.1)

+7(s) p’ (S)]y+1)
x((r+1)" ' 1= p ()6, (. )]'7(9) | s
< H(tty) w(t,) + H (t,t,)

t
X J
tO

Lp(s)q(s)e™ = p(s) ' (s)

p($)T(1—a)0, (s,t,) M (s)
' r(s)

~([(r+ D1 & pOTA -0, (s:8)
+r9)p ]"")

x((y+ )1 -a)p(s)6, (s tz)]yr(s))_l ds.

(42)

So

li —
oo P H(t,t,)

X «“: H (t,s)

x{1p 2™ - p()7'

p($)T(1—-a) 8, (s,t,) 7TV (5)
' r(s)

~([G+ )7 O pOT (-6, (1)

+r(s)p ©]")
<((p+ 1) a-wp)6 (s1,)]"
xr(9) "'} ds}
<w(t,)

t
+ J
tO

Lp(s)q(s)e™ —p(s)y' (s)




p(s)T(1-a)0, (st,) ,11+(1/y) (s)
’ r(s)

~([6+ D" @ pOT (-6, (s15)

+r(s)p' 6)]")
X ((y + 1)V+1[r (1-a)p(s)6, (s,t,)]'r (s))_1 ds
< 00,
(43)
which contradicts (39). So the proof is complete. O

Theorem 8. Let H, p, andn be defined as in Theorem 7. If (4)-
(6) hold and

li —
000 P H(t,t,)

X J: H (t,s)

0

x{Lp(5)q ()€™~ p ()1 (s)

LPOIA-0)0 (5T) 01" (s, T) 1 (s)
r(s)

~(f2yp ()0 () [T (A~ )76, (s TVO} ™ (5,T)

+7(s)p' (S)}z)

x(49[0 (1 - a)]"0,(s, T) 627 (5, T) 7 (s) p (s))_l} ds

(44)

for all sufficiently large T, then every solution of (2) is
oscillatory or satisfies lim, _, . X (t) = 0.

Proof. Assume (2) has a nonoscillatory solution x on [¢,, 00).
Without loss of generality, we may assume x(f) > 0 on
[t;, 00), where ¢, is sufficiently large. By Lemma 2, we have
either D*x(t) < 0 on [t,,00), for some sufficiently large
t, > ty, or lim, ,  X(t) = 0. Now, we assume D*x(t) < 0.
Let w(t) be defined as in Theorem 5. By (36), we have

Lp(t)q(t)e*™ —p )y (t)
L PO -6, (66)6 (66) 1 (1)
r(t)
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{290 ()0 () [T (1-0)]76, (1.1,) 87" (t.1,) +7 () p' ()}
4y[T (1 - )]0, (t,,) 007" (t,t,) 7 () p (1)

<-w (1).

(45)

Substituting t with s in (45), multiplying both sides by H(t, s),
and then integrating with respect to s from ¢, to t yield

J: H (t,s)

2

x{Lp(5)q(9)e* = p ()7 (s)

LY () [T (1-a)]0, (s,1,) 9371 (s,t,) 7 (s)
7 (s)

- ({Zyp ()7 (s) [T (1= )]0, (s,1,) 04" (s,1,)

+rs)p o))
X (4p[L (1= 0170, (5, )03 (5, 1)r(s)p(s)) | ds

<- Jt H(t,s)w' (s)ds = H(t,t,) w(t,)

+ J-t Hs' (t,s) w(s) As

2

<H(tt)w(t) <H(tty) w(ty).

Then, similar to the process of Theorem 7, we get that

tll>n’olo sup H (t, to)

x “: H{(ts)

x{Lp(5)q()e* = p ()7 (s)

L PO -6 (56) 65 (s,t2) 7 (5)
r(s)

~(frp ) n(s) T 1-c)]"6, (s.1,)

X 05_1 (s,ty) +7(s)p' (s)}z)

x (4y[L (1 - )]0, (s,1,) 00

-1
x (s, tz)r(s)p(s)) }ds} < 00,

(47)

which contradicts (44). So the proof is complete. O
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Remark 9. In Theorems 7 and 8, if we take H(t, s) for some
special functions such as (t—s)" or In(¢/s), then we can obtain
some corollaries, which are omitted here.

Remark 10. The established oscillation criteria for (2) above

are new results so far in the literature to the best of our
knowledge.

3. Applications

In this section, we will present some applications for the
established results above.

Example 1. Consider the following:

<t5/3[(Dfx (t))']5/3>’ N t_8/3[(D‘fx(t))’]
_ [ M+ ef,"“’(f—t)‘“x(f)df] (48)

x (fo E- 1" ® df)m _o,

where M > 0 is a constant.
We have in (2) y = 5/3, a(t) = t°1°, p(t) = q(t) = 7,

5/3

t € [2,00),

fx) = x*Ple* + M, r(t) = 1,t, = 2. Then, f(x)/x? >
M = L. Moreover, 1 < ¢*® = eIZt(P (S)/alsDds efzt sPas _
~10/3 ~-10/3
e G027 < o Then, we have
«© 1 © 1
to [eA®a(s)] 2 [eA¥a(s)]
35 (1
>e J ~ds = oo, (49)
2 S
o0
1
J ——ds = oo.
ty ()

Furthermore,

o 0 1 &) A 1/y
L) ") L [—eA(T)a(T) L eq(s) ds] drd&
R 1 alUTRRV b
= L L [W J-T e™Vs ds] drdé
3/ 0 00 1 0 83 3/5
>e L . [m L s ds] drd&

(5 [ e (5)” [

£ §
(50)
On the other hand, for a sufficiently large T', we have
! 1
o= — 1 a
1 ( ) T [eA(S)a (S)]l/y
(51)

t 1 35 (1
= j ———ds>e / J —ds — o0o0.
T [eAO55/3]° TS

So we can take T > T such that 6,(¢,T) > 1 fort € [T, c0).
Taking p(t) = 7% and n(t) = 0 in (24), we get that

| {Lp )4
T

' y+1
[r(s)p' ()] } .

()" T - ) p(9)6, (s D)]'r (s)

- {M (3 T - ; 1 } o

i JTT {M_ () (- 61) 1) } o
’ ro {M_ <§)8/3 [ra —oo;l (7)) } %ds

) JTT {M_ <§>8/3 T(-w ;1 (1) } g

! 5\ 1 1
+JT* {M—(§> —[r(l_“)]m};ds—»oo,
(52)

provided that M > (5/8)%*(1/[T(1 - @)]*?). So (4)-(6) and
(24) all hold, and by Theorem 5 we deduce that every solution
of (48) is oscillatory or satisfies lim, _, . X (t) = 0 under the

condition M > (5/8)%3(1/[T(1 - &)]*"?).

Example 2. Consider the following:

(ts[(Dfx (t))']3), +t*[(Dx (l‘))l]3

. , (53)

_Mt“‘“ (E—t)‘“x(f)df] =0, te[200),
t

where & € (0,1) and M > 0 is a constant.

We havein (2) y = 3, a(t) = £, pt) =q@) = 4 f(x) =
Mx*, r(t) = 1,t, = 2. Then, f(x)/x’ > M = L. Moreover,
1< A® _ Lp©laends _ pfys7ds _ ~1/6)t*-27] < ol/384

Then, we have

e 1 e 1
J — ds = J —1/3ds
to [eAWa(s)] 2 [eA¥a(s)]

©1
> ¢ /12 J ~ds = oo, (54)
2 S

® 1
——ds = oo.
LO "o s =00
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Furthermore,

[ | (oo [ o] ana
|

(e

eA(T)T3
00 00 1/3
>t [ [ij s_4ds] dr dt
B 2 JE % );
-1/1152 ~c0 o 1 -1/1152 o
. —dr]d - j LaE - oo
3 L H{ 72 & 30k 55
(55)
On the other hand, for a sufficiently large T, we have
t 1
0,tT) = J ——ds
1 (6T) T[eA(s)a(s)]l/Y
(56)

! 1 Syms2 [F1
=J—13d526 J—ds—>oo.
T [eA®$3]Y TS

So we can take T* > T such that 0, (¢, T) > 1 fort € [T", c0).
Taking p(t) = £, n(t) = 0,H(t,s) =t — sin (39), we get that

lim sup
t— 00 —

0
x{f (t—s)

x 1Lp(s)q(s)

[r)p )]

- ds
(y+1)" [T (1-a) p(s) 6, (s, T)]"r (s)

= | 1
= fim,sup =

X { Lt (t—13s)
><<|M—<§)4 ! }lds}
4 T1-a)6,(sT) | s

Journal of Applied Mathematics

3\* 1 1
M-(2 ~d
X{ <4> [F(l—oc)@l(s,T)]3} s¥

3\ 1 1
M-|= ~d
i) ey 4

. 1
> lim sup —

t— 00 t—

X {LT (t—s) {M_<Z>4 o 1_06)]3 } %ds

! 3\* 1 1
+ L* (t—s) {M— (Z) —[F(l W } ;ds]» = 00,
(57)

provided that M > (3/4)*(1/[T(1 - )]’). So (4)-(6) and
(39) all hold, and by Theorem 7 we deduce that every solution
of (48) is oscillatory or satisfies lim, _, ., X(¢#) = 0 under the
condition M > (3/4)*(1/[T(1 - a)]?).
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