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We present a new improved parsimonious multivariate Markov chain model. Moreover, we find a new convergence condition with
a new variability to improve the prediction accuracy and minimize the scale of the convergence condition. Numerical experiments
illustrate that the new improved parsimonious multivariate Markov chain model with the new convergence condition of the new
variability performs better than the improved parsimonious multivariate Markov chain model in prediction.

1. Introduction

Theprobability distribution ofMarkov chains plays an impor-
tant role in a wide range of applications such as telecom-
munication systems, manufacturing systems, and inventory
systems, see, for instance, [1] and the references therein. In
recent years, the prediction of multivariate Markov chain
models [2] has become more and more useful in many real-
world applications: sales demand predictions [2, 3], DNA
sequencing [4], and credit and financial data modeling [5].
The major merit of the multivariate Markov chain model is
to detect the relations among the sequences and to predict
more precisely.

Different models for multiple categorical data sequences
are introduced in the following part. A multivariate Markov
chain model has been presented in [2]. Ching et al. con-
structed a new matrix by means of the transition probability
matrices among different sequences. To improve prediction
accuracy, Ching et al. incorporated positive and negative
parts in an improved parsimonious multivariate Markov
chain model [5]. Miao and Hambly presented recursive
formulas for the default probability distribution which is
feasible for computation in this simple version [6]. A more
advanced model, namely, higher-order multivariate Markov
chain model has been exhibited in [7]. To reduce the number
of parameters of the model, a parsimonious higher-order

multivariate Markov chain model has been proposed in [8],
where the number of parameters is O((𝑛 + 𝑠)𝑠𝑚

2). Certainly,
there are many other papers contributing to the multivariate
Markov chain models, for example, [1, 9, 10].

With the development of science technologies with their
applications, the number of data in sequences become larger,
and the results need to be more precise. It is inevitable
that a large categorical data sequence group will cause high
computational costs, especially using the convergence condi-
tion as in [5]. In this paper, a new improved parsimonious
multivariate Markov chain model and a new convergence
condition with a new variability are presented to enhance the
precision of the prediction and save the computational costs.

The rest of the paper is organized as follows. In Section 2,
we briefly review several multivariate Markov chain models.
In Section 3, a new improved parsimonious multivariate
Markov chain model and a new convergence condition with
a new variability are presented. Section 4 gives the estimation
methods for the parameters of the new improved parsi-
monious multivariate Markov chain model with different
convergence conditions. Numerical experiments with three
examples are presented to demonstrate the effectiveness of
our proposed model with the new convergence condition of
the new variability in Section 5. Finally, concluding remarks
are given in Section 6.
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2. Review of the Multivariate Markov
Chain Models

In this section, we briefly introduce several multivariate
Markov chain models, for example, the Markov chain model
[3], the multivariate Markov chain model [2], and the
improved parsimonious multivariate Markov chain model
[5].

2.1. The Markov Chain Model. First, we introduce some
definitions of the Markov chain [2, 11]. Let the state set
of the categorical data sequences be M = {1, 2, . . . , 𝑚}.
The discrete-time Markov chain with 𝑚 states satisfies the
following relations:

Prob (𝑥
𝑡+1

= 𝜃
𝑡+1

| 𝑥
0
= 𝜃
0
, 𝑥
1
= 𝜃
1
, . . . , 𝑥

𝑡
= 𝜃
𝑡
)

= Prob (𝑥
𝑡+1

= 𝜃
𝑡+1

| 𝑥
𝑡
= 𝜃
𝑡
) ,

(1)

where 𝜃
𝑡
∈ M, 𝑡 ∈ {0, 1, 2, . . .}. The conditional probability

Prob (𝑥
𝑡+1

= 𝜃
𝑡+1

| 𝑥
𝑡
= 𝜃
𝑡
) is called the one-step transition

probability of the Markov chain. The transition probability is

𝑃
(𝑖,𝑗)

= Prob (𝑥
𝑡+1

= 𝑖 | 𝑥
𝑡
= 𝑗) , ∀𝑖, 𝑗 ∈ M, (2)

and the transition probability matrix is 𝑃(𝑖,𝑗). The Markov
chain model can be represented as follows:

𝑋
𝑡+1

= 𝑃𝑋
𝑡
, (3)

where

𝑃 = [𝑃
(𝑖,𝑗)

] , 0 ≤ 𝑃
(𝑖,𝑗)

≤ 1, ∀𝑖, 𝑗 ∈ M,

𝑚

∑
𝑖=1

𝑃
(𝑖,𝑗)

= 1, ∀𝑗 ∈ M,

(4)

𝑋
0

is the initial probability distribution, and 𝑋
𝑡

=

(𝑥1
𝑡
, 𝑥2
𝑡
, . . . , 𝑥𝑚

𝑡
)
T is the state probability distribution at time

𝑡.

2.2. The Multivariate Markov Chain Model. Suppose the
number of categorical data sequences 𝑠 > 1. The multivariate
Markov chain model [2] is represented as follows:

𝑥
(𝑗)

𝑡+1
=

𝑠

∑
𝑘=1

𝜆
𝑗,𝑘
𝑃
(𝑗,𝑘)

𝑥
(𝑘)

𝑡
, ∀𝑗 = 1, 2, . . . , 𝑠, 𝑡 = 0, 1, . . . , (5)

where

𝜆
𝑗,𝑘

≥ 0, ∀𝑗, 𝑘 = 1, 2, . . . , 𝑠,

𝑠

∑
𝑘=1

𝜆
𝑗,𝑘

= 1, ∀𝑗 = 1, 2, . . . , 𝑠.
(6)

Here, 𝑥(𝑗)
0

is the initial probability distribution of the 𝑗th
sequence, 𝑥(𝑘)

𝑡
is the state probability distribution of the

𝑘th sequence at time 𝑡, and 𝑥
(𝑗)

𝑡+1
is the state probability

distribution of the 𝑗th sequence at time 𝑡 + 1. Here, 𝑃(𝑗,𝑘) is

the one-step transition probability from the state in the 𝑘th
sequence at time 𝑡 to the state in the 𝑗th sequence at time 𝑡+1.
In matrix form, we have

𝑋
𝑡+1

=(

𝑥
(1)

𝑡+1

𝑥
(2)

𝑡+1

...
𝑥
(𝑠)

𝑡+1

)=(

𝜆
1,1
𝑃(1,1) 𝜆

1,2
𝑃(1,2) ⋅ ⋅ ⋅ 𝜆

1,𝑠
𝑃(1,𝑠)

𝜆
2,1
𝑃(2,1) 𝜆

2,2
𝑃(2,2) ⋅ ⋅ ⋅ 𝜆

2,𝑠
𝑃(2,𝑠)

...
...

...
...

𝜆
𝑠,1
𝑃(𝑠,1) 𝜆

𝑠,2
𝑃(𝑠,2) ⋅ ⋅ ⋅ 𝜆

𝑠,𝑠
𝑃(𝑠,𝑠)

)

×(

𝑥(1)
𝑡

𝑥(2)
𝑡

...
𝑥(𝑠)
𝑡

).

(7)

Here, 𝑃(𝑗,𝑘) and 𝜆
𝑗,𝑘

can be obtained from the 𝑠 categorical
data sequences and the corresponding linear programming,
for details, refer to [2].

2.3. The Improved Parsimonious Multivariate Markov Chain
Model. With the same notations as introduced in Sec-
tion 2.2, we introduce the improved parsimonious multi-
variate Markov chain model originating from multivariate
Markov chain model. Consider

𝑍
𝑡+1

=
1

𝑚 − 1
(e − 𝑋

𝑡
) , (8)

where the factor 1/(𝑚 − 1) is a constant for normalization.
Here, e is the vector of all ones and𝑚 ≥ 2. Inmatrix form, the
improved parsimonious multivariate Markov chain model
can be represented as

(

𝑥
(1)

𝑡+1

𝑥
(2)

𝑡+1

...
𝑥
(𝑠)

𝑡+1

) = Λ
+
(

𝑥(1)
𝑡

𝑥(2)
𝑡

...
𝑥(𝑠)
𝑡

)+
1

𝑚 − 1
Λ
−
(

e − 𝑥(1)
𝑡

e − 𝑥(2)
𝑡

...
e − 𝑥(𝑠)
𝑡

),

(9)

where

Λ
+
= (

𝜆
1,1
𝑃(1,1) 𝜆

1,2
𝑃(1,2) ⋅ ⋅ ⋅ 𝜆

1,𝑠
𝑃(1,𝑠)

𝜆
2,1
𝑃
(2,1)

𝜆
2,2
𝑃
(2,2)

⋅ ⋅ ⋅ 𝜆
2,𝑠
𝑃
(2,𝑠)

...
...

...
...

𝜆
𝑠,1
𝑃(𝑠,1) 𝜆

𝑠,2
𝑃(𝑠,2) ⋅ ⋅ ⋅ 𝜆

𝑠,𝑠
𝑃(𝑠,𝑠)

),

Λ
−
= (

𝜆
1,−1

𝑃(1,1) 𝜆
1,−2

𝑃(1,2) ⋅ ⋅ ⋅ 𝜆
1,−𝑠

𝑃(1,𝑠)

𝜆
2,−1

𝑃(2,1) 𝜆
2,−2

𝑃(2,2) ⋅ ⋅ ⋅ 𝜆
2,−𝑠

𝑃(2,𝑠)

...
...

...
...

𝜆
𝑠,−1

𝑃(𝑠,1) 𝜆
𝑠,−2

𝑃(𝑠,2) ⋅ ⋅ ⋅ 𝜆
𝑠,−𝑠

𝑃(𝑠,𝑠)

),

𝑠

∑
𝑗=−𝑠

𝜆
𝑗,𝑘

= 1, 𝜆
𝑗,𝑘

≥ 0, for∀1 ≤ 𝑗 ≤ 𝑠, 1 ≤ |𝑘| ≤ 𝑠.

(10)
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Λ+𝑋
𝑡
and Λ−𝑍

𝑡
are the positive and negative parts of the

transition probability matrices in (9). The above model has
two directions to approach the steady solution𝑋.

Let𝐴 = [𝑎
𝑖,𝑗
] ∈ R𝑚×𝑚, 𝐵 = [𝑏

𝑖,𝑗
] ∈ R𝑚×𝑚. If |𝑎

𝑖,𝑗
| ≥ 𝑏
𝑖,𝑗
for

for all 𝑖, 𝑗 = {1, 2, . . . , 𝑚} and there exist 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑚}

satisfying |𝑎
𝑖,𝑗
| > 𝑏
𝑖,𝑗
, then we note that |𝐴| > 𝐵.

Lemma 1 (see [12]). Let 𝐴 ∈ R𝑚×𝑚 be a nonnegative and
irreducible matrix, 𝐵 ∈ C𝑚×𝑚 a complex matrix, and 𝜆 an
eigenvalue of 𝐵. If |𝐴| > 𝐵, then 𝜌(𝐴) > |𝜆|.

3. A New Improved Parsimonious Multivariate
Markov Chain Model

In this section, we propose a new improved parsimonious
multivariate Markov chain model and a new convergence
condition with a new variability.

In the newmodel, the state probability distribution of the
𝑗th sequence at time 𝑡 + 1 depends on the state probability
distribution of all the sequences at time 𝑡. Let the number
of categorical data sequences be 𝑠 > 1, 𝑚 the number
of states in every sequences, 𝛽 < 1/𝑚, then the new
improved parsimonious multivariate Markov chain model
can be represented as follows:

𝑋
(𝑗)

𝑡+1
=

𝑠

∑
𝑘=1

𝜆
𝑗,𝑘
𝑃
(𝑗,𝑘)

𝑋
(𝑘)

𝑡
+

1

𝑚𝛽 − 1

𝑠

∑
𝑘=1

𝜆
𝑗,−𝑘

𝑃
(𝑗,𝑘)

(𝛽e − 𝑋
(𝑘)

𝑡
) ,

(11)

where 𝑋(𝑘)
0

is the initial probability distributions of the 𝑘th
sequence and
𝑠

∑
𝑘=−𝑠

𝜆
𝑗,𝑘

= 1, 𝜆
𝑗,𝑘

≥ 0, for∀1 ≤ 𝑗 ≤ 𝑠, 1 ≤ |𝑘| ≤ 𝑠. (12)

Here, 𝑋(𝑘)
𝑡

is the state probability distribution of the 𝑘th
sequence at time 𝑡, 𝑃(𝑗,𝑘) is the one-step transition probability
matrix from the state in the 𝑘th sequence at time 𝑡 to the
state in the 𝑗th sequence at time 𝑡 + 1. Here, 𝑋(𝑗)

𝑡+1
is the state

probability distribution of the 𝑗th sequence at time 𝑡 + 1. Let

𝑋
𝑡+1

= ((𝑋
(1)

𝑡+1
)
T
, (𝑋
(2)

𝑡+1
)
T
, . . . (𝑋

(𝑠)

𝑡+1
)
T
)
T
∈ R
𝑚𝑠×1

, (13)

then the new improved parsimonious multivariate Markov
chain model in matrix form is

𝑋
𝑡+1

= Λ
+
𝑋
𝑡
+

1

𝑚𝛽 − 1
Λ
−
(𝛽e − 𝑋

𝑡
) , (14)

which also can be represented as

(

𝑋
(1)

𝑡+1

𝑋
(2)

𝑡+1

...
𝑋
(𝑠)

𝑡+1

)=Λ
+
(

𝑋(1)
𝑡

𝑋(2)
𝑡

...
𝑋(𝑠)
𝑡

)+
1

𝑚𝛽 − 1
Λ
−
(

𝛽e − 𝑋(1)
𝑡

𝛽e − 𝑋(2)
𝑡

...
𝛽e − 𝑋(𝑠)

𝑡

),

(15)

where

Λ
+
= (

𝜆
1,1
𝑃(1,1) 𝜆

1,2
𝑃(1,2) ⋅ ⋅ ⋅ 𝜆

1,𝑠
𝑃(1,𝑠)

𝜆
2,1
𝑃(2,1) 𝜆

2,2
𝑃(2,2) ⋅ ⋅ ⋅ 𝜆

2,𝑠
𝑃(2,𝑠)

...
...

...
...

𝜆
𝑠,1
𝑃
(𝑠,1)

𝜆
𝑠,2
𝑃
(𝑠,2)

⋅ ⋅ ⋅ 𝜆
𝑠,𝑠
𝑃
(𝑠,𝑠)

),

Λ
−
= (

𝜆
1,−1

𝑃(1,1) 𝜆
1,−2

𝑃(1,2) ⋅ ⋅ ⋅ 𝜆
1,−𝑠

𝑃(1,𝑠)

𝜆
2,−1

𝑃(2,1) 𝜆
2,−2

𝑃(2,2) ⋅ ⋅ ⋅ 𝜆
2,−𝑠

𝑃(2,𝑠)

...
...

...
...

𝜆
𝑠,−1

𝑃(𝑠,1) 𝜆
𝑠,−2

𝑃(𝑠,2) ⋅ ⋅ ⋅ 𝜆
𝑠,−𝑠

𝑃(𝑠,𝑠)

),

𝑠

∑
𝑘=−𝑠

𝜆
𝑗,𝑘

= 1, 𝜆
𝑗,𝑘

≥ 0, for∀1 ≤ 𝑗 ≤ 𝑠, 1 ≤ |𝑘| ≤ 𝑠.

(16)

Λ+𝑋
𝑡
and (1/(𝑚𝛽 − 1))Λ−(e𝛽 − 𝑋

𝑡
) are, respectively, the

positive and negative parts of the transition probability
matrices in (14) where ‖𝑋

𝑡
‖
1
= ‖(1/(𝑚𝛽−1))(e𝛽−𝑋

𝑡
)‖
1
= 1.

Each column sum of 𝑃(𝑗,𝑘) is equal to one.
From (14), after 𝑡 times iterations, it has

𝑋
𝑡+1

= Λ
+
𝑋
𝑡
+

1

𝑚𝛽 − 1
Λ
−
(𝛽e − 𝑋

𝑡
)

= (Λ
+
−

1

𝑚𝛽 − 1
Λ
−
)𝑋
𝑡
+

𝛽

𝑚𝛽 − 1
Λ
−e

= (Λ
+
−

1

𝑚𝛽 − 1
Λ
−
)((Λ

+
−

1

𝑚𝛽 − 1
Λ
−
)𝑋
𝑡−1

+
𝛽

𝑚𝛽 − 1
Λ
−e) +

𝛽

𝑚𝛽 − 1
Λ
−e

= (Λ
+
−

1

𝑚𝛽 − 1
Λ
−
)

2

𝑋
𝑡−1

+ (Λ
+
−

1

𝑚𝛽 − 1
Λ
−
)

𝛽

𝑚𝛽 − 1
Λ
−e + 𝛽

𝑚𝛽 − 1
Λ
−e

= (Λ
+
−

1

𝑚𝛽 − 1
Λ
−
)

𝑡+1

𝑋
0

+

𝑡

∑
𝑘=0

(Λ
+
−

1

𝑚𝛽 − 1
Λ
−
)

𝑘
𝛽

𝑚𝛽 − 1
Λ
−e.

(17)

If 𝜌(Λ+ − (1/(𝑚𝛽 − 1))Λ−) < 1, the iteration of
the new improved parsimonious multivariate Markov chain
model is convergent. For finding a more simple and efficient
convergence condition from the point of view of properties
of special matrices, we get the following theorem.

Theorem 2. In the new improved parsimonious multivariate
Markov chain model, ifΛ+ > (𝛾/(𝑚𝛽−1))Λ− where 𝛾 ≥ 1 and
𝛽 < 1/𝑚, then the iteration of the new improved parsimonious
multivariate Markov chain model is convergent.
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Proof. Because Λ+ > (𝛾/(𝑚𝛽 − 1))Λ−, we obtain

Λ
+
−

𝛾

𝑚𝛽 − 1
Λ
−
> 0. (18)

For Λ+, Λ− > 0, it has

−Λ
+
< 0 < Λ

+
−

𝛾

𝑚𝛽 − 1
Λ
−
< Λ
+
. (19)

Then, we obtain

Λ
+
−

𝛾

𝑚𝛽 − 1
Λ
−


< Λ
+
. (20)

From Lemma 1, it has

𝜌(Λ
+
−

𝛾

𝑚𝛽 − 1
Λ
−
) < 𝜌 (Λ

+
) . (21)

In the new model, ∑𝑠
𝑘=−𝑠

𝜆
𝑗,𝑘

= 1, 0 ≤ 𝜆
𝑗,𝑘

≤ 1, and 0 ≤

𝑃(𝑗,𝑘) ≤ 1 for all 1 ≤ 𝑗 ≤ 𝑠, 1 ≤ |𝑘| ≤ 𝑠. It suffices to prove that
‖Λ+‖
1
+ ‖Λ−‖ ≤ 1. Then, we obtain

𝜌(Λ
+
−

1

𝑚𝛽 − 1
Λ
−
) < 𝜌 (Λ

+
) ≤ 1. (22)

The new improved parsimonious multivariate Markov chain
model is convergent.

4. Estimation of the Parameters of the
New Improved Parsimonious Multivariate
Markov Chain Model

In this section, we estimate the parameters of the new
improved parsimonious multivariate Markov chain model
in the new convergence condition with the new variability
which has been proved inTheorem2.The transition probabil-
ity matrices 𝑃(𝑗,𝑘) are estimated at first. If the data sequences
are given and the state set is M = {1, 2, . . . , 𝑚}, 𝑓(𝑗,𝑘)

𝑖𝑗,𝑖𝑘
is the

frequency from the 𝑖
𝑘
state in the 𝑘th sequence at time 𝑡 to

the 𝑖
𝑗
state in the 𝑗th sequence at time 𝑡 + 1 with 𝑖

𝑗
, 𝑖
𝑘
∈ M,

then the transition frequencymatrix𝐹(𝑗,𝑘) can be constructed
as follows:

𝐹
(𝑗,𝑘)

= (

(

𝑓
(𝑗,𝑘)

1,1
𝑓
(𝑗,𝑘)

1,2
⋅ ⋅ ⋅ 𝑓

(𝑗,𝑘)

1,𝑚

𝑓
(𝑗,𝑘)

2,1
𝑓
(𝑗,𝑘)

2,2
⋅ ⋅ ⋅ 𝑓

(𝑗,𝑘)

2,𝑚

...
...

...
...

𝑓
(𝑗,𝑘)

𝑚,1
𝑓
(𝑗,𝑘)

𝑚,2
⋅ ⋅ ⋅ 𝑓(𝑗,𝑘)
𝑚,𝑚

)

)𝑚×𝑚

. (23)

Here, 𝑃(𝑗,𝑘) can be obtained by normalizing the frequency
transition probability matrix as

𝑃
(𝑗,𝑘)

= (

(

𝑝
(𝑗,𝑘)

1,1
𝑝
(𝑗,𝑘)

1,2
⋅ ⋅ ⋅ 𝑝
(𝑗,𝑘)

1,𝑚

𝑝
(𝑗,𝑘)

2,1
𝑝
(𝑗,𝑘)

2,2
⋅ ⋅ ⋅ 𝑝
(𝑗,𝑘)

2,𝑚

...
...

...
...

𝑝
(𝑗,𝑘)

𝑚,1
𝑝
(𝑗,𝑘)

𝑚,2
⋅ ⋅ ⋅ 𝑝(𝑗,𝑘)
𝑚,𝑚

)

)𝑚×𝑚

, (24)

where

𝑝
(𝑗,𝑘)

𝑖𝑗 ,𝑖𝑘
=

{{{{

{{{{

{

𝑓
(𝑗,𝑘)

𝑖𝑗,𝑖𝑘

∑
𝑚

𝑖𝑗=1
𝑓
(𝑗,𝑘)

𝑖𝑗,𝑖𝑘

if
𝑚

∑
𝑖𝑗=1

𝑓
(𝑗,𝑘)

𝑖𝑗,𝑖𝑘
̸= 0,

1

𝑚
otherwise.

(25)

Subsequently, the way of estimating the parameter 𝜆
𝑗,𝑘

is introduced. 𝑋
𝑡
is a joint state probability distribution of

the new improved parsimonious multivariate Markov chain
model at 𝑡 and can be represented as

𝑋
𝑡
= ((𝑋

(1)

𝑡
)
T
, (𝑋
(2)

𝑡
)
T
, . . . (𝑋

(𝑠)

𝑡
)
T
)
T
∈ R
𝑚𝑠×1

, (26)

which satisfies

𝑋
𝑡+1

= Λ
+
𝑋
𝑡
+

1

𝑚𝛽 − 1
Λ
−
(𝛽e − 𝑋

𝑡
) , (27)

where Λ+, Λ− have been denoted in Section 3 satisfying

𝑠

∑
𝑗=−𝑠

𝜆
𝑗,𝑘

= 1, 𝜆
𝑗,𝑘

≥ 0, for∀1 ≤ 𝑗 ≤ 𝑠, 1 ≤ |𝑘| ≤ 𝑠, (28)

and 𝛽 < 1/𝑚. Based on the idea of the convergence condition
in [5], the iterationmatrix of the new improved parsimonious
multivariate Markov chain model𝑀

𝑠
satisfies

𝑀𝑠
∞≤max
1≤𝑘≤𝑠

{𝑚


𝜆
𝑘,𝑘

−
𝜆
𝑘,−𝑘

(𝑚𝛽 − 1)


+∑
𝑘 ̸= 𝑖


𝜆
𝑘,𝑖
−

𝜆
𝑘,−𝑖

(𝑚𝛽−1)


} .

(29)

By imposing an upper bound 𝛼 < 1, the convergence
condition of the new improved parsimonious multivariate
Markov chain model is

𝑚


𝜆
𝑘,𝑘

−
𝜆
𝑘,−𝑘

(𝑚𝛽 − 1)


+ ∑
𝑘 ̸= 𝑖


𝜆
𝑘,𝑖
−

𝜆
𝑘,−𝑖

(𝑚𝛽 − 1)


≤ 𝛼

for 𝑖 = 1, 2, . . . , 𝑠.

(30)

Then the new improved parsimonious multivariate Markov
chainmodel in this convergence condition can be represented
as a set of 𝑠 linear programming problems

min
𝜆𝑗,𝑘

∑
𝑗

𝜔
𝑗 (31)
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subject to

𝑏
𝑗,𝑘

=

𝑠

∑
𝑘=1

((𝜆
𝑗,𝑘

−
𝜆
𝑗,−𝑘

𝑚 − 1
)△
𝑗,𝑘
𝑋
𝑡
+

1

𝑚 − 1
𝜆
𝑗,𝑘
△
𝑗,𝑘
e) ,

𝜔
𝑗
≥ [𝑏
𝑗,𝑘

− 𝑋
(𝑗)
] ,

𝜔
𝑗
≥ − [𝑏

𝑗,𝑘
− 𝑋
(𝑗)
] ,

𝑠

∑
𝑘=−𝑠

𝜆
𝑗,𝑘

= 1 for∀1 ≤ 𝑗 ≤ 𝑠,

𝜆
𝑗,𝑘

≥ 0 for∀1 ≤ 𝑗 ≤ 𝑠, 1 ≤ |𝑘| ≤ 𝑠,

𝐴
𝑗
Λ
𝑗
≤ 𝛼e for∀1 ≤ 𝑗 ≤ 𝑠, 𝛽 <

1

𝑚
,

(32)

where

△
𝑗,𝑘

= {
𝑃(𝑗,𝑗), if 𝑗 = 𝑘,

𝐼, if 𝑗 ̸= 𝑘,

Λ
𝑗
= (𝜆
𝑗,1
, . . . , 𝜆

𝑗,𝑠
, 𝜆
𝑗,−1

, . . . , 𝜆
𝑗,−𝑠

)
T
,

𝐴
𝑗
= [𝐴
1𝑗
, 𝐴
2𝑗
] ,

𝐴
1𝑗
=

(
(
(
(
(
(
(

(

1 ⋅ ⋅ ⋅ 𝑚 ⋅ ⋅ ⋅ 1 1

1 ⋅ ⋅ ⋅ 𝑚 ⋅ ⋅ ⋅ 1 −1

1 ⋅ ⋅ ⋅ 𝑚 ⋅ ⋅ ⋅ −1 1
...

...
...

...
...

...
...

...
...

...
...

...
−1 ⋅ ⋅ ⋅ −𝑚 ⋅ ⋅ ⋅ −1 1

−1 ⋅ ⋅ ⋅ −𝑚⏟⏟⏟⏟⏟⏟⏟
𝑗th column

⋅ ⋅ ⋅ −1 −1

)
)
)
)
)
)
)

)

,

𝐴
2𝑗
= −

1

𝑚𝛽 − 1
𝐴
1𝑗
.

(33)

Here, 𝐴
1𝑗

covers all of the rows of each component taking
one of the two possible values, 1 and −1, particularly, in 𝑗th
column taking 𝑚 and −𝑚. Then 𝐴 = [𝐴

𝑗
] has 𝑠 × 2𝑠 rows.

This convergence condition is viable only when the sequence
group is not large.

To speed up the convergence of the new improved par-
simonious multivariate Markov chain model and minimize
the scale of the convergence condition, we apply a new
convergence condition 𝐵 > (𝛾/(𝑚𝛽 − 1))𝐶 with 𝛾 ≥ 1 and
𝛽 < 1/𝑚 for the new model. Then, the form of the new
improved parsimonious multivariate Markov chain model
can be represented as

min
𝜆𝑗,𝑘


𝑓
(𝑗)
− 𝑋
(𝑗)𝑗 (34)

subject to:

𝑓
(𝑗)

=

𝑠

∑
𝑘=1

𝜆
𝑗,𝑘
𝑃
(𝑗,𝑘)

𝑋
(𝑘)

+
1

𝑚𝛽 − 1

𝑠

∑
𝑘=1

𝜆
𝑗,𝑘
𝑃
(𝑗,𝑘)

(𝛽e − 𝑋
(𝑘)
) ,

𝑠

∑
𝑘=−𝑠

𝜆
𝑗,𝑘

= 1 for∀1 ≤ |𝑘| ≤ 𝑠,

𝜆
𝑗,𝑘

≥ 0 for∀1 ≤ 𝑗 ≤ 𝑠, 1 ≤ |𝑘| ≤ 𝑠,

𝜆
𝑗,𝑘

>
𝛾

𝑚𝛽 − 1
𝜆
𝑗,−𝑘

for∀1 ≤ 𝑗 ≤ 𝑠, 1 ≤ |𝑘| ≤ 𝑠,

𝛾 ≥ 1, 𝛽 <
1

𝑚
,

(35)

where [⋅]
𝑖
is the 𝑖th entry of the vector. Certainly, the

optimization problem can also be represented as a linear
programming problem:

min
𝜆𝑗,𝑘

∑
𝑗

𝜔
𝑗 (36)

subject to

𝑓
(𝑗)

=

𝑠

∑
𝑘=1

𝜆
𝑗,𝑘
𝑃
(𝑗,𝑘)

𝑋
(𝑘)

+
1

𝑚𝛽 − 1

𝑠

∑
𝑘=1

𝜆
𝑗,𝑘
𝑃
(𝑗,𝑘)

(𝛽e − 𝑋
(𝑘)
) ,

𝜔
𝑗
≥ [𝑓
(𝑗)
− 𝑋
(𝑗)
] ,

𝜔
𝑗
≥ − [𝑓

(𝑗)
− 𝑋
(𝑗)
] ,

𝑠

∑
𝑘=−𝑠

𝜆
𝑗,𝑘

= 1 for∀1 ≤ |𝑘| ≤ 𝑠,

𝜆
𝑗,𝑘

≥ 0 for∀1 ≤ 𝑗 ≤ 𝑠, 1 ≤ |𝑘| ≤ 𝑠,

𝜆
𝑗,𝑘

>
𝛾

𝑚𝛽 − 1
𝜆
𝑗,−𝑘

for∀1 ≤ 𝑗 ≤ 𝑠, 1 ≤ |𝑘| ≤ 𝑠,

𝛾 ≥ 1, 𝛽 <
1

𝑚
.

(37)

5. Numerical Experiments

In this section, numerical experiments with three examples of
different improved parsimonious multivariate Markov chain
models with different convergence conditions are reported.

Noting that the new improved parsimoniousmultivariate
Markov chainmodel with the original convergence condition
[5] is “IPM1,” (especially, the new improved parsimonious
multivariateMarkov chainmodel is an improvedmultivariate
Markov chain model when we choose 𝛽 = 1), the new
improved parsimonious multivariate Markov chain model
with the new convergence condition of the new variability is
“IPM2,” the convergence factor of the original convergence
condition is “𝛼,” and the variabilities of the new convergence
condition are “𝛽” and “𝛾.”The stopping criterion can be found
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in Matlab order of 𝑙𝑖𝑛𝑝𝑟𝑜𝑔. We add a notation “∗” at the back
of data in Tables 1, 2, 3, and 4 when the stopping criterion is
satisied but the accuracy is not reached.

5.1. Example 1. There are three categorical data sequences
[13]:

𝑆
1
= {1, 2, 2, 1, 3, 3, 2, 3, 1, 3, 3, 2, 2, 3, 2, 1, 2, 1, 2, 2} ,

𝑆
2
= {2, 2, 1, 1, 2, 1, 2, 1, 2, 2, 2, 2, 3, 2, 2, 1, 2, 1, 2, 2} ,

𝑆
3
= {3, 1, 1, 2, 2, 1, 2, 3, 1, 1, 3, 3, 3, 2, 3, 2, 3, 3, 1, 2} .

(38)

IPM1 with 𝛼 = 0.7 [5] can be represented as

𝑥
(1)

𝑟+1
= 0.3000𝑃

(1,2)
𝑥
(2)

𝑟
+ 0.4737𝑃

(1,3)
(e − 𝑥

(3)

𝑟
) ,

𝑥
(2)

𝑟+1
= 0.0088𝑃

(2,1)
𝑥
(1)

𝑟
+ 0.1912𝑃

(2,1)
(e − 𝑥

(1)

𝑟
)

+ 0.8000𝑃
(2,3)

𝑥
(3)

𝑟
,

𝑥
(3)

𝑟+1
= 1.0000𝑃

(3,3)
𝑥
(3)

𝑟
.

(39)

IPM2 with 𝛽 = 1, 𝛾 = 3 is

𝑥
(1)

𝑟+1
= 1.0000𝑃

(1,1)
𝑥
(1)

𝑟
,

𝑥
(2)

𝑟+1
= 0.0054𝑃

(2,1)
𝑥
(1)

𝑟
+ 0.0385𝑃

(2,1)
(e − 𝑥

(1)

𝑟
)

+ 0.8653𝑃
(2,2)

𝑥
(2)

𝑟

+ 0.0908𝑃
(2,2)

(e − 𝑥
(2)

𝑟
) ,

𝑥
(3)

𝑟+1
= 0.0771𝑃

(3,3)
𝑥
(3)

𝑟
+ 0.9229𝑃

(3,3)
(e − 𝑥

(3)

𝑟
) .

(40)

In IPM2 with 𝛽 = 1.1, 𝛾 = 3, it has

𝑥
(1)

𝑟+1
= 1.0000𝑃(1,1)𝑥(1)

𝑟
,

𝑥
(2)

𝑟+1
= 0.0147𝑃(2,1) (e − 𝑥(1)

𝑟
) + 0.8783𝑃(2,2)𝑥(2)

𝑟

+0.1070𝑃(2,2) (e − 𝑥(2)
𝑟
) ,

𝑥
(3)

𝑟+1
= 0.0350𝑃(3,3)𝑥(3)

𝑟
+ 0.9650𝑃(3,3) (e − 𝑥(3)

𝑟
) .

(41)

5.2. Example 2. Let the three categorical data sequences be

𝑆
1
= {1, 4, 3, 3, 1, 1, 3, 4, 4, 3, 2, 3} ,

𝑆
2
= {2, 3, 4, 4, 4, 2, 3, 3, 1, 4, 3, 2} ,

𝑆
3
= {3, 3, 1, 1, 3, 1, 4, 3, 2, 4, 3, 2} .

(42)

Suppose that 𝑋
𝑡

= [(𝑋
(1)

𝑡
)
T
, (𝑋
(2)

𝑡
)
T
, . . . , (𝑋

(𝑠)

𝑡
)
T
]
T

is the prediction probability at time 𝑡 and 𝑋
𝑡

=

[(𝑋(1)
𝑡
)
T
, (𝑋(2)
𝑡
)
T
, . . . , (𝑋(𝑠)

𝑡
)
T
]
T is the fact value at time

𝑡 where 𝑋(𝑖)
𝑡

= 𝑒
(𝑚𝑡)

= {0, . . . , 0, 1, 0, . . . , 0}
T

∈ R1×𝑚,
𝑖 ∈ {1, . . . , 𝑠},𝑚

𝑡
is the fact state at time 𝑡 in the 𝑖th categorical
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Figure 1: The prediction errors of the new improved parsimonious
multivariate Markov chain model with our new convergence condi-
tion of the new variability in Example 2.

data sequence. “nA” is the number of the categorical data in
one sequence and “pe” is the prediction error of the models
which can be estimated by the equation:

pe =
nA
∑
𝑡=4


𝑋
𝑡
− 𝑋
𝑡

2
. (43)

In Table 1, the prediction errors of the new improved
parsimonious multivariate Markov chain model when 𝛽 =

1.2 is better than the prediction errors of other values of
𝛽. Table 1 illustrates the efficiency of the new improved
parsimonious multivariate Markov chain model when 𝛽 =

1.2 in the original convergence condition [5].
In Table 2, numerical experiments on the prediction

errors of the new improved parsimonious multivariate
Markov chain model of the new convergence condition with
the new variability “𝛾” are reported. The best performance
of the prediction errors of the new model with the new
convergence condition of the new variability is 8.6790 when
we choose 𝛽 = 0.8 and 𝛾 = 3. In different cases of 𝛽, the best
prediction errors of the newmodel with the new convergence
condition of the new variability are in the diagonal line of the
result matrix between 𝛾 = 2.5 and 𝛾 = 5.

For comparing the performances of the new improved
parsimoniousmultivariateMarkov chainmodel with the new
convergence condition more clearly, we present Figure 1.

To compare the performances of the new improve par-
simonious multivariate Markov chain model in different
convergence conditions, we show Figure 2 with the data of
Tables 1 and 2. Obviously, the results of the new model in
the new convergence condition with the new variability are
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Table 1: Prediction errors of the new improved parsimonious multivariate Markov chain model with original convergence condition in
Example 2.

𝛽 = 0.7 𝛽 = 0.8 𝛽 = 0.9 𝛽 = 1 𝛽 = 1.1 𝛽 = 1.2

IPM1 when 𝛼 = 0.1 31.1845∗ 31.0831∗ 29.8349∗ 29.8349∗ 31.0906∗ 31.0853∗

IPM1 when 𝛼 = 0.2 27.0472∗ 26.9434∗ 26.8745∗ 26.8745∗ 26.9486∗ 26.8462∗

IPM1 when 𝛼 = 0.3 22.8309∗ 22.7298∗ 22.7296∗ 22.7302∗ 22.7321∗ 22.7310∗

IPM1 when 𝛼 = 0.4 18.6215∗ 18.5266∗ 18.5256∗ 18.5256∗ 18.5282∗ 18.5211∗

IPM1 when 𝛼 = 0.5 14.3298∗ 14.2594∗ 14.2614∗ 14.2614∗ 14.2586∗ 14.2705∗

IPM1 when 𝛼 = 0.6 10.4531∗ 10.2961∗ 10.3231∗ 10.2962∗ 10.2795∗ 10.2971∗

IPM1 when 𝛼 = 0.7 9.9017 9.8994 9.8872 9.8879 9.8896 9.8552
IPM1 when 𝛼 = 0.8 10.1173 10.1440 10.1255 10.1271 10.1283 10.0536
IPM1 when 𝛼 = 0.9 10.3910 10.4131 10.3945 10.3886 10.3803 10.2726
IPM1 when 𝛼 = 1 10.4059 10.4268 10.4059 10.4059 10.4059 10.2590

Table 2: Prediction errors of the new improved parsimonious multivariate Markov chain model with the new convergence condition of the
new variability in Example 2.

𝛽 = 0.7 𝛽 = 0.8 𝛽 = 0.9 𝛽 = 1 𝛽 = 1.1 𝛽 = 1.2

IPM2 when 𝛾 = 1 8.9588 9.1114 9.0964 9.0894 9.0860 9.0778
IPM2 when 𝛾 = 1.5 8.8126 8.8788 9.0326 9.1028 9.0904 9.0832
IPM2 when 𝛾 = 2 8.9746 8.8142 8.8544 8.9447 9.0892 9.0974
IPM2 when 𝛾 = 2.5 8.6957 8.9355 8.8167 8.8449 8.9054 9.0014
IPM2 when 𝛾 = 3 8.9006 8.6790 8.7050 8.8189 8.8410 8.8849
IPM2 when 𝛾 = 3.5 9.4994 8.7730 8.6838 8.7168 8.8209 8.8393
IPM2 when 𝛾 = 4 9.1024∗ 9.1909 8.7041 8.6911 8.7275 8.8228
IPM2 when 𝛾 = 4.5 9.3544∗ 9.5649∗ 9.0116 8.6994 8.6993 8.7371
IPM2 when 𝛾 = 5 12.3474∗ 9.0286∗ 9.3882 8.8994 8.7029 8.7076
IPM2 when 𝛾 = 5.5 13.5788∗ 9.4195∗ 9.4562∗ 9.1952 8.8252 8.7046

much better than those of the new model in the original
convergence condition.

5.3. An Application to Sales Demand Predictions. In this
part, the sales demand sequences are presented to show the
effectiveness of the new improved parsimonious multivariate
Markov chain model of the new convergence condition with
the new variability. Since the requirement of the market
fluctuates heavily, the production planning and the inventory
control directly affect the estate cost. Thus, studying the
interplay between the storage space requirement and the
overall growing sales demand is a pressing issue for the
company. Suppose that the products are classified into six
possible states (1, 2, 3, 4, 5, 6), for example, 1 = no sales
volume, 2 = very low sales volume, 3 = low sales volume, 4 =
standard sales volume, 5 = fast sales volume, and 6 = very
fast sales volume.The data of customer’s sales demand of five
important products can be found in [3].

By computing the proportion of the occurrence of each
state in the sequences, the initial probability distributions of
the five categorical data sequences are

𝑥
(1)

0
= (0.0818, 0.4052, 0.0483, 0.0335, 0.0037, 0.4275)

T
,

𝑥
(2)

0
= (0.3680, 0.1970, 0.0335, 0.0000, 0.0037, 0.3978)

T
,

𝑥
(3)

0
= (0.1450, 0.2045, 0.0186, 0.0000, 0.0037, 0.6283)

T
,

𝑥
(4)

0
= (0.0000, 0.3569, 0.1338, 0.1896, 0.0632, 0.2565)

T
,

𝑥
(5)

0
= (0.0000, 0.3569, 0.1227, 0.2268, 0.0520, 0.2416)

T
.

(44)

The transition probability matrix 𝑃(𝑗,𝑘) can be obtained after
normalizing the transition frequency matrix. By solving
the linear programming problem corresponding to the new
improved parsimonious multivariate Markov chain model
with the new convergence conditionwhere𝛽 = 0.7 and 𝛾 = 4,
𝜆
𝑖,𝑗
is obtained and the model is presented as follows:

𝑥
(1)

𝑟+1
= 0.4359𝑃

(1,1)
𝑥
(1)

𝑟
+ 0.0193𝑃

(1,2)
(e ∗ 0.7 − 𝑥

(2)

𝑟
)

+ 0.1210𝑃
(1,3)

(e ∗ 0.7 − 𝑥
(3)

𝑟
)

+ 0.0359𝑃
(1,5)

(e ∗ 0.7 − 𝑥
(5)

𝑟
) ,

𝑥
(2)

𝑟+1
= 0.4950𝑃

(2,1)
𝑥
(1)

𝑟
+ 0.2416𝑃

(2,3)
𝑥
(3)

𝑟
+ 0.1189𝑃

(2,4)
𝑥
(4)

𝑟

+ 0.1445𝑃
(2,5)

(e ∗ 0.7 − 𝑥
(5)

𝑟
) ,

𝑥
(3)

𝑟+1
= 0.7748𝑃

(3,1)
𝑥
(1)

𝑟
+ 0.2252𝑃

(3,2)
𝑥
(2)

𝑟
,
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Table 3: Prediction errors of the new improved parsimonious multivariate Markov chain model with the original convergence condition in
sales demand prediction.

𝛽 = 0.7 𝛽 = 0.8 𝛽 = 0.9 𝛽 = 1 𝛽 = 1.1 𝛽 = 1.2

IPM1 when 𝛼 = 0.1 1624.2∗ 1628.5∗ 1631.7∗ 1634.1∗ 1636.1∗ 1637.7∗

IPM1 when 𝛼 = 0.2 1354.0∗ 1355.8∗ 1359.3∗ 1361.1∗ 1363.8∗ 1365.1∗

IPM1 when 𝛼 = 0.3 1083.7∗ 1086.4∗ 1088.4∗ 1089.9∗ 1091.1∗ 1092.1∗

IPM1 when 𝛼 = 0.4 809.2156∗ 811.0515∗ 812.4306∗ 813.5030∗ 814.3598∗ 815.0606∗

IPM1 when 𝛼 = 0.5 543.7497∗ 545.0841∗ 546.0720∗ 546.8347∗ 547.4426∗ 547.9362∗

IPM1 when 𝛼 = 0.6 366.9729 366.9684 366.9580 366.9577 366.9533 366.9589
IPM1 when 𝛼 = 0.7 367.3149 367.2101 367.1579 367.1367 367.1448 367.1498
IPM1 when 𝛼 = 0.8 367.5954 367.5916 367.5874 367.5769 367.5771 367.5766
IPM1 when 𝛼 = 0.9 368.2437 368.2422 368.2464 368.2530 368.2550 368.2639
IPM1 when 𝛼 = 1 369.1255 369.1145 369.1161 369.1119 369.1088 369.1062

Table 4: Prediction errors of the new improved parsimonious multivariate Markov chain model with the new convergence condition of the
new variability in sales demand prediction.

𝛽 = 0.7 𝛽 = 0.8 𝛽 = 0.9 𝛽 = 1 𝛽 = 1.1 𝛽 = 1.2

IPM2 when 𝛾 = 1 348.9387 348.8616 348.6692 348.4583 346.8533 347.9374
IPM2 when 𝛾 = 2 341.3333 348.4608 348.5667 348.6407 348.6676 348.6457
IPM2 when 𝛾 = 3 333.1122 334.4701 339.0412 343.5102 348.3476 348.3801
IPM2 when 𝛾 = 4 334.2837 331.1873 333.7044 334.5513 337.5047 340.6662
IPM2 when 𝛾 = 5 333.1028∗ 332.8355 330.7546 332.4308 333.8498 334.6122
IPM2 when 𝛾 = 6 327.5181∗ 333.2228∗ 335.7616 331.0009 331.4727 332.7485
IPM2 when 𝛾 = 7 481.5991∗ 327.9535∗ 333.2418∗ 335.7036 334.4605 331.1581
IPM2 when 𝛾 = 8 550.2992∗ 457.7242∗ 329.7488∗ 333.3142∗ 335.7388 333.6250
IPM2 when 𝛾 = 9 618.8261∗ 521.8871∗ 452.3191∗ 331.4777∗ 333.4008∗ 335.0657
IPM2 when 𝛾 = 10 527.6297∗ 579.7398∗ 501.1963∗ 442.6577∗ 331.6313∗ 333.5236∗

𝑥
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Here, the prediction error equation are represented as

pe =
nA
∑
𝑡=9


𝑋
𝑡
− 𝑋
𝑡

2
. (46)

In Table 3, we present the prediction errors of the new
improved parsimonious multivariate Markov chain model
with the original convergence condition [5]. From the data of
Table 3, we get Figure 3. In Figure 3, it is obvious that the new
improved parsimonious multivariate Markov chain model of
the original convergence condition performs the best when
we choose 𝛼 = 0.6. The smaller 𝛼 we choose, the better error
prediction we get.

In Table 4, the best performance of the prediction errors
of the new improved parsimonious multivariate model with

the new convergence condition in sales demand prediction
is 331.1873 when 𝛽 = 0.8 and 𝛾 = 4. In different cases of 𝛽,
the best prediction errors are in the diagonal line of the result
matrix between 𝛾 = 3 and 𝛾 = 8.

For comparing the performances of the new improved
parsimonious multivariate model with the new convergence
condition of the new variability more clearly, we present
Figure 4 where the data are extracted from Table 4. As the
value of𝛽 increases, the parameter 𝛾 of the best performances
of the prediction results increases. The best performances of
the IPM2 are almost the same in different cases of 𝛽.

With the data of Tables 3 and 4, we get Figure 5. It
illustrates the benefits of the new parsimonious multivariate
Markov chain model of the new convergence condition with
the new variability in prediction accuracy.

6. Conclusion

In this paper, we present a new improved parsimonious
multivariate Markov chain model and a new convergence
condition with a new variability, which can enhance the the
prediction accuracy of themodels and save the computational
estate. Numerical experiments with three examples illustrate
that the new improved parsimonious multivariate Markov
chain model of the new convergence condition with the new
variability performs better than the improved parsimonious
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Figure 2: The prediction errors of the new improved parsimonious
multivariate Markov chain model with the original convergence
condition and the new convergence condition of the new variability
in Example 2.
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Figure 3: Prediction errors of the new improved parsimonious
multivariate Markov chain model with the original convergence
condition in sales demand prediction.
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Figure 4: The prediction errors of the new improved parsimonious
multivariate Markov chain model with the new convergence condi-
tion of the new variability in sales demand prediction.
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Figure 5: The prediction errors of the new improved parsimonious
multivariate Markov chain model with the original convergence
condition and the new convergence condition of the new variability
in sales demand prediction.
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multivariate Markov chain model with the original conver-
gence condition.Certainly, our newmodel can also be applied
into credit risk and other research areas.
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