
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 891765, 8 pages
http://dx.doi.org/10.1155/2013/891765

Research Article
Stochastic Extinction in an SIRS Epidemic Model
Incorporating Media Coverage

Liyan Wang, Huilin Huang, Ancha Xu, and Weiming Wang

College of Mathematics and Information Science, Wenzhou University, Wenzhou 325035, China

Correspondence should be addressed to Weiming Wang; weimingwang2003@163.com

Received 2 December 2013; Accepted 12 December 2013

Academic Editor: Kaifa Wang

Copyright © 2013 Liyan Wang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We extend the classical SIRS epidemic model incorporating media coverage from a deterministic framework to a stochastic
differential equation (SDE) and focus on how environmental fluctuations of the contact coefficient affect the extinction of the
disease. We give the conditions of existence of unique positive solution and the stochastic extinction of the SDE model and discuss
the exponential 𝑝-stability and global stability of the SDE model. One of the most interesting findings is that if the intensity of
noise is large, then the disease is prone to extinction, which can provide us with some useful control strategies to regulate disease
dynamics.

1. Introduction

Recent years, a number of mathematical models have been
formulated to describe the impact of media coverage on
the dynamics of infectious diseases [1–10]. Mass media
(television, radio, newspapers, billboards, and booklets) has
been used as a way of delivering preventive health messages
as it has the potential to influence people’s behavior and
deter them from risky behavior or from taking precautionary
measures in relation to a disease outbreak [7, 11, 12]. Hence,
media coverage has an enormous impact on the spread and
control of infectious diseases [2, 3, 9].

On the other hand, for human disease, the nature of
epidemic growth and spread is inherently random due to
the unpredictability of person-to-person contacts [13], and
population is subject to a continuous spectrum of distur-
bances [14, 15]. In epidemic dynamics, stochastic differential
equation (SDE) models could be the more appropriate way
of modeling epidemics in many circumstances and many
realistic stochastic epidemic models can be derived based on
their deterministic formulations [16–28].

In [10], Liu investigated an SIRS epidemic model incor-
porating media coverage with random perturbation. He
assumed that stochastic perturbations were of white noise
type, which were directly proportional to distance susceptible
𝑆(𝑡), infectious 𝐼(𝑡), and recover 𝑅(𝑡) from values of endemic

equilibrium point (𝑆∗, 𝐼∗, 𝑅∗), influence on the 𝑑𝑆(𝑡)/𝑑𝑡,
𝑑𝐼(𝑡)/𝑑𝑡, 𝑑𝑅(𝑡)/𝑑𝑡, respectively. In fact, besides the possible
equilibrium approach in [10], there are different possible
approaches to introduce random effects in the epidemic
models affected by environmental white noise frombiological
significance and mathematical perspective [28–30]. Some
scholars [17, 28, 30, 31] demonstrated that one ormore system
parameter(s) can be perturbed stochastically withwhite noise
term to derive environmentally perturbed system.

In [10], the author proved that the endemic equilibrium
of the stochastic model is asymptotically stable in the large.
Therefore, it is natural to ask how environmental fluctuations
of the contact coefficient affect the extinction of the disease.

In this paper, wewill focus on the effects of environmental
fluctuations on the disease’s extinction through studying the
stochastic dynamics of an SIRS model incorporating media
coverage. The rest of this paper is organized as follows. In
Section 2, based on the results of Cui et al. [2] and [10], we
derive the stochastic differential SIRS model incorporating
media coverage. In Section 3, we give the conditions of
existence of unique positive solution and the stochastic
extinction of the SDE model. In Section 4, we provide some
examples to support our research results. In the last section,
we provide a brief discussion and the summary of main
results.
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2. Model Derivation and Related Definitions

2.1. Model Derivation. Let 𝑆(𝑡) be the number of susceptible
individuals, 𝐼(𝑡) the number of infective individuals, and𝑅(𝑡)
the number of removed individuals at time 𝑡, respectively.
Based on the work of Cui et al. [2] and [10], we consider
the SIRS epidemic model incorporating media coverage as
follows:

𝑑𝑆

𝑑𝑡
= Λ − 𝜇𝑆 − (𝛽

1
−

𝛽
2
𝐼

𝑏 + 𝐼
) 𝑆𝐼 + 𝜂𝑅,

𝑑𝐼

𝑑𝑡
= (𝛽
1
−

𝛽
2
𝐼

𝑏 + 𝐼
) 𝑆𝐼 − (𝜇 + 𝛼 + 𝜆) 𝐼,

𝑑𝑅

𝑑𝑡
= 𝜆𝐼 − (𝜇 + 𝜂) 𝑅,

(1)

whereΛ is the recruitment rate,𝜇 represents the natural death
rate, 𝜂 is the loss of constant immunity rate, 𝛼 is the diseases
induced constant death rate, and 𝜆 is constant recovery rate.
𝛽
1
is the usual contact rate without considering the infective

individuals and 𝛽
2
is the maximum reduced contact rate due

to the presence of the infected individuals. No one can avoid
contacting with others in every case, so it is assumed that
𝛽
1
> 𝛽
2
. The half-saturation constant 𝑏 > 0 reflects the

impact of media coverage on the contact transmission. The
function 𝐼/(𝑏 + 𝐼) is a continuous bounded function which
takes into account disease saturation or psychological effects.

For model (1), the basic reproduction number

𝑅
0
=

Λ𝛽
1

𝜇 (𝜇 + 𝛼 + 𝜆)
(2)

is the threshold of the system for an epidemic to occur.Model
(1) has a disease-free equilibrium 𝐸

0
= (Λ/𝜇, 0, 0) and the

endemic equilibrium if 𝑅
0
> 1. The disease-free equilibrium

is globally asymptotically stable if 𝑅
0
≤ 1 and unstable if 𝑅

0
>

1. The endemic equilibrium is globally asymptotically stable
if 𝑅
0
> 1. These results of model (1) were studied in [10].

If we replace the contact rate 𝛽
1
in model (1) by 𝛽

1
+

𝜎(𝑑𝐵/𝑑𝑡), where 𝑑𝐵/𝑑𝑡 is a white noise (i.e., 𝐵(𝑡) is a
Brownian motion), model (1) becomes as follows:

𝑑𝑆 = [Λ − 𝜇𝑆 − (𝛽
1
−

𝛽
2
𝐼

𝑏 + 𝐼
) 𝑆𝐼 + 𝜂𝑅] 𝑑𝑡 + 𝜎𝑆𝐼 𝑑𝐵 (𝑡) ,

𝑑𝐼 = [(𝛽
1
−

𝛽
2
𝐼

𝑏 + 𝐼
) 𝑆𝐼 − (𝜇 + 𝛼 + 𝜆) 𝐼] 𝑑𝑡 + 𝜎𝑆𝐼 𝑑𝐵 (𝑡) ,

𝑑𝑅 = (𝜆𝐼 − (𝜇 + 𝜂) 𝑅) 𝑑𝑡.

(3)

Obviously, the stochastic model (3) has the same disease-
free equilibrium 𝐸

0
= (Λ/𝜇, 0, 0) as model (1).

Throughout this paper, let (Ω,F,P) be a complete prob-
ability space with a filtration {F

𝑡
}
𝑡∈R
+

satisfying the usual
conditions (i.e., it is right continuous and increasingwhileF

0

contains all P-null sets). Define a bounded set Γ as follows:

Γ = {(𝑆, 𝐼, 𝑅) ∈ R
3

+
: 0 < 𝑆 + 𝐼 + 𝑅 <

Λ

𝜇
} ⊂ R

3

+
. (4)

2.2. Related Definitions. Consider the general 𝑛-dimensional
stochastic differential equation

𝑑𝑥 (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑡) 𝑑𝑡 + 𝜑 (𝑥 (𝑡) , 𝑡) 𝑑𝐵 (𝑡) (5)

on 𝑡 ≥ 0 with initial value 𝑥(0) = 𝑥
0
, the solution is denoted

by 𝑥(𝑡, 𝑥
0
). Assume that 𝑓(0, 𝑡) = 0 and 𝜑(0, 𝑡) = 0 for all

𝑡 ≥ 0, so (5) has the solution 𝑥(𝑡) = 0, which is called the
trivial solution.

Let us first recall a few definitions.

Definition 1 (see [32]). The trivial solution 𝑥(𝑡) = 0 of (5) is
said to be

(i) stable in probability if, for all 𝜀 > 0,

lim
𝑥
0
→0

P(sup
𝑡≥0

󵄨󵄨󵄨󵄨𝑥 (𝑡, 𝑥0)
󵄨󵄨󵄨󵄨 ≥ 𝜀) = 0; (6)

(ii) asymptotically stable if it is stable in probability and
moreover if

lim
𝑥
0
→0

P( lim
𝑡→∞

𝑥 (𝑡, 𝑥
0
) = 0) = 1; (7)

(iii) globally asymptotically stable if it is stable in proba-
bility and moreover if, for all 𝑥

0
∈ R𝑛

P( lim
𝑡→∞

𝑥 (𝑡, 𝑥
0
) = 0) = 1; (8)

(iv) almost surely exponentially stable if for all 𝑥
0
∈ R𝑛,

lim sup
𝑡→∞

1

𝑡
log 󵄨󵄨󵄨󵄨𝑥 (𝑡, 𝑥0)

󵄨󵄨󵄨󵄨 < 0 a.s.; (9)

(v) exponentially 𝑝-stable if there is a pair of positive
constants 𝐶

1
and 𝐶

2
such that for all 𝑥

0
∈ R𝑛,

E (
󵄨󵄨󵄨󵄨𝑥 (𝑡, 𝑥0)

󵄨󵄨󵄨󵄨
𝑝

) ≤ 𝐶
1

󵄨󵄨󵄨󵄨𝑥0
󵄨󵄨󵄨󵄨
𝑝

𝑒
−𝐶
2
𝑡 on 𝑡 ≥ 0. (10)

3. Dynamics of the SDE Model (3)
In what follows, we first use the method of Lyapunov func-
tions to find conditions of existence of unique positive
solution of model (3).

3.1. Existence of Unique Positive Solution of Model (3). In
this subsection, we show the existence of the unique positive
global solution of SDE model (3).

Theorem 2. Consider model (3), for any given initial value
(𝑆(0), 𝐼(0), 𝑅(0)) ∈ Γ; then there is a unique solution (𝑆(𝑡),

𝐼(𝑡), 𝑅(𝑡)) on 𝑡 ≥ 0 and it will remain in R3
+
with probability

one.

Proof. The proof is almost identical toTheorem 2 of [33], but
for completeness we repeat it here. Let (𝑆(0), 𝐼(0), 𝑅(0)) ∈ Γ.
Summing up the three equations in (3) and denoting𝑁(𝑡) =

𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡), we have

𝑑𝑁 (𝑡) = (Λ − 𝜇𝑁 (𝑡) − 𝛼𝐼 (𝑡)) 𝑑𝑡. (11)
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Then, if (𝑆(𝑠), 𝐼(𝑠), 𝑅(𝑠)) ∈ R3
+
for all 0 ≤ 𝑠 ≤ 𝑡 almost surely

(briefly a.s.), we get

(Λ − (𝜇 + 𝛼)𝑁 (𝑠)) 𝑑𝑠 ≤ 𝑑𝑁 (𝑠) ≤ (Λ − 𝜇𝑁 (𝑠)) 𝑑𝑠 a.s.
(12)

Hence, by integration, we check

Λ

𝜇 + 𝛼
+ (𝑁 (0) −

Λ

𝜇 + 𝛼
) 𝑒
−(𝜇+𝛼)𝑠

≤ 𝑁 (𝑠) ≤
Λ

𝜇
+ (𝑁 (0) −

Λ

𝜇
) 𝑒
−𝜇𝑠

.

(13)

Then, 0 < Λ/(𝜇 + 𝛼) < 𝑁(𝑠) < Λ/𝜇 a.s., so,

(𝑆 (𝑠) , 𝐼 (𝑠) , 𝑅 (𝑠)) ∈ (0,
Λ

𝜇
)

3

for all 𝑠 ∈ [0, 𝑡] a.s. (14)

Since the coefficients of model (3) satisfy the local
Lipschitz condition, there is a unique local solution on [0, 𝜏

𝑒
),

where 𝜏
𝑒
is the explosion time. Therefore, the unique local

solution to model (3) is positive by the Itô’s formula. Now,
let us show that this solution is global; that is, 𝜏

𝑒
= ∞ a.s.

Let 𝜖
0
> 0 such that 𝑆(0), 𝐼(0), 𝑅(0) > 𝜖

0
. For 𝜖 ≤ 𝜖

0
,

define the stop-times

𝜏
𝜖
= inf {𝑡 ∈ [0, 𝜏

𝑒
] : 𝑆 (𝑡) ≤ 𝜖 or 𝐼 (𝑡) ≤ 𝜖 or 𝑅 (𝑡) ≤ 𝜖} .

(15)

Then

𝜏 = lim
𝜖→0

𝜏
𝜖

= inf {𝑡 ∈ [0, 𝜏
𝑒
] : 𝑆 (𝑡) ≤ 0 or 𝐼 (𝑡) ≤ 0 or 𝑅 (𝑡) ≤ 0} .

(16)

Define a 𝐶2-function 𝑉 : R3
+
→ R
+
by

𝑉 (𝑆, 𝐼, 𝑅) = − log(
𝜇𝑆

Λ
) − log(

𝜇𝐼

Λ
) − log(

𝜇𝑅

Λ
) . (17)

By the Itô’s formula, for all 𝑡 ≥ 0, 𝑠 ∈ [0, 𝑡 ∧ 𝜏
𝜖
], we obtain

𝑑𝑉 = −
1

𝑆 (𝑠)
𝑑𝑆 +

1

2𝑆(𝑠)
2

𝑑𝑆 𝑑𝑆 −
1

𝐼 (𝑠)
𝑑𝐼

+
1

2𝐼(𝑠)
2
𝑑𝐼 𝑑𝐼 −

1

𝑅 (𝑠)
𝑑𝑅 +

1

2𝑅(𝑠)
2
𝑑𝑅𝑑𝑅

≜ 𝐿𝑉𝑑𝑠 + 𝜎 (𝐼 (𝑠) − 𝑆 (𝑠)) 𝑑𝐵 (𝑠) ,

(18)

where

𝐿𝑉 = 3𝜇 + 2𝜆 + 𝛼 + 𝛽
1
𝐼 +

𝛽
2
𝑆𝐼

𝑏 + 𝐼
+
𝜎
2

2
(𝑆
2

+ 𝐼
2

)

−
𝛽
2
𝐼
2

𝑏 + 𝐼
−
𝜂𝑅

𝑆
− 𝛽
1
𝑆 −

Λ

𝑆
−
𝛼𝐼

𝑅

≤ 3𝜇 + 2𝜆 + 𝛼 + 𝛽
1
𝐼 + 𝛽
2
𝑆 +

𝜎
2

2
(𝑆
2

+ 𝐼
2

) .

(19)

By (14) we assert that (𝑆(𝑠), 𝐼(𝑠), 𝑅(𝑠)) ∈ (0, Λ/𝜇) for all 𝑠 ∈
[0, 𝑡 ∧ 𝜏

𝜖
] a.s. Hence

𝐿𝑉 ≤ 3𝜇 + 2𝜆 + 𝛼 +
Λ

𝜇
(𝛽
1
+ 𝛽
2
+
𝜎
2

Λ

𝜇
) := 𝑀. (20)

Substituting this inequality into (18), we see that

𝑑𝑉 (𝑆, 𝐼, 𝑅) ≤ 𝑀𝑑𝑠 + 𝜎 (𝐼 − 𝑆) 𝑑𝐵 (𝑠) , (21)

which implies that

∫

𝑡∧𝜏
𝜖

0

𝑑𝑉 (𝑆 (𝑠) , 𝐼 (𝑠) , 𝑅 (𝑠))

≤ ∫

𝑡∧𝜏
𝜖

0

𝑀𝑑𝑠 + 𝜎∫

𝑡∧𝜏
𝜖

0

(𝐼 (𝑠) − 𝑆 (𝑠)) 𝑑𝐵 (𝑠) .

(22)

Taking the expectations of the above inequality leads to

E𝑉 (𝑆 (𝑡 ∧ 𝜏
𝜖
) , 𝐼 (𝑡 ∧ 𝜏

𝜖
) , 𝑅 (𝑡 ∧ 𝜏

𝜖
))

≤ 𝑉 (𝑆 (0) , 𝐼 (0) , 𝑅 (0)) + 𝑀𝑡.
(23)

On the other hand, in view of (14), we have 𝑉(𝑆(𝑡 ∧

𝜏
𝜖
), 𝐼(𝑡 ∧ 𝜏

𝜖
), 𝑅(𝑡 ∧ 𝜏

𝜖
)) > 0. It then follows that

E𝑉 (𝑆 (𝑡 ∧ 𝜏
𝜖
) , 𝐼 (𝑡 ∧ 𝜏

𝜖
) , 𝑅 (𝑡 ∧ 𝜏

𝜖
))

= E [I
(𝜏
𝜖
≤𝑡)
𝑉 (𝑆 (𝑡 ∧ 𝜏

𝜖
) , 𝐼 (𝑡 ∧ 𝜏

𝜖
) , 𝑅 (𝑡 ∧ 𝜏

𝜖
))]

+ E [I
(𝜏
𝜖
>𝑡)
𝑉 (𝑆 (𝑡 ∧ 𝜏

𝜖
) , 𝐼 (𝑡 ∧ 𝜏

𝜖
) , 𝑅 (𝑡 ∧ 𝜏

𝜖
))]

≥ E [I
(𝜏
𝜖
≤𝑡)
𝑉 (𝑆 (𝜏

𝜖
) , 𝐼 (𝜏

𝜖
) , 𝑅 (𝜏

𝜖
))] ,

(24)

where I
𝐴
is the indicator function of 𝐴. Note that there is

some component of (𝑆(𝜏
𝜖
), 𝐼(𝜏
𝜖
), 𝑅(𝜏
𝜖
)) equal to 𝜖; therefore,

𝑉(𝑆(𝜏
𝜖
), 𝐼(𝜏
𝜖
), 𝑅(𝜏
𝜖
)) ≥ − log(𝜇𝜖/Λ) > 0. Thereby

E𝑉 (𝑆 (𝑡 ∧ 𝜏
𝜖
) , 𝐼 (𝑡 ∧ 𝜏

𝜖
) , 𝑅 (𝑡 ∧ 𝜏

𝜖
)) ≥ − log(

𝜇𝜖

Λ
)P (𝜏 ≤ 𝑡) .

(25)

Combining (23) with (25) gives, for all 𝑡 ≥ 0,

P (𝜏 ≤ 𝑡) ≤ −
𝑉 (𝑆 (0) , 𝐼 (0) , 𝑅 (0)) + 𝑀𝑡

log (𝜇𝜖/Λ)
. (26)

Let 𝜖 → 0; we obtain, for all 𝑡 ≥ 0, P(𝜏 ≤ 𝑡) = 0. Hence,
P(𝜏 = ∞) = 1. As 𝜏

𝑒
≥ 𝜏, then 𝜏

𝑒
= 𝜏 = ∞ a.s. which

completes the proof of the theorem.

FromTheorem 2 and (14), we can conclude the following
corollary.

Corollary 3. The set Γ is almost surely positive invariant of
model (3); that is, if (𝑆(0), 𝐼(0), 𝑅(0)) ∈ Γ, then P((𝑆(𝑡), 𝐼(𝑡),

𝑅(𝑡)) ∈ Γ) = 1 for all 𝑡 ≥ 0.
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3.2. Stochastic Extinction of Model (3). In this subsection, we
investigate stochastic stability of the disease-free equilibrium
𝐸
0
= (Λ/𝜇, 0, 0) in almost sure exponential and exponential

𝑝 stability by using the suitable Lyapunov function and other
techniques of stochastic analysis.

The following theorem gives a sufficient condition for
the almost surely exponential stability of the disease-free
equilibrium 𝐸

0
= (Λ/𝜇, 0, 0) of model (3).

Theorem4 (almost sure exponential stability). If𝜎2 > 𝛽
2

1
/2𝜇,

then disease-free 𝐸
0
= (Λ/𝜇, 0, 0) of model (3) is almost surely

exponentially stable in Γ.

Proof. Define a function 𝑉 by

𝑉 (𝑆, 𝐼, 𝑅) = log(Λ
𝜇
− 𝑆 + 𝐼 + 𝑅) . (27)

Using the Itô’s formula, we have

𝑑𝑉 =
𝜕𝑉

𝜕𝑆
𝑑𝑆 +

𝜕𝑉

𝜕𝐼
𝑑𝐼 +

𝜕𝑉

𝜕𝑅
𝑑𝑅

+
1

2
(
𝜕
2

𝑉

𝜕𝑆2
𝑑𝑆 𝑑𝑆 +

𝜕
2

𝑉

𝜕𝐼2
𝑑𝐼 𝑑𝐼 +

𝜕
2

𝑉

𝜕𝑅2
𝑑𝑅𝑑𝑅)

+
𝜕
2

𝑉

𝜕𝑆𝜕𝐼
𝑑𝑆 𝑑𝐼 +

𝜕
2

𝑉

𝜕𝑆𝜕𝑅
𝑑𝑆 𝑑𝑅 +

𝜕
2

𝑉

𝜕𝐼𝜕𝑅
𝑑𝐼 𝑑𝑅

=
1

(Λ/𝜇) − 𝑆 + 𝐼 + 𝑅
(−𝑑𝑆 + 𝑑𝐼 + 𝑑𝑅)

−
1

2((Λ/𝜇) − 𝑆 + 𝐼 + 𝑅)
2
(𝑑𝑆 𝑑𝑆 + 𝑑𝐼 𝑑𝐼)

+
1

((Λ/𝜇) − 𝑆 + 𝐼 + 𝑅)
2
𝑑𝑆 𝑑𝐼

=
1

(Λ/𝜇) − 𝑆 + 𝐼 + 𝑅

× (−Λ + 𝜇𝑆 + 2𝛽
1
𝑆𝐼 −

2𝛽
2
𝑆𝐼
2

𝑏 + 𝐼

− (𝜇 + 𝛼) 𝐼 − (𝜇 + 2𝜂) 𝑅)𝑑𝑡

−
2𝜎
2

𝑆
2

𝐼
2

((Λ/𝜇) − 𝑆 + 𝐼 + 𝑅)
2

𝑑𝑡 +
2𝜎𝑆𝐼

(Λ/𝜇) − 𝑆 + 𝐼 + 𝑅
𝑑𝐵

= (2𝛽
1
𝑍 − 2𝜎

2

𝑍 − 𝜇) 𝑑𝑡 + 2𝜎 𝑑𝐵𝑍

−
1

(Λ/𝜇) − 𝑆 + 𝐼 + 𝑅
(
2𝛽
2
𝑆𝐼
2

𝑏 + 𝐼
+ 𝛼𝐼 + 2𝜂𝑅)𝑑𝑡

≤ (2𝛽
1
𝑍 − 2𝜎

2

𝑍 − 𝜇) 𝑑𝑡 + 2𝜎𝑍𝑑𝐵,

(28)

where𝑍(𝑆, 𝐼, 𝑅) = 𝑆𝐼/((Λ/𝜇)−𝑆+𝐼+𝑅). Since 2𝛽
1
𝑍−2𝜎

2

𝑍−

𝜇 = −2𝜎
2

(𝑍 − (𝛽
1
/2𝜎
2

)) + (𝛽
2

1
− 2𝜎
2

𝜇)/2𝜎
2, we obtain

𝑑𝑉 ≤
𝛽
2

1
− 2𝜎
2

𝜇

2𝜎2
𝑑𝑡 + 2𝜎𝑍𝑑𝐵. (29)

Hence,

log(Λ
𝜇
− 𝑆 (𝑡) + 𝐼 (𝑡) + 𝑅 (𝑡))

≤ log(Λ
𝜇
− 𝑆 (0) + 𝐼 (0) + 𝑅 (0)) +

𝛽
2

1
− 2𝜎
2

𝜇

2𝜎2
𝑡 + 𝐺 (𝑡) ,

(30)

where 𝐺(𝑡) is a martingale defined by 𝐺(𝑡) = 2𝜎 ∫
𝑡

0

𝑍𝑑𝐵(𝑠).
In virtue of Corollary 3, the solution of model (3) remains in
Γ. It then follows that

⟨𝐺, 𝐺⟩
𝑡
= 4𝜎
2

∫

𝑡

0

𝑍
2

𝑑𝑠 ≤ 𝐶𝑡, (31)

where 𝐶 is a positive constant which is dependent on Λ, 𝜇.
By the strong law of large numbers for martingales [16], we
have lim sup

𝑡→∞
𝐺(𝑡)/𝑡 = 0 a.s. It finally follows from (30)

by dividing 𝑡 on the both sides and then letting 𝑡 → ∞ that

lim sup
𝑡→∞

1

𝑡
log(Λ

𝜇
− 𝑆 + 𝐼 + 𝑅) ≤

𝛽
2

1
− 2𝜎
2

𝜇

2𝜎2
< 0 a.s.

(32)

which is the required assertion.

We now consider the concept of exponential 𝑝-stability.
The following lemma gives sufficient conditions for exponen-
tial 𝑝-stability of stochastic systems in terms of the Lyapunov
functions (see [32]).

Lemma 5 (see [32]). Suppose that there exists a function
𝑉(𝑧, 𝑡) ∈ 𝐶

2

(Ω) satisfying the following inequalities:

𝐾
1
|𝑧|
𝑝

≤ 𝑉 (𝑧, 𝑡) ≤ 𝐾
2
|𝑧|
𝑝

, (33)

𝐿𝑉 (𝑧, 𝑡) ≤ −𝐾
3
|𝑧|
𝑝

, (34)

where 𝑝 > 0 and 𝐾
𝑖
(𝑖 = 1, 2, 3) is positive constant. Then

the equilibrium of mode (3) is exponentially 𝑝-stable for 𝑡 ≥ 0.
When 𝑝 = 2, it is usually said to be exponentially stable in
mean square and the the equilibrium is globally asymptotically
stable.

From the above Lemma,we obtain the following theorem.

Theorem 6 (exponential 𝑝-stability). Let 𝑝 ≥ 2. If the
conditions 𝑅

0
= 𝛽
1
Λ/𝜇(𝜇 + 𝛼 + 𝜆) < 1 and 𝑅𝑠

0
:= 𝑅
0
+ ((𝑝 −

1)Λ
2

𝜎
2

/2𝜇
2

(𝜇 + 𝛼 + 𝜆)) < 1 hold, the disease-free equilibrium
𝐸
0
= (Λ/𝜇, 0, 0) of model (3) is 𝑝th moment exponentially

stable in Γ.
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Proof. Let 𝑝 ≥ 2 and (𝑆(0), 𝐼(0), 𝑅(0)) ∈ Γ; in view of
Corollary 3, the solution of model (3) remains in Γ. We define
the Lyapunov function 𝑉(𝑆, 𝐼, 𝑅) as follows:

𝑉 = 𝑐
1
(
Λ

𝜇
− 𝑆)

𝑝

+
1

𝑝
𝐼
𝑝

+ 𝑐
2
𝑅
𝑝

, (35)

where 𝑐
1
> 0 and 𝑐

2
> 0 are real positive constants that are

to be chosen later. It is easy to check that inequalities (33) are
true.

Furthermore, by the Itô’s formula, it follows from 𝑆, 𝐼, 𝑅 ∈

(0, Λ/𝜇) that

𝐿𝑉 = −𝑐
1
𝑝(

Λ

𝜇
− 𝑆)

𝑝−1

(Λ − 𝜇𝑆 − 𝛽
1
𝑆𝐼 +

𝛽
2
𝑆𝐼
2

𝑏 + 𝐼
+ 𝜂𝑅)

+
1

2
𝑝 (𝑝 − 1) 𝑐

1
𝜎
2

𝑆
2

𝐼
2

(
Λ

𝜇
− 𝑆)

𝑝−2

+ 𝐼
𝑝−1

(𝛽
1
𝑆𝐼 −

𝛽
2
𝑆𝐼
2

𝑏 + 𝐼
− (𝜇 + 𝛼 + 𝜆) 𝐼)

+
1

2
(𝑝 − 1) 𝜎

2

𝑆
2

𝐼
𝑝

+ 𝑐
2
𝑝𝑅
𝑝−1

(𝜆𝐼 − (𝜇 + 𝜂) 𝑅)

≤ −𝑐
1
𝜇𝑝(

Λ

𝜇
− 𝑆)

𝑝

+
𝑐
1
𝛽
1
𝑝Λ

𝜇
(
Λ

𝜇
− 𝑆)

𝑝−1

𝐼

+
1

2𝜇2
𝑝 (𝑝 − 1) 𝑐

1
𝜎
2

Λ
2

(
Λ

𝜇
− 𝑆)

𝑝−2

𝐼
2

− (𝜇 + 𝛼 + 𝜆 −
𝛽
1
Λ

𝜇
−

1

2𝜇2
(𝑝 − 1) 𝜎

2

Λ
2

) 𝐼
𝑝

− 𝑐
2
𝑝 (𝜇 + 𝜂) 𝑅

𝑝

+ 𝑐
2
𝑝𝜆𝐼𝑅
𝑝−1

.

(36)

Using the fact that

(
Λ

𝜇
− 𝑆)

𝑝−1

𝐼 ≤
𝑝 − 1

𝑝
𝜀(

Λ

𝜇
− 𝑆)

𝑝

+
1

𝑝
𝜀
1−𝑝

𝐼
𝑝

,

(
Λ

𝜇
− 𝑆)

𝑝−2

𝐼
2

≤
𝑝 − 2

𝑝
𝜀(

Λ

𝜇
− 𝑆)

𝑝

+
2

𝑝
𝜀
(2−𝑝)/2

𝐼
𝑝

,

𝑅
𝑝−1

𝐼 ≤
𝑝 − 1

𝑝
𝜀𝑅
𝑝

+
1

𝑝
𝜀
1−𝑝

𝐼
𝑝

,

(37)

we get

𝐿𝑉 ≤ −𝐴
1
(
Λ

𝜇
− 𝑆)

𝑝

− 𝐴
2
𝐼
𝑝

− 𝐴
3
𝑅
𝑝

, (38)

where

𝐴
1
= (𝜇𝑝 − (

𝛽
1
Λ (𝑝 − 1)

𝜇
+
𝜎
2

Λ
2

(𝑝 − 1)

2𝜇2
) 𝜀) 𝑐

1
,

𝐴
2
= 𝜇 + 𝛼 + 𝜆 −

𝛽
1
Λ

𝜇
−

1

2𝜇2
(𝑝 − 1) 𝜎

2

Λ
2

− (
𝛽
1
Λ

𝜇
𝜀
1−𝑝

+
𝜎
2

Λ
2

(𝑝 − 1)

𝜇2
𝜀
(2−𝑝)/2

) 𝑐
1
− 𝑐
2
𝜆𝜀
1−𝑝

𝐴
3
= 𝑐
2
(𝑝 (𝜇 + 𝜂) − 𝜆 (𝑝 − 1) 𝜀) .

(39)

In view of 𝑅
0
+ ((𝑝 − 1)Λ

2

𝜎
2

/2𝜇
2

(𝜇 + 𝛼 + 𝜆)) < 1, we have
𝜇+𝛼+𝜆−(𝛽

1
Λ/𝜇)−(1/2𝜇

2

)(𝑝−1)𝜎
2

Λ
2

> 0. Hence, we chose 𝜀
sufficiently small and 𝑐

1
, 𝑐
2
are positive such that𝐴

1
, 𝐴
2
, 𝐴
3
>

0. According to Lemma 5 the proof is completed.

Under Lemma 5 andTheorems 6, we have in the case 𝑝 =

2 the following corollary.

Corollary 7 (globally asymptotically stable). If the conditions
𝑅
0
= 𝛽
1
Λ/𝜇(𝜇 + 𝛼 + 𝜆) < 1 and 𝑅𝑠

0
:= 𝑅
0
+ (Λ
2

𝜎
2

/2𝜇
2

(𝜇 +

𝛼 + 𝜆)) < 1 hold, the disease-free equilibrium 𝐸
0
= (Λ/𝜇, 0, 0)

of model (3) is globally asymptotically stable in Γ.

4. Numerical Simulations and
Dynamics Comparison

In this section, as an example, we give some numerical
simulations to show different dynamic outcomes of the
deterministic model (1) versus its stochastic version (3) with
the same set of parameter values by using the Milstein
method mentioned in Higham [34]. In this way, model (3)
can be rewritten as the following discretization equations:

𝑆
𝑘+1

= 𝑆
𝑘
+ (Λ − 𝜇𝑆

𝑘
− 𝛽
1
𝑆
𝑘
𝐼
𝑘
+
𝛽
2
𝑆
𝑘
𝐼
2

𝑘

𝑏 + 𝐼
𝑘

+ 𝜂𝑅
𝑘
)Δ𝑡

+ 𝜎𝑆
𝑘
𝐼
𝑘

√Δ𝑡𝜉
𝑘
+
𝜎
2

2
𝑆
𝑘
𝐼
𝑘
(𝜉
2

𝑘
− 1)Δ𝑡,

𝐼
𝑘+1

= 𝐼
𝑘
+ (𝛽
1
𝑆
𝑘
𝐼
𝑘
−
𝛽
2
𝑆
𝑘
𝐼
2

𝑘

𝑏 + 𝐼
𝑘

− (𝜇 + 𝛼 + 𝜆) 𝐼
𝑘
)Δ𝑡

+ 𝜎𝑆
𝑘
𝐼
𝑘

√Δ𝑡𝜉
𝑘
+
𝜎
2

2
𝑆
𝑘
𝐼
𝑘
(𝜉
2

𝑘
− 1)Δ𝑡,

𝑅
𝑘+1

= 𝑅
𝑘
+ (𝜆𝐼
𝑘
− (𝜇 + 𝜂) 𝑅

𝑘
) Δ𝑡,

(40)

where 𝜉
𝑘
, 𝑘 = 1, 2, . . . , 𝑛, are the Gaussian random variables

𝑁(0, 1).
For the deterministic model (1) and its stochastic model

(3), the parameters are taken as follows:

Λ = 1, 𝜇 = 0.03, 𝛽
1
= 0.02, 𝛽

2
= 0.018,

𝜂 = 0.01, 𝛼 = 0.1, 𝜆 = 0.05, 𝑏 = 10.

(41)
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Figure 1: The paths of 𝑆(𝑡), 𝐼(𝑡), and 𝑅(𝑡) for the deterministic model (1) with initial values (𝑆(0), 𝐼(0), 𝑅(0)) = (9, 1, 0). The parameters are
taken as (41) (𝑅

0
= 7.407).
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(a) 𝜎 = 0.1
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(b) 𝜎 = 0.02

Figure 2:The paths of 𝑆(𝑡), 𝐼(𝑡), and 𝑅(𝑡) for the stochastic model (3) with initial values (𝑆(0), 𝐼(0), 𝑅(0)) = (9, 1, 0).The parameters are taken
as (41) (𝑅

0
= 7.407).

(1) The Endemic Dynamics of the Deterministic Model (1). For
the deterministic model (1), 𝑅

0
= 𝛽
1
Λ/𝜇(𝜇 + 𝛼 + 𝜆) =

7.407 > 1; thus, it admits a unique endemic equilibrium
𝐸
∗

= (8.1035, 9.7664, 12.2080) which is globally stable for
any initial values (𝑆(0), 𝐼(0), 𝑅(0)) ∈ Γ according to [10] (see,
Figure 1).

(2)The Stochastic Dynamics ofModel (3). For the correspond-
ing stochastic model (3), we choose 𝜎 = 0.1; then, we have
0.01 = 𝜎

2

> 𝛽
2

1
/2𝜇 = 0.007. Thus, from Theorem 4, we

can conclude that for any initial value (𝑆(0), 𝐼(0), 𝑅(0)) ∈ Γ,
disease-free 𝐸

0
= (Λ/𝜇, 0, 0) of model (3) is almost surely

exponentially stable in Γ (see Figure 2(a)).
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To see the disease dynamics of model (3) more, we
decrease the noise intensity 𝜎 to be 0.02 and keep the other
parameters unchanged. Then, we have 0.0004 = 𝜎

2

<

𝛽
2

1
/2𝜇 = 0.007. Therefore, the condition of Theorem 4 is not

satisfied. In this case, our simulations suggest that model (3)
is stochastically persistent (see Figure 2(b)).

5. Concluding Remarks

In this paper, we propose an SIRS epidemic model with
media coverage and environment fluctuations to describe
disease transmission. It is shown that the magnitude of
environmental fluctuations will have an effective impact on
the control and spread of infectious diseases. In a nutshell,
we summarize our main findings as well as their related
biological implications as follows.

Theorem 4 and [10] combined with numerical simula-
tions (see Figures 1 and 2) provide us with a full picture on the
dynamics of the deterministicmodel (1) and stochasticmodel
(3). In [10], the authors showed that the deterministic model
(1) admits a unique endemic equilibrium𝐸

∗ which is globally
asymptotically stable if its basic reproduction number 𝑅

0
> 1

(see Figure 1). If the magnitude of the intensity of noise 𝜎 is
large, that is, 𝜎2 > 𝛽

2

1
/2𝜇, the extinction of disease in the

stochasticmodel (3) occurswhether𝑅
0
is greater than 1 or less

than 1 (see Figure 2(a)). While the magnitude of the intensity
of noise 𝜎 is small, one of our most interesting findings is that
disease may persist if 𝑅

0
> 1, (see Figure 2(b)).

Needless to say, both equilibrium possible approach and
parameter possible approach in the present paper have their
important roles to play. Obviously, our results in the present
paper may be a useful supplement for [10].
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