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Nowadays, many distribution networks deal with the distribution and storage of perishable products. However, distribution
network design models are largely based on assumptions that do not consider time limitations for the storage of products within
the network. This study develops a model for the design of a distribution network that considers the short lifetime of perishable
products. The model simultaneously determines the network configuration and inventory control decisions of the network.
Moreover, as the lifetime is strictly dependent on the storage conditions, the model develops a trade-off between enhancing storage
conditions (higher inventory cost) to obtain a longer lifetime and selecting those storage conditions that lead to shorter lifetimes (less
inventory cost). To solve the model, an efficient Lagrangian relaxation heuristic algorithm is developed. The model and algorithm
are validated by sensitivity analysis on some key parameters. Results show that the algorithmfinds optimal or near optimal solutions
even for large-size cases.

1. Introduction

A considerable proportion of the products produced world-
wide are perishable. For instance, 50% of sales in the US
grocery industry are due to perishable products [1], and
in the area of blood management, more than 92 million
units of blood, which are perishable, are collected globally
every year, according to the World Health Organization
(WHO) [2]. Medicines, pharmaceutical products, and many
industrial products are other varieties of perishable goods.
Perishable products are only usable during their lifetime;
when their lifetime is over, they must be discarded [3]. This
lifetime must be considered when deciding on inventory
control policies for perishable products [4–6]. High volume
production and high sensitivity imply that, for perishable
products, distribution network design (DND) is of great
significance.

DND is one of the most comprehensive decision prob-
lems in logistics and supply chain management [7–10].
Formerly, DND models only considered strategic decisions,

including facility location, capacity planning, and transporta-
tion mode selection. Studies by Amiri [11] and Melkote and
Daskin [12] can be cited as examples of this group. Other
important decisions, such as routing and inventory control,
either were not intended in the distribution network design
or were considered after determination of the strategic deci-
sions and not contemporaneously. The components of cost
associated with these decisions are estimated to contribute
about 10% to 25%of the sale [13]. Additionally, these decisions
are highly interdependent [14, 15]. For instance, location
decisions have a significant impact on the inventory and
transportation cost [16], such that decreasing the number of
warehouses in a network, reduces inventory cost but increases
transportation costs [14]. Thus, traditional approaches that
only consider strategic decisions or that optimize decisions
separately could overlook potentially large cost savings and
improved customer satisfaction [7]. Evidence for this hypoth-
esis can be found in the study by Miranda and Garrido
[17]. Their work concluded that a simultaneous approach to
optimizing inventory and facility location decisions could
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lead to greater cost savings in comparison with a sequential
approach that optimizes location decisions first and inventory
decisions later. Therefore, a more comprehensive concept
emerged, that is integrated distribution network design,
which simultaneously optimizes a wider range of decisions,
including: facility location, transportation, inventory control,
routing, ordering, and production scheduling. Examples of
the latter group are studies by Berman et al. [18] andTsao et al.
[19].

Despite a large number of distribution networks that deal
with the transportation and storage of perishable products
[5, 6, 20, 21], many of the integrated network design models
consider an infinite lifetime for commodities, which makes
them unsuitable for perishable products [4, 22]. However, the
cost and quality of final products are strictly related to the
efficiency of network design [23]. Therefore, new research
is required to incorporate inventory models of perishable
products into integrated distribution network designmodels.
Accordingly, the aim of this paper is to formulate and
solve an integrated inventory location model for perishable
commodities with fixed lifetimes. The effect of lifetime and
some other key parameters on the objective function are
investigated in this study.

2. Research Background

A typical distribution network consists of one or more
suppliers, a set of retailers, and a set of distribution cen-
ters. The distribution centers act as stocking points in the
network that order products from suppliers to fulfill the
demands of retailers. The inventory of several retailers is
aggregated into one distribution center. The objective of
an integrated location-inventory model is to determine the
optimal number and location of the distribution centers,
the assignment of retailers to distribution centers, and the
optimal inventory level of the distribution centers, such that
total transportation, inventory, and fixed installation costs are
minimized [24].

One of the most cited integrated inventory location
model is the location model with risk pooling (LMRP)
developed by Daskin et al. [25]. This model incorporated
inventory and safety stock decisions into the single product
uncapacitated facility location problem (UFLP).The solution
method was based on Lagrangian relaxation. Shen et al. [26]
also solved the LMRP, but used a set partitioning approach.
Both of these works assumed that the demands of retailers
were deterministic and that the proportions of mean to the
variance of demands for all retailers were identical. LMRP
was then extended in different ways. A multiproduct version
of LMRP was developed by Shen [27], solving the model
using the Lagrangian relaxation. Shu et al. [28] solved a
general case of LMRP in which the proportions of mean
to the variance for retailers’ demands were not identical.
Sourirajan et al. [29] and Sourirajan et al. [30] developed the
LMRP by removing the assumption of identical lead times
between supplier and distribution centers (DCs).Qi and Shen
[31] studied the effects of uncertainty on network design
decisions. Max Shen and Qi [16] estimated the total routing

cost of the network and incorporated it into the LMRP. The
problem was solved using Lagrangian relaxation. Gebennini
et al. [32] developed a dynamic version of the problem
that simultaneously determined the network configuration
decisions, inventory control decisions, and production rate of
a network. Jha et al. [33] studied the effect of transportation
costs of a joint inventory location model using a modified
adaptive differential evolution algorithm. Melo et al. [34]
addressed the problem of redesigning a distribution network,
a context that is rarely considered in the literature. Shavandi
and Bozorgi [35] considered the demand as a fuzzy variable
and formulated the problem using the credibility theory in
order to locate distribution centers as well as to determine
inventory levels in DCs. Several joint location the inventory
problems with stochastic retailer demand were also studied
by Atamtürk et al. [36].

One of the disadvantages of LMRP is that this model
does not consider capacity restrictions of distribution centers.
Miranda andGarrido [17] presented an extension of LMRPby
including capacity constraints of distribution centers into the
objective function of the LMRP model. Ozsen et al. [14] and
Miranda andGarrido [37] defined a new stochastic constraint
based on inventory management policy. This constraint
makes sure that the maximum inventory on hand in each
DC does not exceed the DCs’ storage capacity. Inclusion
of this stochastic capacity constraint provided the trade-
off between the establishment of more warehouses (increase
of fixed facility cost) versus more frequent ordering from
the supplier (increase of the ordering cost) in distribution
networks. Ozsen et al. [14] included stochastic DCs’ capacity
restrictions into the LMRP. They assumed that the demands
of retailers follow a Poisson distribution. The newly derived
model was called the capacitated location model with risk
pooling (CLMRP) and was solved using the Lagrangian
relaxation. Both of the above mentioned papers assumed an
economic order quantity (EOQ) and (𝑄, 𝑟) as the inventory
policy for the distribution networks.

Another body of the literature related to this research falls
under the perishable inventory control theory. According to
Goyal and Giri [38], one group of perishable inventories are
those that have a fixed lifetime or a predetermined expiry
date. Important examples of this group of commodities are
human blood, medical drugs, and most processed food.
Literature on fixed lifetime perishable inventory is rich, for
example, the studies by [6, 22, 39, 40]. However, despite
their valuable contributions, these papers did not incorporate
perishable inventory control into integrated DND models.
Similarly, among network design models, Daskin et al. [25],
Shen et al. [26], and Shu et al. [28] stated that their studies
were motivated by the work of a blood bank network,
responsible for the production and distribution of one of the
most perishable types of blood products. Nevertheless, the
developed models in the mentioned studies did not consider
the lifetime of this product.

In this paper, the Lagrangian relaxation is selected as
the solution method and thus, it is worth presenting a
brief review of this method. The best motivation for using
the Lagrangian relaxation for applied optimization was the
work of Held and Karp [41] who successfully employed
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this method to solve the traveling salesman problem. Since
then the Lagrangian relaxation has been using widely for
discrete optimization problems as well as for facility location
problems. In UFLP, for example, the common Lagrangian
relaxation technique is to relax the assignment constraints.
However, in CFLP (capacitated facility location problem)
either of the assignment constraints or capacity constraints
can be relaxed; see, for instance, [42, 43]. LMRP and CLMRP,
which provide a basis for many distribution network design
problems, are variants of UFLP and CFLP, respectively.These
models can also be solved by relaxing the same constraints
that are relaxed in their base model, or any other constraint
depending on the mathematical model; see, for instance,
[14, 17, 25].

3. Problem Definition and Modeling

This paper aims to design a three-level distribution network
for perishable products consisting of one supplier, a set
of retailers, and a set of distribution centers (DCs). The
DCs order products from the supplier under an EOQ (𝑄, 𝑟)

inventory policy and store them to meet the demands of
retailers. The EOQ policy determines the order quantity
that minimizes total ordering and working inventory costs.
However, in (𝑄, 𝑟) policy, when the inventory level drops
below the reorder point (𝑟), an order of𝑄will be placed [44].
In order to approximate the EOQ (𝑄, 𝑟) policy, as discussed
by [14, 26, 45], the order quantitymust be determined initially
under basic EOQ inventory policy, and then based on the
order quantity, the reorder point (𝑟) is calculated.

This paper considers that the demands of retailers are
independent and follow a normal distribution. Moreover, the
retailers do not hold any inventory, and the inventory of
retailers (working inventory and safety stock) is centralized
in a number of DCs. This situation provides the system the
opportunity of exploiting the advantages of risk pooling that
eventually reduces the inventory costs.

Amodel is developed to determine the configuration and
inventory control decision of the network. This model is an
extension of the location model with risk pooling (LMRP),
which was developed by Daskin et al. [25]. In LMRP, the
ordering cycle is calculated by the formula 𝑄/𝐷, where 𝑄
is the order quantity and 𝐷 is the annual mean demand
of the DCs. However, if products are perishable and their
lifetime is less than the period of the ordering cycle, then this
inventory policy is not appropriate.This is because, according
to Figure 1, before all the products are demanded by the
retailers, their lifetimes are over. To avoid this situation, the
model should specify a condition on ordering cycle, such that
it does not exceed the lifetime, as is shown in Figure 2.

An underlying issue that must be considered regarding
perishable products is the dependency of their lifetimes
on storage conditions. Ordinarily, any improvement in the
storage conditions increases the inventory holding costs,
but consequently a longer lifetime is achieved. Therefore,
managers of a distribution network have to choose between
increasing inventory costs (longer lifetime) and reducing
the ordering cycle (shorter lifetime). The model that is
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Figure 1: Inventory cycle and lifetime.
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Figure 2: Inventory cycle for a perishable product.

developed in this study, in addition to determining the
network configuration and inventory control decisions, helps
managers calculate such a trade-off.

The remainder of this section describes how the model is
formulated. Notation used to model the problem is listed, at
the end of the paper.

3.1. Objective Function. This problem is formulated as a
nonlinear mixed integer mathematical model. The objective
function minimizes the total annual costs, comprising the
following: holding inventory and safety stock cost, ordering
cost, transportation cost, and fixed installation cost of DCs.
The components of the objective function is described in the
following.

3.1.1. Holding Cost. The total inventory maintained in the
system consists of two components: working inventory and
safety stock. The annual working inventory cost for each
DC equals the average inventory on hand multiplied by
the inventory cost. The safety stock cost is computed by
multiplying the amount of safety stock by the inventory cost.
If the demands of retailers are independent and follow a
normal distribution, the safety stock of DC

𝑖
, that is, 𝑆𝑆

𝑖
, is

achieved by the formula 𝑍
𝛼
√lt
𝑖
√𝑉
𝑖
. Symbol𝑉

𝑖
represents the

variance of DC
𝑖
that equals the summation of the variances of

the retailers’ demands that are assigned to that DC. To find𝑉
𝑖
,

it is considered at themoment that the assignment of retailers
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𝑝 = 1, 𝜋 = Initial value for of Lagrangian multiplier,𝑁 = number of DCs,
𝑀 = number of retailers
For 𝑖 = 1 to𝑁

For 𝑗 = 1 to𝑀
Calculate ́IB

𝑖𝑗
( ́IB
𝑖𝑗
= individual benefit of retailer

𝑗
if assigned to DC

𝑖
)

Make set 𝐺
𝑖
, so that 𝐺

𝑖
= {𝑗 ∈ 𝐽 s.t. ́IB

𝑖𝑗
< 0}

End
Arrange members of 𝐺

𝑖
in ascending order of ́IB

𝑖𝑗

Repeat the following steps for all members of 𝐺
𝑖

Compute 𝑆
𝑖
(𝑝) as follow

𝑆
𝑖
(𝑝) = Cost of DC

𝑖
if the first 𝑝members of set 𝐺

𝑖
are assigned to DC

𝑖

𝑆
𝑖
(𝑝) = 𝐾

𝑖√∑𝑗 𝑑𝑗𝑦𝑖𝑗 + 𝐾


𝑖
√∑𝑗 V𝑗𝑦𝑖𝑗 + ∑𝑗 (𝑤𝑖𝑗𝑑𝑗 − 𝜋𝑗)𝑦𝑖𝑗 + 𝐹𝑖𝑥𝑖 + ∑𝑗 𝜋𝑗,

𝐾
𝑖
= √2ℎ

𝑖
(𝑂
𝑖
+ 𝐴
𝑖
), 𝐾


𝑖
= ℎ
𝑖
𝑍
𝛼
√lt
𝑖
, 𝑤
𝑖𝑗
= 𝑇∑

𝑗
(𝑡dc-su + dis

𝑖𝑗
)

If 𝑝 = 1
If 𝑆
𝑖
(1) < 0

Assign the 1st member of 𝐺
𝑖
to DC

𝑖
, (𝑦
𝑖𝑗
= 1 and 𝑥

𝑖
= 1)

End
End
𝑝 = 𝑝 + 1;
If 𝑆
𝑖
(𝑝 − 1) < 0 and 𝑆

𝑖
(𝑝) < 0;

Assign the 𝑝th member of 𝐺
𝑖
to DC

𝑖
, (𝑦
𝑖𝑗
= 1)

End
End

End
Calculate current lower bound using the following formula
current lower bound= ∑

𝑖
ℎ
𝑖
((𝑄
𝑖
/2) + 𝑍

𝛼
√lt
𝑖 √∑𝑗 𝑣𝑗𝑦𝑖𝑗) + ∑𝑖∑𝑗(𝑂𝑖 + 𝐴 𝑖) (𝑑𝑗𝑦𝑖𝑗/𝑄𝑖) + ∑𝑖 𝐹𝑖𝑥𝑖

+∑
𝑖
∑
𝑗
𝑇(dis

𝑖𝑗
+ 𝑡dc-su)𝑑𝑗𝑦𝑖𝑗 + ∑𝑗 𝜋𝑗 (1 − ∑𝑖 𝑦𝑖𝑗)

Algorithm 1: Lower bound calculation.

to DCs is known.Therefore,𝑉
𝑖
= ∑
𝑗
(V
𝑗
𝑦
𝑖𝑗
) and the inventory

cost of DC
𝑖
can be written as

ℎ
𝑖
𝑄
𝑖

2
+ 𝑍
𝛼
ℎ
𝑖
√lt
𝑖√∑
𝑗

(V
𝑗
𝑦
𝑖𝑗
). (1)

In (1), the first term represents the average working inventory
holding, cost and the second term is the safety stock holding
cost.

3.1.2. Ordering Cost. Ordering cost of DC
𝑖
can be formulated

as

𝑂
𝑖
∑
𝑗
(𝑑
𝑗
𝑦
𝑖𝑗
)

𝑄
𝑖

, (2)

where ∑
𝑗
(𝑑
𝑗
𝑦
𝑖𝑗
)/𝑄
𝑖
represents the number of orders placed

by DC
𝑖
per year.

3.1.3. Transportation Cost. The transportation cost from the
supplier to DC

𝑖
and from there to the retailers is calculated by

(3). In this formula, the first term is the fixed transportation
cost that depends on the number of shipments (shipment size
is assumed to be equal to 𝑄), and the second term is the

variable transportation cost that depends on the number of
items shipped. Therefore,

𝐴
𝑖
∑
𝑗
(𝑑
𝑗
𝑦
𝑖𝑗
)

𝑄
𝑖

+ 𝑇∑
𝑗

𝑑
𝑗
𝑦
𝑖𝑗
(dis
𝑖𝑗
+ 𝑡dc-su) ∀𝑖 ∈ 𝐼. (3)

3.1.4. Fixed Setup Cost. The cost of establishing DC
𝑖
is

calculated by the following:

𝐹
𝑖
𝑥
𝑖
∀𝑖 ∈ 𝐼, (4)

where 𝑥
𝑖
is a binary variable that is equal to 1 if DC

𝑖
is

established; otherwise, it is equal to 0.

3.1.5. Effect of Lifetime on the Inventory Policy. If the products’
deterioration begins after they are released from the supplier,
then upon delivery to the distribution centers, they will have
lost part of their lifetime equivalent to the lead time. On the
other hand, according to Figure 3, the maximum time that a
product remains in aDC is equal to the ordering cycle plus 𝑡

𝑠𝑠
.

The period 𝑡
𝑠𝑠
is the required time to replace the safety stock

by a new inventory.
Therefore we can write

𝑄
𝑖

𝐷
𝑖

+
𝑆𝑆
𝑖

𝐷
𝑖

≤ pt
𝑖
− lt
𝑖
, (5)
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where the first term represents the order cycle and the
second term represents 𝑡

𝑠𝑠
. This inequality can be rewritten

as follows:

𝑄
𝑖
≤ (pt − lt)𝐷

𝑖
− 𝑆𝑆
𝑖
. (6)

Substituting 𝐷
𝑖
and 𝑆𝑆

𝑖
by their amounts into the above

inequality, the following constraint for order quantity is
achieved:

𝑄
𝑖
≤ (pt
𝑖
− lt
𝑖
)∑
𝑗

(𝑑
𝑗
𝑦
𝑖𝑗
) − 𝑍
𝛼
√lt
𝑖√∑
𝑗

(V
𝑗
𝑦
𝑖𝑗
) ∀𝑖 ∈ 𝐼.

(7)

3.1.6. Total Annual Cost. According to the components of
cost described above, the total annual costs can be written as

min ∑
𝑖

ℎ
𝑖
(
𝑄
𝑖

2
+ 𝑍
𝛼
√lt
𝑖 √∑
𝑗

(V
𝑗
𝑦
𝑖𝑗
) )

+∑
𝑖

∑
𝑗

(𝑂
𝑖
+ 𝐴
𝑖
)
(𝑑
𝑗
𝑦
𝑖𝑗
)

𝑄
𝑖

+∑
𝑖

𝐹
𝑖
𝑥
𝑖

+∑
𝑖

∑
𝑗

𝑇 (dis
𝑖𝑗
+ 𝑡dc-su) 𝑑𝑗𝑦𝑖𝑗

(8)

s.t.

∑
𝑖

𝑦
𝑖𝑗
= 1 ∀𝑗 ∈ 𝐽, (9)

𝑥
𝑖
≥ 𝑦
𝑖𝑗
, ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽, (10)

𝑄
𝑖
≤ (pt
𝑖
− lt
𝑖
)∑
𝑗

(𝑑
𝑗
𝑦
𝑖𝑗
) − 𝑍
𝛼
√lt
𝑖√∑
𝑗

(V
𝑗
𝑦
𝑖𝑗
), ∀𝑖 ∈ 𝐼,

(11)

𝑥
𝑖
, 𝑦
𝑖𝑗
= {1, 0} , ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽. (12)

Constraint (9) ensures a single-sourcing strategy for retailers.
Constraint (10) makes sure that retailers are not assigned to
nonestablished DCs. Constraint set (11) avoids the products
from remaining in eachDC for longer than their lifetime, and
constraint set (12) specifies that 𝑥

𝑖
, 𝑦
𝑖𝑗
are binary variables.

4. Solution Method

To solve the model, a heuristic Lagrangian relaxation algo-
rithm is developed. The Lagrangian relaxation is one of
the most widely used techniques that have been applied
successfully to solve distribution network design problems.
In the Lagrangian relaxation, the constraints that introduce
difficulty to the problem are removed and added to the
objective function with a penalty term. The new problem
provides a lower (upper) bound for the main minimization
(maximization) problem [46]. Solution quality and high
speed are two significant specifications of this method, as
reported in studies byDaskin et al. [25],Miranda andGarrido

[17], Shen [27], Miranda and Garrido [37], Sourirajan et al.
[29], Max Shen and Qi [16], Snyder et al. [47], Qi and Shen
[31],Miranda andGarrido [7],Ozsen et al. [14],Mak and Shen
[48], and Park et al. [45]. In the following, the procedure of
finding upper and lower bounds on the optimal value of the
proposed model are described.

4.1. Lower Bound. As the objective function (8) subject to
(9)–(12) is an extension of UFLP, to find a lower bound, the
DC retailer assignment constraint (9) is relaxed. The new
function is called a Lagrangian dual problem, as is shown by
(13) subject to (14)–(16). Lagrangian dual problem provides
a lower bound for the main objective function (8) subject to
(9)–(12), as follows:

max
𝛾≥0

min
𝑥,𝑦

∑
𝑖

ℎ
𝑖
(
𝑄
𝑖

2
+ 𝑍
𝛼
√lt
𝑖 √∑
𝑗

V
𝑗
𝑦
𝑖𝑗
)

+∑
𝑖

∑
𝑗

(𝑂
𝑖
+ 𝐴
𝑖
)
𝑑
𝑗
𝑦
𝑖𝑗

𝑄
𝑖

+∑
𝑖

𝐹
𝑖
𝑥
𝑖

+∑
𝑖

∑
𝑗

𝑇 (dis
𝑖𝑗
+ 𝑡dc-su) 𝑑𝑗𝑦𝑖𝑗 +∑

𝑗

𝜋
𝑗
(1 −∑

𝑖

𝑦
𝑖𝑗
)

(13)

s.t.

𝑥
𝑖
≥ 𝑦
𝑖𝑗

∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽, (14)

𝑄
𝑖
≤ (pt
𝑖
− lt
𝑖
)∑
𝑗

(𝑑
𝑗
𝑦
𝑖𝑗
) − 𝑍
𝛼
√lt
𝑖√∑
𝑗

(V
𝑗
𝑦
𝑖𝑗
) ∀𝑖 ∈ 𝐼,

(15)

𝑥
𝑖
, 𝑦
𝑖𝑗
= {1, 0} ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽. (16)

To solve the objective function (13) subject to (14)–(16), it is
considered at themoment that constraint set (15) is not active.
Therefore, the order quantity𝑄

𝑖
is calculated by the following

formula:

𝑄
𝑖
= √

2 (𝑂
𝑖
+ 𝐴
𝑖
)∑
𝑗
𝑑
𝑗
𝑦
𝑖𝑗

ℎ
𝑖

. (17)

By substituting 𝑄
𝑖
in formula (13) the following function is

obtained:

max
𝛾≥0

min
𝑥,𝑦

∑
𝑖

𝐾
𝑖√∑
𝑗

𝑑
𝑗
𝑦
𝑖𝑗
+∑
𝑖

𝐾


𝑖√∑
𝑗

V
𝑗
𝑦
𝑖𝑗

+∑
𝑖

∑
𝑗

(𝑤
𝑖𝑗
𝑑
𝑗
− 𝜋
𝑗
) 𝑦
𝑖𝑗
+∑
𝑖

𝐹
𝑖
𝑥
𝑖
+∑
𝑗

𝜋
𝑗
,

(18)

where

𝐾
𝑖
= √2ℎ

𝑖
(𝑂
𝑖
+ 𝐴
𝑖
), 𝐾



𝑖
= ℎ
𝑖
𝑍
𝛼
√lt
𝑖
,

𝑤
𝑖𝑗
= 𝑇∑
𝑗

(𝑡dc-su + dis
𝑖𝑗
) .

(19)
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Generating feasible solution from the lower bound solution
Phase 1 generating a solution that satisfy single sourcing constrain

𝑖min = 0,𝑁 = number of DCs,𝑀 = number of retailers
For 𝑗 = 1 to𝑀

If ∑𝑁
𝑖=0
𝑦
𝑖𝑗
= 0 (if a retailer exist that is assigned to no DC, allocate this retailer to all DCs)

𝑦
𝑖𝑗
= 1 ∀ 𝑖 ∈ 𝐼 = {1, 2, . . . , 𝑁};

End
For 𝑗 = 1 to𝑀

While there exists at least one retailer such that ∑𝑁
𝑖=0
𝑦
𝑖𝑗
> 1 repeat the following steps

For 𝑖 = 1 to𝑁
Calculate 𝐶

𝑖
as follow (𝐶

𝑖
= Cost of DC

𝑖
based on the current retailers assigned to it);

𝐶
𝑖
= 𝐾
𝑖√∑𝑗 𝑑𝑗𝑦𝑖𝑗 + 𝐾



𝑖
√∑𝑗 𝑣𝑗𝑦𝑖𝑗 + ∑𝑗 𝑤𝑖𝑗𝑑𝑗𝑦𝑖𝑗 + 𝐹𝑖𝑥𝑖

𝐾
𝑖
= √2ℎ

𝑖
(𝑂
𝑖
+ 𝐴
𝑖
), 𝐾
𝑖
= ℎ
𝑖
𝑍
𝛼
√lt
𝑖
, 𝑤
𝑖𝑗
= 𝑇∑

𝑗
(𝑡dc-su + dis

𝑖𝑗
)

End
Find DC

𝑖
with minimum 𝐶

𝑖
and let 𝑖min = 𝑖

For 𝑗 = 1 to𝑀
If 𝑦
𝑖min ,𝑗

= 1

For 𝑖 = 1 to𝑁 and 𝑖 ̸= 𝑖min
If 𝑦
𝑖𝑗
= 1

𝑦
𝑖𝑗
= 0;

End
End

End
End

End
End

Phase 2 generating a solution that satisfy 𝑄 constrain
While at least a DC exists with violated 𝑄 constraint (constraint (11))

Select a DC with violated 𝑄 constraint;
Let 𝑗min = the last assigned retailer to DC (refer to set �́�

𝑖
in lower bound calculation);

Remove retailer
𝑗min

from the set of retailers allocated to DC;
Allocate retailer

𝑗min
to a DC that leads to minimum cost and its 𝑄 constraint would not be violated;

End
Calculate current upper bound using the following formula
current upper bound = ∑

𝑖
ℎ
𝑖
⋅ ((𝑄
𝑖
/2) + 𝑍

𝛼
√lt
𝑖 √∑𝑗 (𝑣𝑗𝑦𝑖𝑗)) + ∑𝑖∑𝑗(𝑂𝑖 + 𝐴 𝑖) ((𝑑𝑗𝑦𝑖𝑗)/𝑄𝑖) + ∑𝑖 𝐹𝑖𝑥𝑖

+∑
𝑖
∑
𝑗
𝑇(dis

𝑖𝑗
+ 𝑡dc-su) 𝑑𝑗𝑦𝑖𝑗;

Algorithm 2: Upper bound calculation.

Objective function (18) is then decomposed into subproblems
for each DC candidate location, as follows:

𝑆
𝑖
= min𝐾

𝑖√∑
𝑗

𝑑
𝑗
𝑦
𝑖𝑗
+ 𝐾


𝑖√∑
𝑗

V
𝑗
𝑦
𝑖𝑗

+∑
𝑗

(𝑤
𝑖𝑗
𝑑
𝑗
− 𝜋
𝑗
) 𝑦
𝑖𝑗
+ 𝐹
𝑖
𝑥
𝑖
+∑
𝑗

𝜋
𝑗
.

(20)

The KKT conditions for the problem are

𝜕𝐿
𝑖
(𝑦, 𝜋)

𝜕𝑦
𝑖𝑗

=
∑
𝑖
𝐾
𝑖√∑𝑗 𝑑𝑗𝑦𝑖𝑗 + ∑𝑖𝐾



𝑖
√∑𝑗 V𝑗𝑦𝑖𝑗

𝜕𝑦
𝑖𝑗

+∑
𝑖

∑
𝑗

(𝑤
𝑖𝑗
𝑑
𝑗
− 𝜋
𝑗
) = 0 ∀𝑗 ∈ 𝐽,

(21)

𝜋
𝑗
≥ 0, ∀𝑗 ∈ 𝐽, (22)

∑
𝑖

𝑦
𝑖𝑗
− 1 = 0, ∀𝑗 ∈ 𝐽. (23)

The first term in (21) is called the marginal inventory cost of
retailer

𝑗
, that is the difference in the inventory cost of DC

𝑖

between assigning retailer
𝑗
to DC

𝑖
or not. Let the symbol

𝑚
𝑖𝑗
represent the marginal inventory cost of retailer

𝑗
. Then

according to 𝑆
𝑖
,𝑚
𝑖𝑗
can be written as in the following:

𝑚
𝑖𝑗
= 𝐾
𝑖
(√∑
𝑗

𝑑
𝑗
𝑦
𝑖,𝑗
− √∑
𝑗−1

𝑑
𝑗−1
𝑦
𝑖,𝑗−1

)

+ 𝐾


𝑖
(√∑
𝑗

V
𝑗
𝑦
𝑖,𝑗
− √∑
𝑗−1

V
𝑗−1
𝑦
𝑖,𝑗−1

) .

(24)
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Step size = 2, Best upper bound = 1055, best lower bound = −1055, Iteration number = 1, non-improving
iteration = 0,
While iteration number<max iteration number

Calculate lower bound;
Calculate upper bound;
If current upper bound<Best upper bound

Best upper bound = Current upper bound;
End
If current upper bound<Best lower bound

Best lower bound = −1055;
End
If Current lower bound>Best lower bound and Best lower bound<Best upper bound

Best lower bound = Current lower bound;
End
If number of consecutive non-improving iterations = 30

Halve step size;
End
Update Lagrangian multipliers for all retailers;
If min upper bound and best lower bound solutions are equal, or step size< 10−7

Go to Final step;
End
Iteration number = iteration number + 1;

End
Final step: Return solution;
Compute optimality gap ((UB − LB) /UB) ∗ 100%

Algorithm 3: Lagrangian relaxation heuristic algorithm.

To make this function independent from other retailers
assigned to the same DC

𝑖
, a lower bound of it is selected to

work with, as follows:

𝑚
𝑖𝑗
= 𝐾
𝑖
log 𝑑
𝑗
+ 𝐾


𝑖
log V
𝑗
. (25)

So if retailer
𝑗
is assigned to DC

𝑖
, the individual benefit of it

would be as follows:

́IB
𝑖𝑗
= 𝐾
𝑖
log 𝑑
𝑗
+ 𝐾


𝑖
log V
𝑗
+ 𝑤
𝑖,𝑗
𝑑
𝑗
− 𝜋
𝑗
. (26)

If ́IB
𝑖𝑗
> 0, then retailer

𝑗
cannot be assigned to DC

𝑖
, and

therefore, 𝑦
𝑖𝑗
= 0 for all retailer. However, if ́IB

𝑖𝑗
≤ 0, then

retailer
𝑗
will be assigned to DC

𝑖
if it leads to a negative value

for 𝑆
𝑖
.Therefore, for eachDC, initially a list of retailers having

the necessary condition of ́IB
𝑖𝑗
≤ 0 is made. Then, set 𝐺

𝑖
is

made as follow by arranging retailers in ascending order of
their ́IB

𝑖𝑗
:

𝐺
𝑖
= {𝑗 ∈ 𝐽 s.t. ́IB

𝑖𝑗−1
≤ ́IB
𝑖𝑗
, ́IB
𝑗
≤ 0} . (27)

The first retailer from set 𝐺
𝑖
is assigned to DC

𝑖
if it leads

to a negative value for 𝑆
𝑖
. Each of the following retailers is

assigned one by one to DC
𝑖
if the previous retailer (from set

𝐺
𝑖
) is assigned to DC

𝑖
and if its assignment to DC

𝑖
leads to a

better (lower) value for 𝑆
𝑖
. Retailers that are assigned to DC

𝑖

are removed from set 𝐺
𝑖
and are added to set �́�

𝑖
. If there is at

least one retailer in �́�
𝑖
, then 𝑥

𝑖
is set to 1. For all retailers that

belong to set �́�
𝑖
, 𝑦
𝑖𝑗
is set to 1.

Moreover, the value of the Lagrangian multiplier 𝜋
𝑗
in

each iteration of the algorithm is updated using the subgra-
dient optimization technique. The lower-bound calculation
steps are presented in Algorithm 1.

4.2. Upper Bound. The solution that is found by the lower
bound might be infeasible. Therefore, the upper bound
modifies it to be a feasible solution for the main objective
function. To achieve this, in the developed algorithm of this
paper, at first, the lower bound solution is displayed in the
form of a 0-1 matrix. The number of rows of this matrix is
equal to the number of DCs, and the number of columns
is equal to the number of retailers. If the array of 𝑖th row
and 𝑗th column equals 1, it means that retailer

𝑗
is assigned

to DC
𝑖
. The lower-bound solution described in Section 4.1

may need to be modified in two steps: the first step takes
into account the single-sourcing constraint and the next
step considers constraint (11) that is also referred to as 𝑄
constraint in this text. To do the first step, the retailers that
are assigned to no DC are considered, and all the arrays
of their corresponding columns are initially set to 1. Then,
for each DC (row) the objective function is calculated. The
DC that has the minimum objective function is selected
and all of its arrays are set to be fixed. Then, if retailers of
this DC are also assigned to other DCs, all other similar
assignments are removed. This procedure is repeated until
all retailers are allocated to only one DC. To do the second
step, a DC that its 𝑄 constraint is violated is selected. Then
its retailers are removed one by one until its 𝑄 constraint is
satisfied. The first retailer that would be removed is the one
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that was assigned last to set �́�
𝑖
in lower-bound calculation.

The removed retailer is assigned to another DC that increases
the total cost the least, considering feasibility conditions.The
upper bound calculation steps and the Lagrangian relaxation
algorithm are presented in Algorithms 2 and 3, respectively.

4.3. Procedure of Computing 𝑄. To obtain the value of order
quantity 𝑄

𝑖
, as mentioned before, at first the derivative of

the objective function with respect to 𝑄
𝑖
is calculated and is

solved for 𝑄
𝑖
, as follows:

𝑄
𝑖
= √

2 (𝐴
𝑖
+ 𝑂
𝑖
)𝐷
𝑖

ℎ
𝑖

∀𝑖 ∈ 𝐼. (28)

If 𝑄
𝑖
violates constraint (11), then 𝑄

𝑖
will change to the

maximum amount that constraint (11) forces it to be, as is
written in the following:

𝑄
𝑖
= (pt
𝑖
− lt
𝑖
)∑
𝑗

(𝑑
𝑗
𝑦
𝑖𝑗
) − 𝑍
𝛼
√lt
𝑖√∑
𝑗

(V
𝑗
𝑦
𝑖𝑗
). (29)

5. Computational Results and Discussion

The computational results are divided into three parts. The
first part is to validate the model and heuristic algorithm.
The second part is to investigate the performance of the
algorithm, and the last part provides some examples to
demonstrate the main application of the model. For the first
and second parts, the model and algorithm are tested on 15-
node and 49-node data sets derived from [49]. For the last
part, along with 15-node and 49-node data sets, 88-node data
set is also considered. Each node in each data set represents
a retailer. A number of retailers must be selected to serve as
distribution centers. In this study, the means and variances of
retailers’ demands are selected to be the same as the demand
parameters of [49]. Distances between retailers are calculated
using the great circle distance formula, based on the longitude
and latitude of retailers’ locations. Fixed installation costs
are set to the fixed installation costs, as considered by [49],
but multiplied by 10. Variable transportation costs are set

Table 1: Parameter of the Lagrangian relaxation.

Maximum number of iterations 1500
Number of nonimproving iterations before halving
step size 30

Initial value of step size 2
Minimum value of step size 10−7

Initial value of the Lagrangian multiplier 10(𝑑 + 𝑓)
Maximum optimality gap ((UB − LB) /UB) ∗ 100% 0.1%

to 50 units of cost. Lead time is set to 1 day, and the
sum of fixed ordering and transportation costs is set to 100
units of cost. As this paper is motivated by a platelet blood
distribution network, inventory holding costs are derived
from the work of [50], which studied the inventory control
of blood platelets. The parameters of Lagrangian relaxation
method are presented in Table 1.

In Table 1, 𝑑, 𝑓 are the average demands of the retailers
and the average fixed installation costs of the DCs, respec-
tively. The problem is written in C++, and the results are
obtained on a T2350, 1.86GHZ with 1GB RAM.

5.1. Model and Algorithm Validation. The model and heuris-
tic algorithm are validated using sensitivity analysis. The
sensitivity analysis is performed on key parameters, including
variances of demands, inventory cost, fixed facility installa-
tion costs, and lifetimes of commodities. The value of the
lifetime varies between 3 and 9 days and the other parameters
are varies between 30% and −30% of their actual value.

Figures 4 and 5 show changes in the objective function in
terms of the lifetime for the 15-node and 49-node data sets,
respectively. Each point in this curve is the average of 73 (=
343) instances that are made by changing the variances of
demand, inventory holding costs, and fixed installation costs
at seven levels of ±30%, ±20%, ±10%, and 0%.

As is expected, the value of the objective function
decreases as the lifetime gets longer. The numbers written
above the curves in Figures 4 and 5 and also Figures 6–11
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Figure 4: Sensitivity of objective function to changes in the lifetime
for 15-node data set.
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Figure 5: Sensitivity of objective function to changes in the lifetime
for 49-node data set.

0% 0% 0% 0% 0% 0% 0%

792
794
796
798
800
802
804
806
808
810

−40 −30 −20 −10 0 10 20 30 40

O
bj

ec
tii

ve
 fu

nc
tio

n

Upper bound
Lower bound

×10
3

Inventory holding cost (%)

Figure 6: Sensitivity of objective function to changes in inventory
cost for 15-node date set.
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Figure 7: Sensitivity of objective function to changes in inventory
cost for 49-node date set.
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Figure 8: Sensitivity of objective function to changes in variances of
demands for 15-node data set.
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Figure 9: Sensitivity of objective function to changes in variances of
demands for 49-node data set.
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Figure 10: Sensitivity of objective function to changes in fixed
installation cost for 15-node data sets.
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Figure 11: Sensitivity of objective function to changes in fixed
installation cost for 49-node data sets.

Table 2: Algorithm performance.

Data set Average CPU
time (second)

Average number of
iterations

Average
optimality gap

15-node 0.027 11 0
49-node 0.8 98 0.07%

Table 3: Lifetime and inventory holding cost of blood platelet driven
from [50].

Parameters Alternative 1 Alternative 2 Alternative 3
Lifetime 4 5 6
Inventory cost 0.2995 0.4947 0.6928

display the average optimality gaps. The Optimality gap rep-
resents the maximum gap between the optimal solution and

the solutions found by the Lagrangian relaxation algorithm.
The optimality gap is computed as follows:

Optimality gap =
(Upper bound − lower bound)

Upper bound
× 100.

(30)

Figures 6 and 7 display the variation of the objective function
versus changes in inventory holding costs for the 15- and 49-
node data sets, respectively. Both curves are ascending, but
it is not very clear, especially when they are compared with
changes of the objective function versus the lifetime. Figures
8 and 9 also show the variation of the objective function,
but against changes in variance of demand. Despite variance
changes within awide range, a very slight increase is observed
in the value of the objective function. The most influential
parameter on the objective function is the fixed installation
cost, as shown by Figures 10 and 11. If these curves had been
presented on a graph with the same scale as the previous
graphs, only a small part of the curve could be displayed.
Therefore, the scales of the vertical axes of these two graphs
are different. Figures 10 and 11 show that significant changes
occur in the objective function when the fixed costs change.

5.2. Performance of the Algorithm. To show the performance
of the algorithm in terms of CPU time, number of iterations
required to solve each problem, and the optimality gap,
the averages of these values are computed and presented
in Table 2. Each number in Table 2 is the average of
corresponding values obtained by running the algorithm for
9604 (= 343 × 7 × 4) times in Section 5.1, where 4 is the
number of input parameters which are selected for sensitivity
analysis and 7 is the number of times each parameter has been
changed.

Table 2 shows that the average optimality gaps are small
enough to say that the algorithm finds optimal or near
optimal solutions. Moreover, the average CPU time and the
average number of iterations that the algorithm needs to find
the solution imply that the algorithm is fast.

5.3. Application of the Algorithm. The main application of
the model of this paper is to provide a trade-off between
selecting longer lifetime (increasing inventory cost) and
reducing the ordering cycle (shorter lifetime). If the product
to be distributed is blood platelets, according to [50], three
alternatives for storage conditions exist. These alternatives
are shown in Table 3. For instance, alternative 1 represents a
storage condition in which the product remains safe for up to
four days, and the inventory holding cost is 0.2995 units of
cost.

The model is solved for the 15-node, 49-node, and 88-
node data sets taken from [49], and the results are displayed
in Table 4. The last column of the table demonstrates the
alternative that is selected in terms of the objective function.
For example, for the 15-node data set, alternative 3 is the best
despite its highest inventory cost. However, for the 88-node
case, the lowest inventory cost alternative is optimal.



Journal of Applied Mathematics 11

Table 4: Value of objective function corresponding to different alternatives.

Data set Alternative 1 Alternative 2 Alternative 3 Best alternative
15-node 1779198 1776691 1775583 3

49-node 14257158 14209680 14226085 2

88-node 52124780 52149816 52215864 1

6. Conclusion

Perishable products comprise a large proportion of products
that are transferred daily from suppliers to the customers.
However, studies on the distribution network design of
perishable products are rare. This study extended the LMRP
by considering the lifetime of the product that is being
distributed. The developed model determines the optimal
configuration and the inventory control decisions of the
network. In addition, the model develops a trade-off between
enhancing storage conditions, interpreted as higher inven-
tory costs but longer lifetime, and accepting less inventory
costs but having a product with a shorter lifetime. Sensitivity
analysis on key parameters is performed to validate themodel
and solution method. For future research, it is suggested to
incorporate into the DNDmodel an inventory control policy
of those perishable products whose value declines with time.

Notation

Sets
𝐽: Set of retailers
𝐼: Set of candidate DC locations.

Indices
𝑖: Index for DCs
𝑗: Index for retailers.

Input Parameters

𝐹
𝑖
: Annual fixed setup cost for DC

𝑖

𝑇: Transportation cost per unit of product per
unit of distance

𝑡dc-su: Per item transportation cost from the supplier
to a DC

𝐴
𝑖
: Per shipment transportation cost from supplier

to DC
𝑖

ℎ
𝑖
: Inventory holding cost at DC

𝑖
per unit of

product per year
𝑂
𝑖
: Fixed ordering cost per order placed by DC

𝑖
to

the supplier
𝑑
𝑗
: Annual mean demand of retailer

𝑗

𝐷
𝑖
: Annual mean demand of DC

𝑖

V
𝑗
: Variance of annual demand for retailer

𝑗

𝑉
𝑖
: Variance of annual demand for DC

𝑖

dis
𝑖𝑗
: Distance between DC

𝑖
and retailer

𝑗

lt
𝑖
: Lead time in terms of year from the supplier to
DC
𝑖

pt: Lifetime of products
𝛼: Level of service that has to be achieved at the

retailers
𝑍
𝛼
: Standard normal deviate such that
𝑃(𝑧 ≤ 𝑧

𝛼
) = 𝛼.

Decision Variables

𝑄
𝑖
: Order quantity of DC

𝑖

𝑦
𝑖𝑗
: Binary variable, taking the value 1 if retailer

𝑗

is assigned to DC
𝑖
and 0 otherwise

𝑥
𝑖
: Binary variable, taking the value 1 if DC

𝑖
is

open and 0 otherwise.
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[22] F. Olsson and P. Tydesjö, “Inventory problems with perishable
items: fixed lifetimes and backlogging,” European Journal of
Operational Research, vol. 202, no. 1, pp. 131–137, 2010.

[23] F. Dabbene, P. Gay, and N. Sacco, “Optimisation of fresh-food
supply chains in uncertain environments, part II: a case study,”
Biosystems Engineering, vol. 99, no. 3, pp. 360–371, 2008.

[24] Z. J. M. Shen, “Integrated supply chain design models: a
survey and future research directions,” Journal of Industrial and
Management Optimization, vol. 3, no. 1, pp. 1–27, 2007.

[25] M. S. Daskin, C. R. Coullard, and Z.-J. M. Shen, “An inventory-
location model: formulation, solution algorithm and computa-
tional results,” Annals of Operations Research, vol. 110, no. 1–4,
pp. 83–106, 2002.

[26] Z. J. M. Shen, C. Coullard, and M. S. Daskin, “A joint location-
inventory model,” Transportation Science, vol. 37, no. 1, pp. 40–
55, 2003.

[27] Z. J. M. Shen, “A multi-commodity supply chain design prob-
lem,” IIE Transactions (Institute of Industrial Engineers), vol. 37,
no. 8, pp. 753–762, 2005.

[28] J. Shu, C. P. Teo, and Z. J. M. Shen, “Stochastic transportation-
inventory network design problem,” Operations Research, vol.
53, no. 1, pp. 48–60, 2005.

[29] K. Sourirajan, L. Ozsen, and R. Uzsoy, “A single-product
network designmodel with lead time and safety stock consider-
ations,” IIE Transactions (Institute of Industrial Engineers), vol.
39, no. 5, pp. 411–424, 2007.

[30] K. Sourirajan, L. Ozsen, and R. Uzsoy, “A genetic algorithm
for a single product network design model with lead time and
safety stock considerations,” European Journal of Operational
Research, vol. 197, no. 2, pp. 599–608, 2009.

[31] L. Qi and Z. J. M. Shen, “A supply chain design model with
unreliable supply,” Naval Research Logistics, vol. 54, no. 8, pp.
829–844, 2007.

[32] E. Gebennini, R. Gamberini, and R. Manzini, “An integrated
production-distribution model for the dynamic location and
allocation problem with safety stock optimization,” Interna-
tional Journal of Production Economics, vol. 122, no. 1, pp. 286–
304, 2009.

[33] A. Jha, K. Somani, M. K. Tiwari, F. T. S. Chan, and K. J.
Fernandes, “Minimizing transportation cost of a joint inventory
location model using modified adaptive differential evolution
algorithm,” International Journal of Advanced Manufacturing
Technology, vol. 60, pp. 1329–4341, 2012.

[34] M. T. Melo, S. Nickel, and F. Saldanha-da-Gama, “A tabu search
heuristic for redesigning a multi-echelon supply chain network
over a planning horizon,” International Journal of Production
Economics, vol. 136, no. 1, pp. 218–230, 2012.

[35] H. Shavandi and B. Bozorgi, “Developing a location-inventory
model under fuzzy environment,” International Journal of
Advanced Manufacturing Technology, pp. 1–10, 2012.

[36] A. Atamtürk, G. Berenguer, and Z.-J. Shen, “A conic integer
programming approach to stochastic joint location-inventory
problems,”Operations Research, vol. 60, no. 2, pp. 366–381, 2012.

[37] P. A. Miranda and R. A. Garrido, “A simultaneous inventory
control and facility location model with stochastic capacity
constraints,” Networks and Spatial Economics, vol. 6, no. 1, pp.
39–53, 2006.

[38] S. K. Goyal and B. C. Giri, “Recent trends in modeling
of deteriorating inventory,” European Journal of Operational
Research, vol. 134, no. 1, pp. 1–16, 2001.

[39] K. Kanchanasuntorn and A. Techanitisawad, “An approximate
periodic model for fixed-life perishable products in a two-
echelon inventory-distribution system,” International Journal of
Production Economics, vol. 100, no. 1, pp. 101–115, 2006.

[40] S. E. Omosigho, “Determination of outdate and shortage quan-
tities in the inventory problemwith fixed lifetime,” International
Journal of Computer Mathematics, vol. 79, no. 11, pp. 1169–1177,
2002.

[41] M. Held and R. M. Karp, “The traveling-salesman problem and
minimum spanning trees,” Operations Research, vol. 18, no. 6,
pp. 1138–1162, 1970.

[42] A. M. Geoffrion and R. McBride, “Lagrangean relaxation
applied to capacitated facility location problems,” AIIE Trans-
actions, vol. 10, no. 1, pp. 40–47, 1978.

[43] B. Shetty, “Approximate solutions to large scale capacitated facil-
ity location problems,” Applied Mathematics and Computation,
vol. 39, no. 2, pp. 159–175, 1990.



Journal of Applied Mathematics 13

[44] I. Al-Harkan and M. Hariga, “A simulation optimization solu-
tion to the inventory continuous review problem with lot
size dependent lead time,” Arabian Journal for Science and
Engineering, vol. 32, no. 2 B, pp. 327–338, 2007.

[45] S. Park, T. E. Lee, and C. S. Sung, “A three-level supply chain
network design model with risk-pooling and lead times,”
Transportation Research Part E: Logistics and Transportation
Review, vol. 46, no. 5, pp. 563–581, 2010.

[46] M. L. Fisher, “Applications oriented guide to Lagrangian relax-
ation,” Interfaces, vol. 15, no. 2, pp. 10–21, 1985.

[47] L.V. Snyder,M. S.Daskin, andC. P. Teo, “The stochastic location
model with risk pooling,” European Journal of Operational
Research, vol. 179, no. 3, pp. 1221–1238, 2007.

[48] H. Y. Mak and Z. J. M. Shen, “A two-echelon inventory-location
problem with service considerations,” Naval Research Logistics,
vol. 56, no. 8, pp. 730–744, 2009.

[49] M. Daskin, Network and Discrete Location: Models, Algorithms
and Applications, Palgrave Macmillan, New York, NY, USA,
1997.

[50] R. Haijema, J. van der Wal, and N. M. van Dijk, “Blood platelet
production: optimization by dynamic programming and simu-
lation,” Computers and Operations Research, vol. 34, no. 3, pp.
760–779, 2007.


