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We present a series of two-person games, which lead to various DEA models. The relationship between the DEA models and the
games is explicit in our setting, although the Nash equilibrium solutions do not generally exist. Besides the classic DEAmodels, we
also establish an explicit relationship between the games and some extended DEAmodels, such as free disposable hull DEAmodels
and “negative” or “inverted” DEA models.

1. Introduction

DEA has widely been used in performance evaluation or
productivity evaluation. The DEA models have been derived
from different perspectives like econometrics and operations
research; see for example, Charnes et al. [1], Banker et al.
[2], and Liu et al. [3] for the details. Also, several researchers
found that there are close connections between DEA and the
game theory [4]. As a pioneer, Banker et al. [5, 6] explored
the connections between DEA and the game theory. In their
work, they first built the following payoff matrix:

𝑒
𝑖𝑗

=

𝑦
0
/𝑥
𝑖0

𝑦
𝑗
/𝑥
𝑖𝑗

. (1)

In their formulation, the DMU
0
being evaluated acts as

player 1, who wishes to maximize its payoff and has pure
strategies defined by the selection of some inputs {𝑖}. On the
other hand, player 2 acts as a “central evaluator,” who wishes
to minimize the payoff of player 1 and has pure strategies
defined by the selection of a competitive DMU {𝑗}. Then, the
authors used amixed strategy formed from the pure strategies
and computed an expected payoff function constructed from
the finite payoff matrix above. They formulated the game
model as the pair of linear programming problems shown in
Table 1.

After several transformations of the problem (∗), the
authors obtained the “CCR ratio form,” which is also the

maximal expected gains that DMU
0
can obtain from the

corresponding payoff matrix. However, the game model
developed by Banker [5] requires that the output in themodel
is a number. Banker et al. [6] extended their initial work to
include multiple outputs, but they had to replace the original
CCR model with the BCC model, which makes it possible to
write the linear programming problem for player 2 directly.

To establish a rigorous connection between the CCR
model and the game theory, Rousseau and Semple [7]
developed a class of two-person ratio efficiency games, which
have ratio payoff functions solved by two equivalent primal
and dual linear programming problems. The authors argued
that “the richest information is available from the primal-
dual linear programs: one side emphasizes “envelopment”
multipliers, the other emphasizes input-output multipliers.”
And the most general form of the games is described in
Table 2.

The DMU
0
, the unit being evaluated, acts as player 1.

And the intention of player 1 is to choose some optimal
weights (𝑢

∗
, V∗) in 𝑃 and minimize the fractional payoff

of player 2. Meanwhile, Player 2 acts as a regulator who
will select some 𝜆 in 𝑄 to construct a virtual “aggregate
competitor” and maximize its worst case payoff under all
the possible weights chosen by player 2. The authors proved
that (𝑢

∗
, V∗, 𝜆∗) constitutes a saddle point for the ratio payoff

function in (#) and (##). However, the games (#) and
(##) cannot derive CCR model directly and only can yield
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Table 1

Player 1 Player 2

Max 𝜌
0

(∗)

Min 𝜂
0

(∗∗)
subject to −∑

𝑚

𝑖=1
𝑝
𝑖
𝑒
𝑖𝑗
+ 𝜌
0
≤ 0 subject to −∑

𝑛

𝑗=1
𝑞
𝑗
𝑒
𝑖𝑗
+ 𝜂
0
≥ 0,

∑
𝑚

𝑖=1
𝑝
𝑖
= 1, 𝑝

𝑖
≥ 0. ∑

𝑛

𝑗=1
𝑞
𝑗
= 1, 𝑞

𝑗
≥ 0.

Table 2

Player 1 Player 2

Min
(𝑢,V)∈𝑃

max
𝜆∈𝑄

{

(∑
𝑛

𝑗=1
𝜆
𝑗
𝑌
𝑗
)
𝑇V

(∑
𝑛

𝑗=1
𝜆
𝑗
𝑋
𝑗
)
𝑇
𝑢

} (#) Max
𝜆∈𝑄

min
(𝑢,V)∈𝑃

{

(∑
𝑛

𝑗=1
𝜆
𝑗
𝑌
𝑗
)
𝑇V

(∑
𝑛

𝑗=1
𝜆
𝑗
𝑋
𝑗
)
𝑇
𝑢

} (##)

Where 𝑃 = {(𝑢, V) : 𝑢 ≥ 0, V ≥ 0, V𝑇𝑌0/𝑢
𝑇
𝑋0 = 1} and𝑄 = {𝜆 : ∑

𝑛

𝑗=1
𝜆𝑗 = 1, 𝜆𝑗 ≥ 0} are two infinite pure strategy spaces.

the information necessary to conduct the CCR efficiency
analysis.

To incorporate value judgment, Semple [8] extended the
“two-person ratio efficiency game” by including polyhedral
cone constraints in the pure strategies played by each player.
And the connection between the game theory and DEA has
been extended to include the cone ratio models (see [9, 10]).

In another way, Hao et al. [11] followed the line of Banker’s
work, which needs to use the payoff matrices and mixed
strategies, but extended the two-person zero-sum game to the
closed convex cone constraints. Then, the authors proved the
connection between the proposed convex cone constrained
game model and the generalized DEA model.

In this paper, we will present a game perspective of DEA
model using a different payoff function. We will show that
many DEA models, including the CCR, BCC, and other
models, can be derived from a series of min-max problems.
We also show that some max-min problems will derive new
DEA models.

Similarly, we assume that there are two players in our
game. One player is the DMU

0
being evaluated and the

other player is a central evaluator. In this game, DMU
0

wishes to maximize (or minimize) its gain (or loss). On the
contrary, player 2 wants to minimize (or maximize) its loss
(or gain). Corresponding to the players, there are two pure
strategy spaces in the game. One is the weight space 𝑊 in
the multiplier formulation of DEA and the other one is the
index {𝑗}, which selects a competitive DMU

𝑗
. Clearly, such

two strategy spaces are not “symmetric” in the sense that the
second is smaller and thus has a weaker influence on the
game results. In order to have a fairer game, one remedy is to
enlarge it. For example, one can expand it into selections of all
virtual DMUs. That is precisely the strategy space in Semple
[8]. However, the connections between DEA models and the
min-max or max-min programming become less clear and
more complicated. In the following, we explain another idea
to handle this issue.

For any game, max
𝑦∈𝑌

min
𝑥∈𝑋

𝜙(𝑥, 𝑦) ≤ min
𝑥∈𝑋

max
𝑦∈𝑌

𝜙(𝑥, 𝑦) always holds, where 𝜙(𝑥, 𝑦) is the loss function of
player 1 and 𝑋,𝑌 are the pure strategy spaces of player 1
and player 2, respectively. When max

𝑦∈𝑌
min
𝑥∈𝑋

𝜙(𝑥, 𝑦) =

min
𝑥∈𝑋

max
𝑦∈𝑌

𝜙(𝑥, 𝑦), we say that in this game there exists
at least one Nash equilibrium. The existence of the Nash

equilibriums shows themin-max/max-min that is an optimal
strategy for both players, and the game may have no solution
if the Nash equilibriums do not exist. However, the min-max
strategy is the safest strategy for player 1 if player 2 has the
right to terminate the game (so it has the right to select the
strategies for the final step of the game), and the max-min
strategy is the safest strategy for player 2 if player 1 has the
right. In our case, Nash equilibriums generally do not exist
since the second strategy space is too small. We compensate
this by assuming that the player whose strategy space is the
second has the right to terminate the game. Thus, in the
present situation, the min-max strategies should be the safest
for player 1. The advantage of this approach seems is that
many different DEA models can be directly connected to the
safest strategies of the player.

The paper is organized as follows. To illustrate the main
ideas clearly, Section 2 presents the min-max and max-min
formulations for DEA models with index data at first. In
Section 3, we discuss the general case of the min-max and
max-min formulations for the CCR, BCC, and other DEA
models, and the conclusions and discussions are given in
Section 4.

2. A Game Perspective of Index DEA Models

We start our investigation from a class of simpler DEA
models, where the inputs are assumed to be standardized, or
DEAmodels without inputs.This class of DEAmodels in fact
uses index data and therefore is referred to as index DEA
models; see Lovell and Pastor [12], Halkos and Salamouris
[13], and Liu et al. [3] for more details.

2.1. Min-Max Problems of Index DEA Models. In this paper,
a pure strategy of weights is denoted by a vector u =

(𝑢
1
, . . . , 𝑢

𝑠
)
𝑡 in a weight space 𝑊. Now, let us consider the

following case: the pure strategy of DMU
0
is the weight space.

This means that DMU
0
can freely select weights from the

weight space to account its weighed output score ∑
𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟0
.

Due to the conflicting interests, the evaluator may not be
happy to use these weights for accounting their scores. Here,
we assume that they can select a DMU

𝑗
from competitive

DMUs’ space 𝐽 = {1, . . . , 𝑛} to increase the relative loss
function of ∑

𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟𝑗
/∑
𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟0

to force DMU
0
to change
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its strategies. Obviously, the larger is ∑
𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟𝑗
/∑
𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟0
,

the worse is the relative score of DMU
0
.

If the DMU
0
is risk aversion, then the DMU

0
will

consider the possible worst case; that is, player 2 will choose
best practice DMU

𝑗
to maximize the performance gap with

DMU
0
. Then the DMU

0
will choose a weight that will

minimize the gap with all the possible competitive DMU
𝑗
.

Under this circumstance, DMU
0
will choose the “min-max”

strategy. In the following mathematical formulation, we will
use the normalization {𝑢 | ∑

𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟0

= 1, 𝑢
𝑟

≥ 0},
thus, ∑𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟𝑗
/∑
𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟0

can be simplified as ∑
𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟𝑗
,

and then the min-max strategy illustrated above can be
written as follows:

min
𝑢∈𝑊

max
𝑗∈𝐽

𝑠

∑

𝑟=1

𝑢
𝑟
𝑦
𝑟𝑗
, (2)

where 𝑊 = {𝑢 | ∑
𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟0

= 1, 𝑢
𝑟
≥ 0} and 𝐽 = {1, . . . , 𝑛}.

For the purpose of analysis, we introduce an auxiliary
variable V such that V = Max

𝑗=1,...,𝑛
{∑
𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟𝑗
}. Then, model

(2) may be rewritten as

Min
𝑢

V

subject to
𝑠

∑

𝑟=1

𝑢
𝑟
𝑦
𝑟𝑗

≤ V,

𝑠

∑

𝑟=1

𝑢
𝑟
𝑦
𝑟0

= 1,

𝑢
𝑟
≥ 0, 𝑗 = 1, . . . , 𝑛.

(3)

And the optimal value V∗ is the worst possible relative score
of DMU

0
. Now, we consider its dual model, which will be

shown to be the following index DEA model:

Max 𝜃

subject to
𝑛

∑

𝑗=1

𝑌
𝑗
𝜆
𝑗
≥ 𝜃𝑦
0
,

𝑛

∑

𝑗=1

𝜆
𝑗
= 1,

𝜆
𝑗
≥ 0, 𝑗 = 1, . . . , 𝑛.

(4)

Model (4) is first introduced by Lovell and Pastor [12].

Proposition 1. Model (4) is the dual model of model (3).

Proof. Model (3) can be rewritten as follows:

Min V
subject to 𝑌

𝑇
𝑢 − V𝐼 ≤ 0,

−𝑌
𝑇

0
𝑢 + 1 = 0,

𝑢 ≥ 0,

(5)

where 𝑌
0

= (𝑦
10
, . . . , 𝑦

𝑠0
)
𝑇
, 𝑌 = (𝑌

1
, . . . , 𝑌

𝑛
), u =

(𝑢
1
, . . . , 𝑢

𝑠
)
𝑇, and 𝐼 = (1, . . . , 1)

𝑇. The Lagrange function of

model (5) is 𝐿(𝑢, V, 𝜃, 𝜆) = V + 𝜆
𝑇
(𝑌
𝑇
𝑢 − V𝐼) + 𝜃(−𝑌

𝑇

0
𝑢 + 1),

and its dual function is
𝑞 (𝜃, 𝜆) = inf

𝜇≥0,V
{𝐿 (𝜇, 𝜆)}

= inf
𝜇≥0,V

{𝜃 + (𝜆
𝑇
𝑌
𝑇
− 𝜃𝑌
𝑇

0
) 𝑢 + (−𝜆

𝑇
𝐼 + 1) V}

= {

𝜃, if − 𝜃𝑌
𝑇

0
+ 𝜆
𝑇
𝑌
𝑇

≥ 0, −𝜆
𝑇
𝐼 + 1 = 0,

−∞, if − 𝜃𝑌
𝑇

0
+ 𝜆
𝑇
𝑌
𝑇

≤ 0, (−𝜆
𝑇
𝐼 + 1) ̸= 0.

(6)

Thus, the dual problem is

Max 𝑞 (𝜃, 𝜆)

Subject to 𝜆 ≥ 0,
(7)

which reads
Max 𝜃

subject to
𝑛

∑

𝑗=1

𝑌
𝑗
𝜆
𝑗
≥ 𝜃𝑌
0
,

𝑛

∑

𝑗=1

𝜆
𝑗
= 1,

𝜆
𝑗
≥ 0, 𝑗 = 1, . . . , 𝑛.

(8)

Hence, model (4) is the dual of model (3).
Let us investigate model (3) further. Let 𝜇

𝑟
= 𝑢
𝑟
/V, and

then model (3) can be easily changed to the following model:

Max
𝑠

∑

𝑟=1

𝜇
𝑟
𝑦
𝑟0

subject to
𝑠

∑

𝑟=1

𝜇
𝑟
𝑦
𝑟𝑗

≤ 1,

𝜇
𝑟
≥ 0, 𝑗 = 1, . . . , 𝑛.

(9)

Now, we can understand it by intuition: model (9) (therefore
(4)) is simply an index DEA model, which selects weights to
maximize its weighted score like a classical DEAmodel.Thus,
the min-max strategy just leads to index DEA models.

2.2. Max-Min Problem of Index DEA. As discussed before,
the min-max strategy leads to index DEA models. Now, we
consider the “max-min” strategy as follows:

Max
𝑗∈𝐽

Min
𝑢∈𝑊

𝑠

∑

𝑟=1

𝑢
𝑟
𝑦
𝑟𝑗
, (10)

where 𝑊 = {𝑢 | ∑
𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟0

= 1, 𝑢
𝑟
≥ 0} and 𝐽 = {1, . . . , 𝑛}.

We can calculate this model through the following two-stage
algorithm.

First Stage.We can divide model (10) into 𝑛 separate models
as follows:

ℎ
∗

𝑗
= Min
𝑢

𝑠

∑

𝑟=1

𝑢
𝑟
𝑦
𝑟𝑗

subject to
𝑠

∑

𝑟=1

𝑢
𝑟
𝑦
𝑟0

= 1,

𝑢
𝑟
≥ 0.

(11)
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Let ℎ
∗

𝑗
be the optimal value of (11). Then, we obtain all the

infimum {ℎ
∗

1
, ℎ
∗

2
, . . . , ℎ

∗

𝑛
}.

Second Stage. Let ℎ∗ = max
𝑗=1,...,𝑛

{ℎ
∗

𝑗
}.

From the min-max theory, it always holds that
Max
𝑗=1,...,𝑛

Min
𝑢
∑
𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟𝑗

≤ Min
𝑢
Max
𝑗=1,...,𝑛

∑
𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟𝑗
,

where ∑
𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟0

= 1 and 𝑢 ≥ 0. And
if Max

𝑗=1,...,𝑛
Min
𝑢
∑
𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟𝑗

= Min
𝑢
Max
𝑗=1,...,𝑛

∑
𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟𝑗
,

we can conclude that this game has a Nash equilibrium
solution. Unfortunately, Nash equilibrium solution does not
always exist actually unless DMU

0
only has one reference

peer in model (4). Let us consider the dual model of (11),
which can be written as

Max 𝜃
𝑗

subject to 𝑌
𝑗
≥ 𝜃
𝑗
𝑌
0
.

(12)

And considering 𝜃
∗

= max
𝑗=1,...,𝑛

{𝜃
∗

𝑗
}, we can write its dual

as

Max 𝜃

subject to
𝑛

∑

𝑗=1

𝑌
𝑗
𝜆
𝑗
≥ 𝜃𝑌
0
,

𝑛

∑

𝑗=1

𝜆
𝑗
= 1,

𝜆
𝑗
= 1 or 0, 𝑗 = 1, . . . , 𝑛,

(13)

which is a free disposable hull DEA model without inputs.
Thus, in general, there is noNash equilibrium solution for this
game formulation. If the DMU

0
had the right to terminate

the game, assumed to be risk aversion, the central evaluator
would adopt the max-min strategy in our situation, which
derives a FDH DEA model.

2.3.Max-Min Problem of aDifferent Game. Now,we consider
a different game, where DMU

0
and the central evaluator

exchange their pure strategy spaces. That is DMU
0
can

control the variable 𝑗, and the evaluator can control the
weight 𝑢. This implies that DMU

0
itself can select the worst

practice DMU
𝑗
as its benchmark freely. On the contrary, the

central evaluator would choose the best weights. As explained
in Section 1, the safest strategy for the evaluator is the max-
min strategy, which can be modeled as follows:

Max
𝑢∈𝑊

Min
𝑗∈𝐽

𝑠

∑

𝑟=1

𝑢
𝑟
𝑦
𝑟𝑗
, (14)

where 𝑊 = {𝑢 | ∑
𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟0

= 1, 𝑢
𝑟

≥ 0} and 𝐽 =

{1, . . . , 𝑛}. By introducing an auxiliary variable V =

Min
𝑗=1,...,𝑛

{∑
𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟𝑗
}, the model above will be transformed

to

Max
𝑢
𝑟

V

subject to
𝑠

∑

𝑟=1

𝑢
𝑟
𝑦
𝑟𝑗

≥ V,

𝑠

∑

𝑟=1

𝑢
𝑟
𝑦
𝑟0

= 1,

𝑢
𝑟
≥ 0, 𝑗 = 1, . . . , 𝑛.

(15)

And its dual model is as follows:

Min 𝜃

subject to
𝑛

∑

𝑗=1

𝑌
𝑗
𝜆
𝑗
≤ 𝜃𝑌
0
,

𝑛

∑

𝑗=1

𝜆
𝑗
= 1,

𝜆
𝑗
≥ 0, 𝑗 = 1, . . . , 𝑛.

(16)

Then, itsmeaning is clearer.Model (16) comparesDMU
0
with

the worst DMU, instead of comparing it with the best one as
in the classic DEA. This idea was first used by Takamura and
Tone [14] and Yamada et al. [15]. Using transformations 𝜇

𝑟
=

𝑢
𝑟
/V, then model (15) is changed to

Min
𝑢
𝑟

𝑠

∑

𝑟=1

𝜇
𝑟
𝑦
𝑟0

subject to
𝑠

∑

𝑟=1

𝜇
𝑟
𝑦
𝑟𝑗

= 1,

𝑢
𝑟
≥ 0, 𝑗 = 1, . . . , 𝑛.

(17)

Then, this idea is more clearly illustrated. For the purpose
of relocating several government agencies out of Tokyo,
Takamura and Tone [14] used both models (9) and (17) with
weight restrictions to deal with the problem of site selection
for that project. They argued that “Each site is compared
with these worst performers and is gauged by its efficiency
“negatives” as the ratio of distances from the “worst” frontiers
in the same way as in ordinary DEA.” Yamada et al. [15]
named this worst side approach “Inverted DEA.”

Similarly, themin-max strategywill lead to a free-disposal
hull inverted DEA model.

3. Min-Max/Max-Min Problem of DEA Models

3.1. Min-Max/Max-Min Problem of CCR. After exploring the
game perspective of DEAmodels with index data, we turn to
the classical input-outputDEA formulation.We first consider
the same game situation set in Section 2.1 and use a similar
relative loss function as before. Then, the min-max problem
reads

Min
𝑢,V∈𝑊

Max
𝑗∈𝐽

∑
𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟𝑗
/∑
𝑚

𝑖=1
V
𝑖
𝑥
𝑖𝑗

∑
𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟0
/∑
𝑚

𝑖=1
V
𝑖
𝑥
𝑖0

, (18)

where 𝑊 = {𝑢 | ∑
𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟0

= 1, 𝑢 ≥ 0} ∪ {V ≥ 0} and 𝐽 =

{1, . . . , 𝑛}.
Let 𝑡 = max

𝑗
{∑
𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟𝑗
/∑
𝑠

𝑟=1
V
𝑖
𝑥
𝑖𝑗
}. Then, we can trans-

form the model above to the following model:

Min
𝑢,V

𝑡

𝑚

∑

𝑖=1

V
𝑖
𝑥
𝑖0

subject to
∑
𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟𝑗

∑
𝑚

𝑖=1
V
𝑖
𝑥
𝑖𝑗

≤ 𝑡,

𝑠

∑

𝑟=1

𝑢
𝑟
𝑦
𝑟0

= 1,

𝑢 ≥ 0, V ≥ 0, 𝑗 = 1, . . . , 𝑛.

(19)
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Further, let V
𝑖

= V
𝑖
𝑡, and then the model is further trans-

formed to

Min
𝑢,V

𝑚

∑

𝑖=1

V
𝑖
𝑥
𝑖0

subject to
𝑠

∑

𝑟=1

𝑢
𝑟
𝑦
𝑟𝑗

−

𝑚

∑

𝑖=1

V
𝑖
𝑥
𝑖𝑗

≤ 0,

𝑠

∑

𝑟=1

𝑢
𝑟
𝑦
𝑟0

= 1,

𝑢 ≥ 0, V ≥ 0, 𝑗 = 1, . . . , 𝑛.

(20)

This is the standard output-oriented CCR DEA model. If we
replace the normalization ∑

𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟0

= 1 with ∑
𝑚

𝑖=1
V
𝑖
𝑥
𝑖0

=

1, then after several similar transformations as above, we will
derive the input-oriented CCR model.

Similarly, we can examine the max-min strategy as
follows:

Max
𝑗∈𝐽

Min
𝑢,V∈𝑊

∑
𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟𝑗
/∑
𝑚

𝑖=1
V
𝑖
𝑥
𝑖𝑗

∑
𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟0
/∑
𝑚

𝑖=1
V
𝑖
𝑥
𝑖0

, (21)

where 𝑊 = {𝑢 | ∑
𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟0

= 1, 𝑢 ≥ 0} ∪ {V ≥ 0} and
𝐽 = {1, . . . , 𝑛}. We again calculate the model through the
following two-stage algorithm.

First Stage. We divide model (21) into 𝑛 separate models as
follows:

ℎ
∗

𝑗
= Min
𝑢,V

𝑚

∑

𝑖=1

V
𝑖
𝑥
𝑖0

subject to
𝑠

∑

𝑟=1

𝑢
𝑟
𝑦
𝑟𝑗

−

𝑚

∑

𝑖=1

V
𝑖
𝑥
𝑖𝑗

≤ 0,

𝑠

∑

𝑟=1

𝑢
𝑟
𝑦
𝑟0

= 1,

𝑢 ≥ 0, V ≥ 0.

(22)

And let ℎ
∗

𝑗
be the optimal value of model (22). Then, we

obtain all the infimum {ℎ
∗

1
, ℎ
∗

2
, . . . , ℎ

∗

𝑛
}.

Second Stage. Let ℎ
∗
= max

𝑗=1,...,𝑛
{ℎ
∗

𝑗
}.

Then, we consider the dualmodel of (22) as before, which
can be written as

Max 𝜃
𝑗

subject to 𝑋
𝑗
𝜆
𝑗
≤ 𝑋
0
,

𝑌
𝑗
𝜆
𝑗
≥ 𝜃
𝑗
𝑌
0
,

𝜆
𝑗
≥ 0.

(23)

And we know 𝜃
∗

= max
𝑗=1,...,𝑛

{𝜃
∗

𝑗
}. Then, the programming

problem above can be transformed further to
Max 𝜃

subject to
𝑛

∑

𝑗=1

𝑋
𝑗
𝜆
𝑗
≤ 𝑋
0
,

𝑛

∑

𝑗=1

𝑌
𝑗
𝜆
𝑗
≥ 𝜃𝑌
0
,

𝜆
𝑗
= 0 or any other positive real number.

And for 𝑗 = 1, . . . , 𝑛, there is only one 𝜆
𝑗
not zero.

(24)

This can be viewed as the FDH CCR DEA model.

3.2. Min-Max/Max-Min Problem of BCC. To derive the min-
max/max-min problem of BCC model, we can change the
relative loss function as follows:

Min
𝑢,V,𝑢
0

Max
𝑗=1,...,𝑛

∑
𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟𝑗
/ (∑
𝑚

𝑖=1
V
𝑖
𝑥
𝑖𝑗
+ 𝑢
0
)

∑
𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟0
/ (∑
𝑚

𝑖=1
V
𝑖
𝑥
𝑖0

+ 𝑢
0
)

subject to
𝑠

∑

𝑟=1

𝑢
𝑟
𝑦
𝑟0

= 1,

𝑢 ≥ 0, V ≥ 0, 𝑢
0
is free.

(25)

Again let 𝑡 = max
𝑗
{∑
𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟𝑗
/(∑
𝑚

𝑖=1
V
𝑖
𝑥
𝑖𝑗

+ 𝑢
0
)}. Then, we

transform the model above to the following:

Min
𝑢,V,𝑢
0

𝑡 (

𝑚

∑

𝑖=1

V
𝑖
𝑥
𝑖0

+ 𝑢
0
)

subject to
∑
𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟𝑗

(∑
𝑚

𝑖=1
V
𝑖
𝑥
𝑖𝑗
+ 𝑢
0
)

≤ 𝑡,

𝑠

∑

𝑟=1

𝑢
𝑟
𝑦
𝑟0

= 1, 𝑗 = 1, . . . , 𝑛,

𝑢 ≥ 0, V ≥ 0, 𝑢
0
is free.

(26)

Then, further let V
𝑖
= 𝑡V
𝑖
and 𝑢

0
= 𝑡𝑢
0
. Then, the model is

transformed to

Min
𝑢,V

𝑚

∑

𝑖=1

V
𝑖
𝑥
𝑖0

+ 𝑢
0

subject to
𝑠

∑

𝑟=1

𝑢
𝑟
𝑦
𝑟𝑗

−

𝑚

∑

𝑖=1

V
𝑖
𝑥
𝑖𝑗
− 𝑢
0
≤ 0,

𝑠

∑

𝑟=1

𝑢
𝑟
𝑦
𝑟0

= 1, 𝑗 = 1, . . . , 𝑛,

𝑢 ≥ 0, V ≥ 0, 𝑢
0
is free.

(27)

This is the standard output-oriented BCC DEA model.
Similarly the “max-min” strategy leads to the following

formulation:

Max
𝑗=1,...,𝑛

Min
𝑢,V,𝑢
0

∑
𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟𝑗
/ (∑
𝑚

𝑖=1
V
𝑖
𝑥
𝑖𝑗
+ 𝑢
0
)

∑
𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟0
/ (∑
𝑚

𝑖=1
V
𝑖
𝑥
𝑖0

+ 𝑢
0
)

Subject to :

𝑠

∑

𝑟=1

𝑢
𝑟
𝑦
𝑟0

= 1,

𝑢 ≥ 0, V ≥ 0, 𝑢
0
is free.

(28)

Again, we can show that its dual reads

Max 𝜃

subject to
𝑛

∑

𝑗=1

𝑋
𝑗
𝜆
𝑗
≤ 𝑋
0
,

𝑛

∑

𝑗=1

𝑌
𝑗
𝜆
𝑗
≥ 𝜃𝑌
0
,

𝑛

∑

𝑗=1

𝜆
𝑗
= 1, 𝜆

𝑗
= 1 or 0.

(29)

This can be viewed as the FDH BBC DEA model.
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3.3. Max-Min Problem When Exchanging Strategy Spaces.
Similar to Section 2.3, we exchange the pure strategies of
DMU

0
and central evaluator, and then the max-min formu-

lation can be written as follows:

Max
𝑢,V

Min
𝑗=1,...,𝑛

∑
𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟𝑗
/∑
𝑚

𝑖=1
V
𝑖
𝑥
𝑖𝑗

∑
𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟0
/∑
𝑚

𝑟=1
V
𝑖
𝑥
𝑖0

subject to
𝑚

∑

𝑖=1

V
𝑖
𝑥
𝑖0

= 1,

𝑢 ≥ 0, V ≥ 0.

(30)

Letting 𝑡 = min
𝑗
{∑
𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟𝑗
/∑
𝑚

𝑖=1
V
𝑖
𝑥
𝑖𝑗
}, we transform the

model above to the following model:

Max
𝑢,V

𝑡

∑
𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟0

subject to
∑
𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟𝑗

∑
𝑚

𝑖=1
V
𝑖
𝑥
𝑖𝑗

≥ 𝑡,

𝑚

∑

𝑖=1

V
𝑖
𝑥
𝑖0

= 1, 𝑗 = 1, . . . , 𝑛,

𝑢 ≥ 0, V ≥ 0.

(31)

Further, let 𝑢
𝑟
= 𝑢
𝑟
/𝑡, and then we have

Max
𝑢,V

1

∑
𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟0

subject to
𝑠

∑

𝑟=1

𝑢
𝑟
𝑦
𝑟𝑗

−

𝑚

∑

𝑖=1

V
𝑖
𝑥
𝑖𝑗

≥ 0,

𝑚

∑

𝑖=1

V
𝑖
𝑥
𝑖0

= 1, 𝑗 = 1, . . . , 𝑛,

𝑢 ≥ 0, V ≥ 0.

(32)

Or

Min
𝑢,V

𝑠

∑

𝑟=1

𝑢
𝑟
𝑦
𝑟0

subject to
𝑠

∑

𝑟=1

𝑢
𝑟
𝑦
𝑟𝑗

−

𝑚

∑

𝑖=1

V
𝑖
𝑥
𝑖𝑗

≥ 0,

𝑚

∑

𝑖=1

V
𝑖
𝑥
𝑖0

= 1, 𝑗 = 1, . . . , 𝑛,

𝑢 ≥ 0, V ≥ 0.

(33)

Proposition 2. The dual form of model (33) is as follows:
Max 𝜃

subject to
𝑛

∑

𝑗=1

𝑥
𝑖𝑗
𝜆
𝑗
≥ 𝜃𝑥
𝑖0
,

𝑛

∑

𝑗=1

𝑦
𝑟𝑗
𝜆
𝑗
≤ 𝑦
𝑟0
,

𝜆
𝑗
≥ 0, 𝑗 = 1, . . . , 𝑛.

(34)

Proof. Model (33) can be written as follows:

Min 𝑌
𝑇

0
𝑢

subject to 𝑌
𝑇
𝑢 − 𝑋

𝑇V ≥ 0,

−𝑋
𝑇

0
V + 1 = 0,

𝑢 ≥ 0, V ≥ 0,

(35)

where 𝑌
0

= (𝑦
10
, . . . , 𝑦

𝑠0
)
𝑇, 𝑋
0

= (𝑥
10
, . . . , 𝑥

𝑚0
)
𝑇, Y =

(𝑌
1
, . . . , 𝑌

𝑛
), X = (𝑋

1
, . . . , 𝑋

𝑛
), u = (𝑢

1
, . . . , 𝑢

𝑠
)
𝑇, and

v = (V
1
, . . . , V

𝑚
)
𝑇. The Lagrange function of model (35)

reads: 𝐿(𝑢, V, 𝜃, 𝜆) = 𝑌
𝑇

0
𝑢 + 𝜆
𝑇
(−𝑌
𝑇
𝑢 + 𝑋

𝑇V) + 𝜃(−𝑋
𝑇

0
V + 1),

and its dual function is

𝑞 (𝜃, 𝜆)

= inf
𝑢,V≥0

{𝐿 (𝑢, V, 𝜃, 𝜆)}

= inf
𝑢,V≥0

{𝜃 + (𝑌
𝑇

0
− 𝜆
𝑇
𝑌
𝑇
) 𝑢 + (𝜆

𝑇
𝑋
𝑇
− 𝜃𝑋
𝑇

0
) V}

=

{
{

{
{

{

𝜃, if 𝑌
𝑇

0
− 𝜆
𝑇
𝑌
𝑇

≥ 0, 𝜆
𝑇
𝑋
𝑇
− 𝜃𝑋
𝑇

0
≥ 0,

−∞, if 𝑌
𝑇

0
− 𝜆
𝑇
𝑌
𝑇

< 0, 𝜆
𝑇
𝑋
𝑇
− 𝜃𝑋
𝑇

0
< 0.

(36)

Thus, the dual problem is

Max 𝑞 (𝜃, 𝜆)

subject to 𝜆 ≥ 0,
(37)

which reads

Max 𝜃

subject to 𝑋𝜆 ≥ 𝜃𝑋
0
,

𝑌𝜆 ≤ 𝑌
0
,

𝜆 ≥ 0.

(38)

Hence, model (34) is the dual of model (33).

Similarly, we can induce the output-oriented models:

Max
𝑢,V

Min
𝑗=1,...,𝑛

∑
𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟𝑗
/∑
𝑚

𝑖=1
V
𝑖
𝑥
𝑖𝑗

∑
𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟0
/∑
𝑚

𝑖=1
V
𝑖
𝑥
𝑖0

subject to
𝑠

∑

𝑟=1

𝑢
𝑟
𝑦
𝑟0

= 1,

𝑢 ≥ 0, V ≥ 0,

(39)

Min 𝜃

subject to
𝑛

∑

𝑗=1

𝑥
𝑖𝑗
𝜆
𝑗
≥ 𝑥
𝑖0
,

𝑛

∑

𝑗=1

𝜆
𝑟𝑗
𝜆
𝑗
≤ 𝜃𝑦
𝑟0
, 𝜆
𝑗
≥ 0,

𝑗 = 1, . . . , 𝑛.

(40)

4. Conclusions

In this paper, we presented a series of two-person games,
which further derive various DEA models. Unlike the pre-
vious work, the relationship between DEA models and
the games is more direct, although the Nash solutions do
not generally exist. To sum up, our contribution can be
summarized into the following conclusions.

(1) Classical DEA models like the CCR can be viewed as
the safest solutions of the game processes, where the
DMU

0
is one player and the other player is the central

evaluator. The DMU
0
has the right to choose the
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weights to maximize its performance score, and the
evaluator will try to choose a competitive DMU

𝑗
to

minimize the performance score and has the right to
terminate the game.

(2) If the two players exchange their strategy spaces,
then we can derive nonclassic DEA models. In these
models, DMU

0
will choose the worst practice DMU

as the reference to compare, instead of the best
practice. We can call this kind of models “negative”
DEA or “inverted” DEA like Yamada et al. [15] in
order to differentiate them from the classical DEA
models.
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