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The stability and bifurcation analysis for a delay differential equation of hepatitis B virus infection is investigated. We show the
existence of nonnegative equilibria under some appropriated conditions. The existence of the Hopf bifurcation with delay 𝜏 at the
endemic equilibria is established by analyzing the distribution of the characteristic values. The explicit formulae which determine
the direction of the bifurcations, stability, and the other properties of the bifurcating periodic solutions are given by using the
normal form theory and the center manifold theorem. Numerical simulation verifies the theoretical results.

1. Introduction

Recently, a hepatitis B virus (HBV)modelwith timedelay that
was proposed and investigated in the literature [1–4] caught
the attention of a lot of mathematicians. In practice, the HBV
model has suffered time delay caused by the HBV incubation
period, which varies from 45 to 180 days, and the delay in
viral shedding which both suggest that viral production delay
may significantly impact infection dynamics [1]. Precisely, the
HBV model with time delay reads as the following:

d𝑥 (𝑡)
d𝑡

= 𝜆 − 𝑑𝑥 (𝑡) −

𝛽𝑥 (𝑡) 𝑣 (𝑡)

𝑥 (𝑡) + 𝑒 (𝑡) + 𝑦 (𝑡)

,

d𝑒 (𝑡)
d𝑡

= −𝑑𝑒 (𝑡) +

𝛽𝑥 (𝑡) 𝑣 (𝑡)

𝑥 (𝑡) + 𝑒 (𝑡) + 𝑦 (𝑡)

−

𝛽𝑒
−𝑑𝜏

𝑥 (𝑡 − 𝜏) 𝑣 (𝑡 − 𝜏)

𝑥 (𝑡 − 𝜏) + 𝑒 (𝑡 − 𝜏) + 𝑦 (𝑡 − 𝜏)

,

d𝑦 (𝑡)
d𝑡

=

𝛽𝑒
−𝑑𝜏

𝑥 (𝑡 − 𝜏) 𝑣 (𝑡 − 𝜏)

𝑥 (𝑡 − 𝜏) + 𝑒 (𝑡 − 𝜏) + 𝑦 (𝑡 − 𝜏)

− 𝑎𝑦 (𝑡) ,

d𝑣 (𝑡)
d𝑡

= 𝑘𝑦 (𝑡) − 𝜇𝑣 (𝑡) ,

(1)
where 𝑥(𝑡) and 𝑦(𝑡) represent the number of uninfected cells
and infected cells, respectively. 𝑒(𝑡) represents the number of
exposed cells, that is, the cells that have acquired the virus but
are not yet producing new virions. 𝑣(𝑡) denotes the number
of free virions. 𝜏 is the time delay for virion production. Here,
the positive constant𝜆 is the rate at which newuninfected live
cells are generated. The positive constant 𝑑 is the per capita
death rate of uninfected live cells. Infected live cells are killed
by immune cells at rate 𝑎𝑦 and produce free virions at rate
𝑘𝑦, where 𝑘 is what so-called “burst” constant. Free virions
are cleared by lymphatic and other mechanisms at rate 𝜇𝑣,
where 𝜇 is a constant. 𝛽 > 0 is an incidence rate coefficient
describing the infection process.The initial conditions for the
system (1) are

𝑥 (𝑠) = 𝑥
0

(𝑠) , 𝑦 (𝑠) = 𝑦
0

(𝑠) ,

𝑣 (𝑠) = 𝑣
0

(𝑠) , 𝑠 ∈ [−𝜏, 0] ,

𝐸
0

= 𝛽∫

0

−𝜏

𝑒
𝑑𝑠

𝑣
0

(𝑠) 𝑥
0

(𝑠)

𝑥
0

(𝑠) + 𝑦
0

(𝑠) + 𝑒
0

(s)
d𝑠,

(2)
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where 𝑥
0

, 𝑦
0

, and 𝑣
0

are nonnegative functions. Based on
some observations of virus particles 𝑣, the system (1) is
simplified in [1] as the following:

d𝑥 (𝑡)
d𝑡

= 𝜆 − 𝑑𝑥 (𝑡) −

𝛽𝑘𝑥 (𝑡) 𝑦 (𝑡)

𝜇 [𝑥 (𝑡) + 𝑦 (𝑡)]

,

d𝑒 (𝑡)
d𝑡

= −𝑑𝑒 (𝑡) +

𝛽𝑘𝑥 (𝑡) 𝑦 (𝑡)

𝜇 [𝑥 (𝑡) + 𝑦 (𝑡)]

−

𝛽𝑘𝑒
−𝑑𝜏

𝑥 (𝑡 − 𝜏) 𝑦 (𝑡 − 𝜏)

𝜇 [𝑥 (𝑡 − 𝜏) + 𝑦 (𝑡 − 𝜏)]

,

d𝑦 (𝑡)
d𝑡

=

𝛽𝑘𝑒
−𝑑𝜏

𝑥 (𝑡 − 𝜏) 𝑦 (𝑡 − 𝜏)

𝜇 [𝑥 (𝑡 − 𝜏) + 𝑦 (𝑡 − 𝜏)]

− 𝑎𝑦 (𝑡) .

(3)

A direct computation shows that the basic infection repro-
duction number for the system (2) is

𝑅
0

=

𝛽𝑘𝑒
−𝑑𝜏

𝑎𝜇

. (4)

For the sake of simplicity, let 𝑥 = 𝑥 − (𝜆/𝑑), and the system
(3) is equivalent to the following system:

d𝑥 (𝑡)
d𝑡

= −𝑑𝑥 (𝑡) −

𝛽𝑘 [𝑥 (𝑡) + (𝜆/𝑑)] 𝑦 (𝑡)

𝜇 [𝑥 (𝑡) + (𝜆/𝑑) + 𝑦 (𝑡)]

,

d𝑒 (𝑡)
d𝑡

= −𝑑𝑒 (𝑡) +

𝛽𝑘 [𝑥 (𝑡) + (𝜆/𝑑)] 𝑦 (𝑡)

𝜇 [𝑥 (𝑡) + (𝜆/𝑑) + 𝑦 (𝑡)]

−

𝛽𝑘𝑒
−𝑑𝜏

[𝑥 (𝑡 − 𝜏) + (𝜆/𝑑)] 𝑦 (𝑡 − 𝜏)

𝜇 [𝑥 (𝑡 − 𝜏) + (𝜆/𝑑) + 𝑦 (𝑡 − 𝜏)]

,

d𝑦 (𝑡)
d𝑡

=

𝛽𝑘𝑒
−𝑑𝜏

[𝑥 (𝑡 − 𝜏) + (𝜆/𝑑)] 𝑦 (𝑡 − 𝜏)

𝜇 [𝑥 (𝑡 − 𝜏) + (𝜆/𝑑) + 𝑦 (𝑡 − 𝜏)]

− 𝑎𝑦 (𝑡) ,

(5)

which has two equilibria: the infection-free equilibrium 𝐸
𝑓

=

(0, 0, 0)
𝑇 and the infected equilibrium 𝐸

∗

= (𝑥
∗

, 𝑒
∗

, 𝑦
∗

)
𝑇,

where

𝑥
∗

=

𝜆

𝑑 + 𝑎𝑒
𝑑𝜏

(𝑅
0

− 1)

−

𝜆

𝑑

, 𝑒
∗

=

𝑎 (𝑒
𝑑𝜏

− 1)

𝑑

𝑥
∗

,

𝑦
∗

= (𝑅
0

− 1) 𝑥
∗

.

(6)

The following results, Theorems 1 and 2, come from [1].

Theorem 1. If 𝑅
0

< 1, the infection-free equilibrium 𝐸
𝑓

of the
system (5) is globally asymptotically stable.

Theorem 2. If 𝑅
0

> 1, the chronic infected equilibrium 𝐸
∗ of

the system (5) is locally asymptotically stable.

The initial conditions for the system (5) are

(𝜑
1

(𝜃) , 𝜑
2

(𝜃) , 𝜓 (𝜃)) ∈ 𝐶
+

= 𝐶 ([−𝜏, 0] , 𝑅
3

+0

) ,

𝜑
𝑘

(0) > 0, 𝜓 (0) > 0, 𝑘 = 1, 2,

(7)

where 𝑅3
+0

= {(𝑥
1

, 𝑥
2

, 𝑥
3

) ∈ 𝑅
3

: 𝑥
𝑘

> 0, 𝑘 = 1, 2, 3}.
It is straightforward to show the following.

Lemma 3. The solution of (5) with an initial condition (6) is
nonnegative for all 𝑡 ≥ 0.

It is well known that the studies on the dynamical systems
not only include the discussion of stabilities, attractivity, and
persistence, but also include many dynamical behaviors such
as periodic solutions, bifurcations, and chaos. Particularly,
the properties of periodic solutions appearing through the
Hopf bifurcation in delayed systems are of great interest [5–
7]. In the present paper, our main objective is to investigate
the bifurcation phenomena of the modified hepatitis B virus
(HBV) model with time delay 𝜏.

This paper is organized as follows. In Section 2, by
analyzing the characteristic equation of the linearized system
of the system (5) at the equilibria, we discuss the stability
of the origin and the positive equilibrium and the existence
of the Hopf bifurcations occurring at the chronic infected
equilibrium. In Section 3, the formulae determining the
direction of the Hopf bifurcations and the stability of bifur-
cating periodic solutions on the center manifold are obtained
by using the normal form theory and the center manifold
theorem due to Hassard et al. [8]. To verify the obtained
results, somenumerical simulations are included in Section 4.
The paper ends with a brief discussion.

2. Stability of Equilibria and Existence of
the Hopf Bifurcation

In this section,wewill investigate the stability of the equilibria
and the existence of the Hopf bifurcations occurring at the
chronic infected equilibrium.Then, it is easy to check that the
system (5) has an equilibrium 𝐸

𝑓

(0, 0, 0) for all nonnegative
parameters. The characteristic equation of (5) at 𝐸

𝑓

is

(𝑧 + 𝑑)
2

(𝑧 −

𝛽𝑘𝑒
−𝑑𝜏

𝜇

+ 𝑎) = 0. (8)

Hence,𝐸
𝑓

is a saddlewith dim𝑊
𝑢

(𝐸
𝑓

) = 1, dim𝑊
𝑠

(𝐸
𝑓

) = 2

for𝑅
0

< 1;𝑊𝑢(𝐸
𝑓

) and𝑊𝑠(𝐸
𝑓

) are the local unstable and sta-
ble manifolds of 𝐸

𝑓

, respectively. 𝐸
𝑓

is locally asymptotically
stable for 𝑅

0

< 1. In fact, 𝐸
𝑓

is globally asymptotically stable
for 𝑅
0

< 1, see [1, 4].
Now, we will investigate the stability of the chronic

infected equilibrium 𝐸
∗. Linearizing the system (5) at 𝐸∗

yields the following linear system:

d𝑥 (𝑡)
d𝑡

= −𝑑𝑥 (𝑡) − {

𝛽𝑘𝑦
∗

(𝑡)

𝜇 [𝑥
∗

(𝑡) + (𝜆/𝑑) + 𝑦
∗

(𝑡)]

−

𝛽𝑘 [𝑥
∗

(𝑡) + (𝜆/𝑑)] 𝑦
∗

(𝑡)

𝜇[𝑥
∗

(𝑡) + (𝜆/𝑑) + 𝑦
∗

(𝑡)]
2

}𝑥 (𝑡)
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− {

𝛽𝑘 [𝑥
∗

(𝑡) + (𝜆/𝑑)]

𝜇 [𝑥
∗

(𝑡) + (𝜆/𝑑) + 𝑦
∗

(𝑡)]

−

𝛽𝑘 [𝑥
∗

(𝑡) + (𝜆/𝑑)] 𝑦
∗

(𝑡)

𝜇[𝑥
∗

(𝑡) + (𝜆/𝑑) + 𝑦
∗

(𝑡)]
2

}𝑦 (𝑡) ,

d𝑒 (𝑡)
d𝑡

= −d𝑒 (𝑡) + {
𝛽𝑘𝑦
∗

(𝑡)

𝜇 [𝑥
∗

(𝑡) + (𝜆/𝑑) + 𝑦
∗

(𝑡)]

−

𝛽𝑘 [𝑥
∗

(𝑡) + (𝜆/𝑑)] 𝑦
∗

(𝑡)

𝜇[𝑥
∗

(𝑡) + (𝜆/𝑑) + 𝑦
∗

(𝑡)]
2

}𝑥 (𝑡)

+ {

𝛽𝑘 [𝑥
∗

(𝑡) + (𝜆/𝑑)]

𝜇 [𝑥
∗

(𝑡) + (𝜆/𝑑) + 𝑦
∗

(𝑡)]

+

𝛽𝑘 [𝑥
∗

(𝑡) + (𝜆/𝑑)] 𝑦
∗

(𝑡)

𝜇[𝑥
∗

(𝑡) + (𝜆/𝑑) + 𝑦
∗

(𝑡)]
2

}𝑦 (𝑡)

− {

𝛽𝑘𝑒
−𝑑𝜏

𝑦
∗

(𝑡)

𝜇 [𝑥
∗

(𝑡) + (𝜆/𝑑) + 𝑦
∗

(𝑡)]

−

𝛽𝑘𝑒
−𝑑𝜏

[𝑥
∗

(𝑡) + (𝜆/𝑑)] 𝑦
∗

(𝑡)

𝜇[𝑥
∗

(𝑡) + (𝜆/𝑑) + 𝑦
∗

(𝑡)]
2

}𝑥 (𝑡 − 𝜏)

− {

𝛽𝑘𝑒
−𝑑𝜏

[𝑥
∗

(𝑡) + (𝜆/𝑑)]

𝜇 [𝑥
∗

(𝑡) + (𝜆/𝑑) + 𝑦
∗

(𝑡)]

−

𝛽𝑘𝑒
−𝑑𝜏

[𝑥
∗

(𝑡) + (𝜆/𝑑)] 𝑦
∗

(𝑡)

𝜇[𝑥
∗

(𝑡) + (𝜆/𝑑) + 𝑦
∗

(𝑡)]
2

}𝑦 (𝑡 − 𝜏) ,

d𝑦 (𝑡)
d𝑡

= {

𝛽𝑘𝑒
−𝑑𝜏

𝑦
∗

(𝑡)

𝜇 [𝑥
∗

(𝑡) + (𝜆/𝑑) + 𝑦
∗

(𝑡)]

−

𝛽𝑘𝑒
−𝑑𝜏

[𝑥
∗

(𝑡) + (𝜆/𝑑)] 𝑦
∗

(𝑡)

𝜇[𝑥
∗

(𝑡) + (𝜆/𝑑) + 𝑦
∗

(𝑡)]
2

}𝑥 (𝑡 − 𝜏)

− {

𝛽𝑘𝑒
−𝑑𝜏

[𝑥
∗

(𝑡) + (𝜆/𝑑)]

𝜇 [𝑥
∗

(𝑡) + (𝜆/𝑑) + 𝑦
∗

(𝑡)]

−

𝛽𝑘e−𝑑𝜏 [𝑥∗ (𝑡) + (𝜆/𝑑)] 𝑦∗ (𝑡)
𝜇[𝑥
∗

(𝑡) + (𝜆/𝑑) + 𝑦
∗

(𝑡)]
2

}𝑦 (𝑡 − 𝜏)

− 𝑎𝑦 (𝑡) ,

(9)

whose characteristic equation reads as

𝑧
3

+ (2𝑑 + 𝐴 + 𝑎) 𝑧
2

+ [𝑑 (2𝑎 + 𝐴 + 𝑑) + 𝑎𝐴] 𝑧 + 𝑎𝑑 (𝑑 + 𝐴)

= 𝐵𝑒
−𝑧𝜏

𝑒
−𝑑𝜏

[𝑧
2

+ 2𝑑𝑧 + 𝑑
2

] ,

(10)

with

𝐴 =

𝛽𝑘𝑦
∗

(𝑡)

𝜇 [𝑥
∗

(𝑡) + (𝜆/𝑑) + 𝑦
∗

(𝑡)]

−

𝛽𝑘 [𝑥
∗

(𝑡) + (𝜆/𝑑)] 𝑦
∗

(𝑡)

𝜇[𝑥
∗

(𝑡) + (𝜆/𝑑) + 𝑦
∗

(𝑡)]
2

,

𝐵 =

𝛽𝑘 [𝑥
∗

(𝑡) + (𝜆/𝑑)]

𝜇 [𝑥
∗

(𝑡) + (𝜆/𝑑) + 𝑦
∗

(𝑡)]

−

𝛽𝑘 [𝑥
∗

(𝑡) + (𝜆/𝑑)] 𝑦
∗

(𝑡)

𝜇[𝑥
∗

(𝑡) + (𝜆/𝑑) + 𝑦
∗

(𝑡)]
2

.

(11)

For 𝜏 = 0, characteristic equation (10) reduces to

𝑧
3

+ (2𝑑 + 𝐴 + 𝑎) 𝑧
2

+ [𝑑 (2𝑎 + 𝐴 + 𝑑) + 𝑎𝐴] 𝑧 + 𝑎𝑑 (𝑑 + 𝐴)

= 𝐵 (𝑧
2

+ 2𝑑𝑧 + 𝑑
2

) .

(12)

By the Routh-Hurwitz criterion, we know that all the roots
of (12) have negative real parts, that is, the chronic infected
equilibrium 𝐸

∗ is locally asymptotically stable for 𝜏 = 0. We
now give a definition, which can be found in [2, 9].

Definition 4. The equilibrium 𝐸
∗ is called asymptotically

stable if there is an 𝜀 > 0 such that

sup
𝜏≤𝜃≤∞

[
󵄨
󵄨
󵄨
󵄨
𝜑
1

(𝜃) − 𝑥
∗

0

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝜑
2

(𝜃) − 𝑥
∗

1

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝜓 (𝜃) − 𝑦

∗
󵄨
󵄨
󵄨
󵄨
] < 𝜀 (13)

implies that

lim
𝑡→∞

(𝑥
0

(𝑡) , 𝑥
1

(𝑡) , 𝑦 (𝑡)) = (𝑥
∗

0

, 𝑥
∗

1

, 𝑦
∗

) , (14)

where (𝑥
0

(𝑡), 𝑥
1

(𝑡), 𝑦(𝑡)) is the solution of the system (5) with
an initial condition (6).

Song et al. [10] investigated the distribution of roots of the
following equation:

𝑧
3

+ 𝑚
2

𝑧
2

+ 𝑚
1

𝑧 + 𝑚
0

+ 𝑒
−𝑧𝜏

(𝑛
2

𝑧
2

+ 𝑛
1

𝑧 + 𝑛
0

) = 0, (15)

where 𝑚
𝑗

, 𝑛
𝑗

∈ 𝑅 (𝑗 = 0, 1, 2) and ∑2
𝑗=0

𝑛
2

𝑗

̸= 0. When 𝜏 = 0,
(15) reduces to

𝑧
3

+ (𝑚
2

+ 𝑛
2

) 𝑧
2

+ (𝑚
1

+ 𝑛
1

) 𝑧 + 𝑛
0

= 0. (16)

Obviously, 𝑖𝜔 (𝜔 > 0) is a root of (16) if and only if 𝜔 satisfies

− 𝜔
3

𝑖 − 𝑚
2

𝜔
2

+ 𝑚
1

𝜔𝑖 + 𝑚
0

+ (−𝑛
2

𝜔
2

+ 𝑛
1

𝜔𝑖 + 𝑛
0

) (cos𝜔𝜏 − 𝑖 sin𝜔𝜏) = 0.
(17)

Separating the real and the imaginary parts, we have

𝑚
2

𝜔
2

− 𝑚
0

= −𝑛
2

𝜔
2 cos𝜔𝜏 + 𝑛

1

𝜔 sin𝜔𝜏 + 𝑛
0

cos𝜔𝜏,

−𝜔
3

+ 𝑚
1

𝜔 = −𝑛
2

𝜔
2 sin𝜔𝜏 − 𝑛

1

𝜔 cos𝜔𝜏 + 𝑛
0

sin𝜔𝜏.
(18)
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Squaring the two equations and adding them give

𝜔
6

+ 𝑝𝜔
4

+ 𝑞𝜔
2

+ 𝑟 = 0, (19)

where 𝑝 = 𝑚2
2

− 2𝑚
1

− 𝑛
2

2

, 𝑞 = 𝑚2
1

− 2𝑚
0

𝑚
2

+ 2𝑛
0

𝑛
2

− 𝑛
2

1

, and
𝑟 = 𝑚

2

0

− 𝑛
2

0

. Song et al. [10] obtained the following results on
the distribution of roots of (15) and (19).

Lemma 5. For the polynomial equation (19),

(i) if 𝑟 < 0, then (19) has at least one positive root,

(ii) if 𝑟 ≥ 0 and Δ = 𝑝2 − 3𝑞 ≤ 0, then (19) has no positive
roots,

(iii) if 𝑟 ≥ 0 and Δ = 𝑝
2

− 3𝑞 > 0, then (19) has positive
roots if and only if 𝑧∗

1

= (−𝑝 + √Δ)/3 and ℎ(𝑧∗
1

) ≤ 0,
where

ℎ (𝑧) = 𝑧
3

+ 𝑝𝑧
2

+ 𝑞𝑧 + 𝑟. (20)

Lemma 6. For the transcendental equation (19),

(i) if 𝑟 ≥ 0 and Δ = 𝑝
2

− 3𝑞 ≤ 0, then all roots with
positive real parts of (19) have the same sum as those of
the polynomial equation (16), for all 𝜏,

(ii) if 𝑟 < 0 or 𝑟 ≥ 0,Δ = 𝑝2−3𝑞 > 0, 𝑧∗
1

= (−𝑝+√Δ)/3 >

0 and ℎ(z∗
1

) ≤ 0, then all roots with positive real parts
of (19) have the same sum as those of the polynomial
equation (16), for 𝜏 ∈ [0, 𝜏

0

).

From Lemmas 5 and 6, we can have the following lemma.

Lemma 7. (i) The chronic infected equilibrium 𝐸
∗ of the

system (5) is absolutely stable if and only if the equilibrium𝐸∗ of
the corresponding ordinary differential equation (ODE) system
is asymptotically stable, and the characteristic equation (10) has
no purely imaginary roots for any 𝜏 > 0.

(ii) The chronic infected equilibrium 𝐸
∗ of the system (5) is

conditionally stable if and only if all roots of the characteristic
equation (10) have negative real parts at 𝜏 = 0 such that the
characteristic equation (10) has a pair of purely imaginary roots
𝑖𝜔
0

.
Then, one turns to an investigation of local stability of the

chronic infected equilibrium 𝐸
∗ in the case of 𝑅

0

< 1.

Theorem 8. For 𝑅
0

< 1 holds, there exists a sequence of values
for 𝜏:

𝜏
0

< 𝜏
1

< ⋅ ⋅ ⋅ < 𝜏
𝑘

< ⋅ ⋅ ⋅ , (21)

such that (10) has a pair of purely imaginary roots 𝑖𝜔
0

when
𝜏 = 𝜏
𝑘

, 𝑘 = 0, 1, 2, . . .. That is, the chronic infected equilibrium
𝐸
∗ of the system (5) is conditionally stable.

Proof. From the above arguments, we know that all roots of
characteristic equation (10) have negative real parts at 𝜏 =

0. Next, we will show that there is a unique pair of purely
imaginary roots 𝑖𝜔

0

(𝜔
0

> 0) for characteristic equation (10).

Assume that for some 𝜏 > 0, 𝑖𝜔 (𝜔 > 0) is a root of (10),
which implies that

− 𝑖𝜔
3

− (2𝑑 + 𝐴 + 𝑎) 𝜔
2

+ [𝑑 (2𝑎 + 𝐴 + 𝑑) + 𝑎𝐴] 𝑖𝜔

+ 𝑎𝑑 (𝑑 + 𝐴) = 𝐵𝑒
−𝑖𝜔𝜏

𝑒
−𝑑𝜏

[−𝜔
2

+ 2𝑑𝑖𝜔 + 𝑑
2

] .

(22)

Note that 𝐴 > 0, 𝐵 > 0 because of the positivities of the
parameters 𝜆, 𝜇, 𝜅, 𝛽, 𝑑 and the properties 𝑥∗(𝑡) + (𝜆/𝑑) ≤
[𝑥
∗

(𝑡) + (𝜆/𝑑) + 𝑦
∗

(𝑡)], 𝑦∗(𝑡) ≤ [𝑥∗(𝑡) + (𝜆/𝑑) + 𝑦∗(𝑡)].
Separating the real and imaginary parts and using Euler’s

formula give

− (2𝑑 + 𝐴 + 𝑎) 𝜔
2

+ 𝑎𝑑 (𝑑 + 𝐴)

= 𝐵 (𝑑
2

− 𝜔
2

) 𝑒
−𝑑𝜏 cos𝜔𝜏 + 2𝐵𝑑𝜔𝑒−𝑑𝜏 sin𝜔𝜏,

− 𝜔
3

+ [𝑑 (2𝑎 + 𝐴 + 𝑑) + 𝑎𝐴]𝜔

= 2𝐵𝑑𝜔𝑒
−𝑑𝜏 cos𝜔𝜏 − 𝐵 (𝑑2 − 𝜔2) 𝑒−𝑑𝜏 sin𝜔𝜏,

(23)

which is equivalent to

𝜔
6

+ 𝑝𝜔
4

+ 𝑞𝜔
2

+ 𝑟 = 0, (24)

where

𝑝 = (2𝑑 + 𝐴 + 𝑎)
2

− 2 [𝑑 (2𝑎 + 𝐴 + 𝑑) + 𝑎𝐴]

= 𝐴
2

+ 2𝑑
2

+ 𝑎
2

+ 2𝑑𝐴 > 0,

𝑞 = [𝑑 (2𝑎 + 𝐴 + 𝑑) + 𝑎𝐴]
2

− 2 (2𝑑 + 𝐴 + 𝑎) 𝑎𝑑 (𝑑 + 𝐴) ,

𝑟 = −𝑒
−2𝑑𝜏

[𝐵
2

(𝑑
2

− 𝜔
2

)

2

+ 8𝐵
2

𝑑
2

] < 0.

(25)

In order to solve (24), we first consider the following:

𝜔
6

+ 𝑝𝜔
4

+ 𝑞𝜔
2

+ 𝑟
0

= 0, (26)

where

𝑟
0

= − [𝐵
2

(𝑑
2

− 𝜔
2

)

2

+ 8𝐵
2

𝑑
2

] < 0. (27)

By Lemma 5, there is a unique positive 𝜔
0

satisfying (26).
From (26), we get the corresponding 𝜏󸀠

𝑘

> 0 such that (26)
has a pair of purely imaginary roots

𝜏
󸀠

𝑘

=

1

𝜔
0

arccos { (𝑎𝑑 (𝑑 + 𝐴) − (2𝑑 + 𝐴 + 𝑎) 𝜔2
0

− 𝜔
3

0

+ [𝑑 (2𝑎 + 𝐴 + 𝑑) + 𝑎𝐴]𝜔
0

)

×(𝐵
2

(𝑑
2

− 𝜔
2

)

2

+ 8𝐵
2

𝑑
2

)

−1

} +

2𝑘𝜋

𝜔
0

(𝑘 = 0, 1, 2, . . .) .

(28)

Therefore, by using Rouché’s theorem [3], there is a unique
positive 𝜏

𝑘

= 𝜏
󸀠

𝑘

+ 𝑜(1/𝑘) satisfying (26), that is, the
characteristic equation (10) has a pair of purely imaginary
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roots of the form ±𝑖𝜔
0

as 𝑘 → ∞. By Lemma 7, we complete
the proof of Theorem 8.

Next, we turn to show that

d(Re 𝜆)
d𝜏

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜏=𝜏𝑘

> 0. (29)

This will signify that there exists at least one eigenvalue with
positive real part 𝜏 = 𝜏

𝑘

. We first consider the following:

𝑧
3

+ (2𝑑 + 𝐴 + 𝑎) 𝑧
2

+ [𝑑 (2𝑎 + 𝐴 + 𝑑) + 𝑎𝐴] 𝑧 + 𝑎𝑑 (𝑑 + 𝐴)

= 𝐵𝑒
−𝑧𝜏

[𝑧
2

+ 2𝑑𝑧 + 𝑑
2

] .

(30)

Differentiating (30) with respect to 𝜏, we have

(

d𝜆
d𝜏
)

−1

=

3𝑧
2

+ 2 (𝐴 + 2𝑑 + 𝑎) 𝑧 + [𝑑 (2𝑎 + 𝐴 + 𝑑) + 𝑎𝐴]

−𝐵𝑧(𝑑 + 𝑧)
2

𝑒
−𝑧𝜏

+

𝜏𝑒
−𝑧𝜏

𝐵(𝑧 + 𝑑)
2

−𝐵𝑧(𝑑 + 𝑧)
2

𝑒
−𝑧𝜏

−

2𝑒
−𝑧𝜏

𝐵 (𝑧 + 𝑑)

−𝐵𝑧(𝑑 + 𝑧)
2

𝑒
−𝑧𝜏

= ((𝑑 + 𝑧) {3𝑧
2

+ 2 (𝐴 + 2𝑑 + 𝑎) 𝑧

+ [𝑑 (2𝑎 + 𝐴 + 𝑑) + 𝑎𝐴] })

× (−𝐵𝑧(𝑑 + 𝑧)
3

𝑒
−𝑧𝜏

)

−1

−

2𝑒
−𝑧𝜏

𝐵(𝑧 + 𝑑)
2

−𝐵𝑧(𝑑 + 𝑧)
3

𝑒
−𝑧𝜏

−

𝜏

𝑧

= − (𝑑 {3𝑧
2

+ 2 (𝐴 + 2𝑑 + 𝑎) 𝑧

+ [𝑑 (2𝑎 + 𝐴 + 𝑑) + 𝑎𝐴] })

× ((𝑑 + 𝑧) [𝑧
3

+ (2𝑑 + 𝐴 + 𝑎) 𝑧
2

+ [𝑑 (2𝑎 + 𝐴 + 𝑑) + 𝑎𝐴] 𝑧

+ 𝑎𝑑 (𝑑 + 𝐴) ])

−1

− (𝑧
2

− [𝑑 (2𝑎 + 𝐴 + 𝑑) + 𝑎𝐴] 𝑧 − 2𝑎𝑑 (𝑑 + 𝐴))

× ((𝑑 + 𝑧) [𝑧
3

+ (2𝑑 + 𝐴 + 𝑎) 𝑧
2

+ [𝑑 (2𝑎 + 𝐴 + 𝑑) + 𝑎𝐴] 𝑧

+ 𝑎𝑑 (𝑑 + 𝐴) ])

−1

−

𝜏

𝑧

.

(31)

For the sake of simplicity, let 𝑎
1

= 𝐴 + 2𝑑 + 𝑎, 𝑎
2

= 𝑑(2𝑎 +

𝐴 + 𝑑) + 𝑎𝐴, and 𝑎
3

= 𝑎𝑑(𝑑 + 𝐴), and (28) can be written as
follows:

(

d𝜆
d𝜏
)

−1

= −

𝑑 {3𝑧
2

+ 2𝑎
1

𝑧 + 𝑎
2

}

(𝑑 + 𝑧) [𝑧
3

+ 𝑎
1

𝑧
2

+ 𝑎
2

𝑧 + 𝑎
3

]

−

𝑧
2

− 𝑎
2

𝑧 − 2𝑎
3

(𝑑 + 𝑧) [𝑧
3

+ 𝑎
1

𝑧
2

+ 𝑎
2

𝑧 + 𝑎
3

]

−

𝜏

𝑧

=

− (3𝑑 + 1) 𝑧
2

− (2𝑎
1

𝑑 − 𝑎
2

) 𝑧 − (𝑎
2

𝑑 − 2𝑎
3

)

(𝑑 + 𝑧) [𝑧
3

+ 𝑎
1

𝑧
2

+ 𝑎
2

𝑧 + 𝑎
3

]

−

𝜏

𝑧

.

(32)

Therefore,

sign{ d (Re 𝜆)
d𝜏

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜏=𝜏𝑘

} = sign{Re(d𝜆
d𝜏
)

−1

}

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
𝜏=𝜏𝑘

= sign Re{
− (3𝑑 + 1) 𝑧

2

− (2𝑎
1

𝑑 − 𝑎
2

) 𝑧 − (𝑎
2

𝑑 − 2𝑎
3

)

(𝑑 + 𝑧) [𝑧
3

+ 𝑎
1

𝑧
2

+ 𝑎
2

𝑧 + 𝑎
3

]

−

𝜏

𝑧

}

= sign Re {( ([(3𝑑 + 1) 𝜔2
0

− 𝑖 (2𝑎
1

𝑑 − 𝑎
2

) 𝜔
0

− (𝑎
2

𝑑 − 2𝑎
3

) ] (𝑑 − 𝑖𝜔
0

))

× ( (𝑑
2

+ 𝜔
2

0

)

× [(𝑎
2

3

− 𝑎
1

𝜔
2

0

)

2

+ (𝑎
2

𝜔
0

− 𝜔
3

0

)

2

])

−1

)

× [(𝑎
2

3

− 𝑎
1

𝜔
2

0

) − 𝑖 (𝑎
2

𝜔
0

− 𝜔
3

0

)]}

= sign
{

{

{

(3𝑑 + 1) 𝜔
6

0

+ 𝑝
2

𝜔
4

0

+ 𝐵𝑑
2

𝜔
2

0

(𝑑
2

+ 𝜔
2

0

) [(𝑎
2

3

− 𝑎
1

𝜔
2

0

)
2

+ (𝑎
2

𝜔
0

− 𝜔
3

0

)
2

]

}

}

}

> 0.

(33)

This root of characteristic equation (9) crosses the imaginary
axis from the left to the right as 𝜏 continuously varies from a
number less than 𝜏

𝑘

to one greater than 𝜏
𝑘

again by Rouché’s
theorem [3]. Therefore, the transversality condition holds,
and the conditions for Hopf bifurcation [11] are then satisfied
at 𝜏 = 𝜏

𝑘

. In conclusion, we have the following stability and
bifurcation results to (5).

Theorem 9. Suppose that 𝑅
0

< 1 holds. Then, for each fixed
𝜏 > 0, there exists a sequence of values for 𝜏:

𝜏
0

< 𝜏
1

< ⋅ ⋅ ⋅ < 𝜏
𝑘

< ⋅ ⋅ ⋅ , (34)

such that the positive equilibrium 𝐸
∗ is asymptotically stable

when 𝜏 ∈ [0, 𝜏
0

), and unstable when 𝜏 > 𝜏
0

. Furthermore,
(5) undergoes a Hopf bifurcation at 𝐸∗ when 𝜏 = 𝜏

𝑘

= 𝜏
󸀠

𝑘

+

𝑜(1/𝑘), 𝑘 = 0, 1, 2, . . ., where 𝜏󸀠
𝑘

is defined by (28).
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3. Properties of the Hopf Bifurcations

In this section, we will study the properties of the Hopf
bifurcations by using the normal theory and the center
manifold theorem due to Hassard et al. [8]. Let 𝑥

1

= 𝑥 − 𝑥
∗,

𝑥
2

= 𝑒−𝑒
∗, 𝑥
3

= 𝑦−𝑦
∗, 𝑥
𝑖

(𝑡) = 𝑥
𝑖

(𝜏𝑡), 𝜏 = 𝜏
𝑘

+𝜗, and 𝜗 ∈ 𝑅 =
(−∞,∞).Then, 𝜗 = 0 is theHopf bifurcation value of system.
We drop the tildes for simplification of notations, then the
system (5) becomes an functional differential equation in
𝐶([−1, 0], 𝑅

3

) as

𝑥̇ (𝑡) = 𝐿
𝜗

(𝑥
𝑡

) + 𝑓 (𝜗, 𝑥
𝑡

) , (35)

where 𝐶([−1, 0], 𝑅
3

) is the Banach space of continuous
functions mapping the interval [−𝜏, 0] into 𝑅

3, 𝑥(𝑡) =

(𝑥
1

(𝑡), 𝑥
2

(𝑡), 𝑥
3

(𝑡))
𝑇

∈ 𝑅
3, 𝑥
𝑡

(𝑠) = 𝑥(𝑡 + 𝑠) for 𝑠 ∈ [−𝜏, 0]

and 𝐿
𝜗

: 𝐶 → 𝑅
3, 𝑓 : 𝑅 × 𝐶 → 𝑅

3 are read, respectively, as

𝐿
𝜗

(𝜙) = (𝜏
𝑘

+ 𝜗)(

− (𝑑 + 𝐴) 0 −𝐵

𝐴 −𝑑 𝐵

0 0 −𝑎

)(

𝜙
1

(0)

𝜙
2

(0)

𝜙
3

(0)

)

+ (𝜏
𝑘

+ 𝜗)(

0 0 0

−𝐴𝑒
−𝑑𝜏𝑘

0 𝐵𝑒
−𝑑𝜏𝑘

𝐴𝑒
−𝑑𝜏𝑘

0 −𝐵𝑒
−𝑑𝜏𝑘

)(

𝜙
1

(−1)

𝜙
2

(−1)

𝜙
3

(−1)

) ,

(36)

𝑓 (𝜗, 𝑥
𝑡

)

= (𝜏
𝑘

+ 𝜗)

×(

(

−

𝛽𝑘 [𝜙1 (0) + (𝜆/𝑑)] 𝜙3 (0)

𝜇 [𝜙1 (0) + (𝜆/𝑑) + 𝜙3 (0)]

𝛽𝑘 [𝜙1 (0) + (𝜆/𝑑)] 𝜙3 (0)

𝜇 [𝜙1 (0)+(𝜆/𝑑) + 𝜙3 (0)]

−

𝛽𝑘𝑒

−𝑑𝜏𝑘
[𝜙1 (−1) + (𝜆/𝑑)] 𝜙3 (−1)

𝜇 [𝜙1 (−1)+(𝜆/𝑑) + 𝜙3 (−1)]

𝛽𝑘𝑒

−𝑑𝜏𝑘
[𝜙1 (−1) + (𝜆/𝑑)] 𝜙3 (−1)

𝜇 [𝜙1 (−1) + (𝜆/𝑑) + 𝜙3 (−1)]

)

)

.

(37)

Obviously, 𝐿
𝜗

is a continuous linear functionmapping𝐶 into
𝑅
3, by the Riesz representation theorem, there exists a 3 × 3

matrix function 𝜂(𝑠, 𝜇) of bounded variation for 𝑠 ∈ [−1, 0],
such that

𝐿
𝜗

(𝜙) = ∫

0

−1

d𝜂 (𝑠, 𝜇) 𝜙 (𝑠) . (38)

In fact, we can choose

𝜂 (𝑠, 𝜗) = (𝜏
𝑘

+ 𝜗)(

− (𝑑 + 𝐴) 0 −𝐵

𝐴 −𝑑 𝐵

0 0 −𝑎

)𝛿 (𝑠)

+ (𝜏
𝑘

+ 𝜗)(

0 0 0

−𝐴𝑒
−𝑑𝜏𝑘

0 𝐵𝑒
−𝑑𝜏𝑘

𝐴𝑒
−𝑑𝜏𝑘

0 −𝐵𝑒
−𝑑𝜏𝑘

)𝛿 (𝑠 + 1) ,

(39)

where 𝛿(⋅) denotes the Dirac delta function.
If 𝜙 is any given function in 𝐶 and 𝑥(𝜙) is the unique

solution of the linearized equation 𝑥̇(𝑡) = 𝐿
𝜗

(𝑥
𝑡

) of (35) with

initial function 𝜙 at zero, then the solution operator 𝑇(𝑡) :
𝐶 → 𝐶 is defined by 𝑇(𝑡)𝜙 = 𝑥

𝑡

(𝜙), for all 𝑡 ≥ 0. It is obvious
that 𝑇(𝑡), 𝑡 ≥ 0, is a strongly continuous semigroup of linear
transformation on [0, +∞) and the infinitesimal generator
𝐴
𝜗

of 𝑇(𝑡), 𝑡 ≥ 0, is

𝐴
𝜗

=

{
{
{
{

{
{
{
{

{

d𝜙 (𝑠)
d𝑠

, 𝑠 ∈ [−1, 0)

∫

0

−1

d𝜂 (𝑠, 𝜇) 𝜙 (𝑠) , 𝑠 = 0.

(40)

For 𝜙 ∈ 𝐶
1

([−1, 0], 𝑅
3

), the space of functions mapping
the interval [−1, 0] into 𝑅3 which have a continuous first
derivative also defines

𝑅
𝜗

(𝜙) = {

0, 𝑠 ∈ [−1, 0)

𝑓 (𝜗, 𝜙) , 𝑠 = 0.

(41)

Then, system (35) is equivalent to

𝑥̇ (𝑡) = 𝐴
𝜗

𝑥
𝑡

+ 𝑅
𝜗

𝑥
𝑡

. (42)

For 𝜓 ∈ 𝐶
1

([−1, 0], (𝑅
3

)
∗

), the space of functions mapping
interval [0, 1] into the three-dimensional row vectors which
have continuous first derivative defines

𝐴
∗

𝜗

=

{
{
{
{

{
{
{
{

{

−

d𝜓 (𝑠)
d𝑠

, 𝑠 ∈ (0, 1]

∫

0

−1

d𝜂𝑇 (𝑡, 0) 𝜙 (−𝑡) , 𝑠 = 0,

(43)

and a bilinear inner product

⟨𝜓 (𝜁) , 𝜙 (𝑠)⟩ = 𝜓 (0) 𝜙 (0) − ∫

0

−1

∫

𝑠

𝜉=0

𝜓 (𝜉 − 𝑠) d𝜂 (𝑠) 𝜙 (𝜉) d𝜉,

(44)

where 𝜂(𝑠) = 𝜂(𝑠, 0).Then,𝐴(0) and𝐴∗ are adjoint operators.
By the discussion in Section 2, we know that 𝑧 are eigenvalues
of𝐴(0). Hence, they are also eigenvalues of 𝐴∗. We first need
to compute the eigenvectors of 𝐴(0) and 𝐴∗ corresponding
to 𝑖𝜔

0

𝜏
𝑘

and −𝑖𝜔
0

𝜏
𝑘

, respectively. Suppose that 𝑞(𝑠) =

(1, 𝑎, 𝑏)
𝑇

𝑒
𝑖𝜔0𝜏𝑘𝑠 is the eigenvectors of 𝐴(0) corresponding to

𝑖𝜔
0

𝜏
𝑘

, then 𝐴(0)𝑞(𝑠) = 𝑖𝜔
0

𝜏
𝑘

𝑞(𝑠). Then, from the definition
of 𝐴(0) and (36), (38), and (39), we have

𝜏
𝑘

(

− (𝑑 + 𝐴) 0 −𝐵

𝐴 −𝑑 𝐵

0 0 −𝑎

)𝑞 (0)

+ 𝜏
𝑘

(

0 0 0

−𝐴𝑒
−𝑑𝜏𝑘

0 𝐵𝑒
−𝑑𝜏𝑘

𝐴𝑒
−𝑑𝜏𝑘

0 −𝐵𝑒
−𝑑𝜏𝑘

)𝑞 (−1)

= 𝑖𝜔
0

𝜏
𝑘

𝑞 (0) .

(45)
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For 𝑞(−1) = 𝑞(0)𝑒−𝑖𝜔0𝜏𝑘 , then we obtain

𝜌 = −1 +

1

𝐵

+

𝐴 (𝑑 − 𝑖𝜔
0

) (𝑎 + 𝑖𝜔
0

)

𝐵 (d2 + 𝜔2
0

)

,

𝜎 = −

𝐴 + 𝑑 + 𝑖𝜔
0

𝐵

.

(46)

Similarly, we can obtain the eigenvector 𝑞
∗

(𝑠) =

𝐷(1, 𝜌
∗

, 𝜎
∗

)𝑒
𝑖𝜔0𝜏𝑘 of 𝐴∗ corresponding to −𝑖𝜔

0

𝜏
𝑘

, where

𝜌
∗

= 𝜌 = −1 +

1

𝐵

+

𝐴 (𝑑 − 𝑖𝜔
0

) (𝑎 + 𝑖𝜔
0

)

𝐵 (𝑑
2

+ 𝜔
2

0

)

,

𝜎
∗

= 𝜎 = −

𝐴 + 𝑑 + 𝑖𝜔
0

𝐵

.

(47)

We need to determine the value of 𝐷 to ensure that
⟨𝑞
∗

(𝜍), 𝑞(𝑠)⟩ = 1. By (44), we have

⟨𝑞
∗

(𝜍) , 𝑞 (𝑠)⟩

= 𝐷 (1, 𝜌
∗

, 𝜎
∗

) (1, 𝜌, 𝜎)
𝑇

− ∫

0

−1

∫

𝑠

𝜉=0

𝐷(1, 𝜌
∗

, 𝜎
∗

) 𝑒
−𝑖𝜔0𝜏𝑘(𝜉−𝑠)d𝜂 (𝑠) (1, 𝜌, 𝜎)𝑇

× 𝑒
𝑖𝜔0𝜏𝑘𝜉d𝜉

= 𝐷[1 +
󵄨
󵄨
󵄨
󵄨
𝜌
󵄨
󵄨
󵄨
󵄨

2

+ |𝜎|
2

− ∫

0

−1

(1, 𝜌
∗

, 𝜎
∗

) 𝑠𝑒
𝑖𝜔0𝜏𝑘𝑠d𝜂 (𝑠) (1, 𝜌, 𝜎)𝑇]

= 𝐷 [1 +
󵄨
󵄨
󵄨
󵄨
𝜌
󵄨
󵄨
󵄨
󵄨

2

+ |𝜎|
2

+ 𝑒
−𝑑𝜏𝑘

𝑒
−𝑖𝜔0𝜏𝑘

(𝐴 − 𝐵𝜎) (𝜌
∗

− 𝜎
∗

)] .

(48)

Therefore, we can choose𝐷 as

𝐷 =

1

1 +
󵄨
󵄨
󵄨
󵄨
𝜌
󵄨
󵄨
󵄨
󵄨

2

+ |𝜎|
2

+ 𝑒
−𝑑𝜏𝑘𝑒
−𝑖𝜔0𝜏𝑘 (𝐴 − 𝐵𝜎) (𝜌

∗

− 𝜎
∗

)

. (49)

Next, we will compute the coordinate to describe the
center manifold 𝐶

0

at 𝜗 = 0. Let 𝑥
𝑡

be the solution of (42)
when 𝜗 = 0. Define

𝜐 (𝑡) = ⟨𝑞
∗

(𝜍) , 𝑥
𝑡

⟩ , 𝑊 (𝑡, 𝑠) = 𝑥
𝑡

(𝑠) − 2Re {𝜐 (𝑡) 𝑞 (𝑠)} .
(50)

On the center manifold 𝐶
0

, we have

𝑊(𝑡, 𝑠) = 𝑊 (𝜐 (𝑡) , 𝜐 (𝑡) , 𝑠) , (51)

where

𝑊(𝜐 (𝑡) , 𝜐 (𝑡) , 𝑠)

= 𝑊
20

(𝑠)

𝜐
2

2

+𝑊
10

(𝑠) 𝜐𝜐 +𝑊
02

(𝑠)

𝜐
2

2

+ ⋅ ⋅ ⋅ .

(52)

𝜐 and 𝜐 are local coordinates for the center manifold 𝐶
0

in
the direction of 𝑞∗ and 𝑞∗. Note that 𝑊 is real if 𝑥

𝑡

is real.
We only consider real solutions. For solution 𝑥

𝑡

∈ 𝐶
0

of (42),
since 𝜗 = 0, we have

̇𝜐 (𝑡) = 𝑖𝜔
0

𝜏
𝑘

𝜐 (𝑡) + 𝑞
∗

(0) 𝑓 (0,𝑊 (𝜐, 𝜐, 0) + 2Re {𝜐𝑞 (𝑠)})

:= 𝑖𝜔
0

𝜏
𝑘

𝜐 (𝑡) + 𝑞
∗

(0) 𝑓
0

(𝜐, 𝜐) .

(53)

For convenience of calculation, let

𝑞
∗

(0) 𝑓
0

(𝜐, 𝜐)

= 𝑓
20

𝜐
2

2

+ 𝑓
11

(𝑠) 𝜐𝜐 + 𝑓
02

(𝑠)

𝜐
2

2

+ 𝑓
21

𝜐
2

𝜐

2

+ ⋅ ⋅ ⋅ .

(54)

On the other hand, it follows from (50) and (52) that

𝑥
𝑡

(𝑠) = 𝑊 (𝜐, 𝜐, 0) + 2Re {𝜐𝑞 (𝑠)}

= 𝑊
20

(𝑠)

𝜐
2

2

+𝑊
10

(𝑠) 𝜐𝜐 +𝑊
02

(𝑠)

𝜐
2

2

+ (1, 𝑎, 𝑏)
𝑇

𝑒
𝑖𝜔0𝜏𝑘𝑠

𝜐 + (1, 𝑎, 𝑏)

𝑇

𝑒
−𝑖𝜔0𝜏𝑘𝑠

𝜐 + ⋅ ⋅ ⋅ .

(55)

Notice that

𝜙
1

(0) = 𝑞
1

(0) 𝑣 + 𝑞
1

(0) 𝑣 + 𝑊
(1)

20

(0)

𝑣
2

2

+𝑊
(1)

11

(0) 𝑣𝑣 +𝑊
(1)

02

(0)

𝑣
2

2

+ ⋅ ⋅ ⋅ ,

(56)
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𝜙
2

(0) = 𝑞
2

(0) 𝑣 + 𝑞
2

(0) 𝑣 + 𝑊
(2)

20

(0)

𝑣
2

2

+𝑊
(2)

11

(0) 𝑣𝑣 +𝑊
(2)

02

(0)

𝑣
2

2

+ ⋅ ⋅ ⋅ ,

(57)

𝜙
3

(0) = 𝑞
3

(0) 𝑣 + 𝑞
3

(0) 𝑣 + 𝑊
(3)

20

(0)

𝑣
2

2

+𝑊
(3)

11

(0) 𝑣𝑣 +𝑊
(3)

02

(0)

𝑣
2

2

+ ⋅ ⋅ ⋅ ,

(58)

𝜙
1

(−1) = 𝑞
1

(0) 𝑣𝑒
−𝑖𝜔

∗

0
𝜏

∗

0
+ 𝑞
1

(0) 𝑣𝑒
𝑖𝜔

∗

0
𝜏

∗

0

+𝑊
(1)

20

(−1)

𝑣
2

2

+𝑊
(1)

11

(−1) 𝑣𝑣 + ⋅ ⋅ ⋅ ,

(59)

𝜙
2

(−1) = 𝑞
2

(0) 𝑣𝑒
−𝑖𝜔

∗

0
𝜏

∗

0
+ 𝑞
2

(0) 𝑣𝑒
𝑖𝜔

∗

0
𝜏

∗

0

+𝑊
(2)

20

(−1)

𝑣
2

2

+𝑊
(2)

11

(−1) 𝑣𝑣 + ⋅ ⋅ ⋅ ,

(60)

𝜙
3

(−1) = 𝑞
3

(0) 𝑣𝑒
−𝑖𝜔

∗

0
𝜏

∗

0
+ 𝑞
3

(0) 𝑣𝑒
𝑖𝜔

∗

0
𝜏

∗

0

+𝑊
(3)

20

(−1)

𝑣
2

2

+𝑊
(3)

11

(−1) 𝑣𝑣 + ⋅ ⋅ ⋅ ,

(61)

Taking (37) into account, we can obtain that

𝑞
∗

(0) 𝑓
0

(𝜐, 𝜐) = 𝑞
∗

(0) 𝑓 (0, 𝑥
𝑡

)

= 𝜏
𝑘

𝐷(1, 𝜌
∗

, 𝜎
∗

)

(
(
(
(

(

−

𝛽𝑘 [𝜙
1

(0) + (𝜆/𝑑)] 𝜙
3

(0)

𝜇 [𝜙
1

(0) + (𝜆/𝑑) + 𝜙
3

(0)]

𝛽𝑘 [𝜙
1

(0) + (𝜆/𝑑)] 𝜙
3

(0)

𝜇 [𝜙
1

(0) + (𝜆/𝑑) + 𝜙
3

(0)]

−

𝛽𝑘𝑒
−𝑑𝜏𝑘

[𝜙
1

(−1) + (𝜆/𝑑)] 𝜙
3

(−1)

𝜇 [𝜙
1

(−1) + (𝜆/𝑑) + 𝜙
3

(−1)]

𝛽𝑘𝑒
−𝑑𝜏𝑘

[𝜙
1

(−1) + (𝜆/𝑑)] 𝜙
3

(−1)

𝜇 [𝜙
1

(−1) + (𝜆/𝑑) + 𝜙
3

(−1)]

)
)
)
)

)

= 𝜏
𝑘

𝐷{−

𝛽𝑘 [𝜙
1

(0) + (𝜆/𝑑)] 𝜙
3

(0)

𝜇 [𝜙
1

(0) + (𝜆/𝑑) + 𝜙
3

(0)]

+ 𝜌
∗

𝛽𝑘 [𝜙
1

(0) + (𝜆/𝑑)] 𝜙
3

(0)

𝜇 [𝜙
1

(0) + (𝜆/𝑑) + 𝜙
3

(0)]

− 𝜌
∗

𝛽𝑘𝑒
−𝑑𝜏𝑘

[𝜙
1

(−1) + (𝜆/𝑑)] 𝜙
3

(−1)

𝜇 [𝜙
1

(−1) + (𝜆/𝑑) + 𝜙
3

(−1)]

+ 𝜎
∗

𝛽𝑘𝑒
−𝑑𝜏𝑘

[𝜙
1

(−1) + (𝜆/𝑑)] 𝜙
3

(−1)

𝜇 [𝜙
1

(−1) + (𝜆/𝑑) + 𝜙
3

(−1)]

}

= (𝜌
∗

− 1)

𝜏
𝑘

𝐷𝛽𝑘

𝜇Δ
0

[

𝜆

𝑑

+ 𝑞
1

(0) 𝑣 + 𝑞
1

(0) 𝑣 + 𝑊
(1)

20

(0)

𝑣
2

2

+𝑊
(1)

11

(0) 𝑣𝑣 +𝑊
(1)

02

(0)

𝑣
2

2

+ ⋅ ⋅ ⋅]

× [𝑞
3

(0) 𝑣 + 𝑞
3

(0) 𝑣 + 𝑊
(3)

20

(0)

𝑣
2

2

+𝑊
(3)

11

(0) 𝑣𝑣 +𝑊
(3)

02

(0)

𝑣
2

2

+ ⋅ ⋅ ⋅]

× [

𝜆

𝑑

+ 𝑞
1

(0) 𝑣 + 𝑞
1

(0) 𝑣 + 𝑊
(1)

20

(0)

𝑣
2

2

+𝑊
(1)

11

(0) 𝑣𝑣 +𝑊
(1)

02

(0)

𝑣
2

2

+ ⋅ ⋅ ⋅ + 𝑞
3

(0) 𝑣

+ 𝑞
3

(0) 𝑣 + 𝑊
(3)

20

(0)

𝑣
2

2

+𝑊
(3)

11

(0) 𝑣𝑣 +𝑊
(3)

02

(0)

𝑣
2

2

+ ⋅ ⋅ ⋅]

+ (𝜎
∗

− 𝜌
∗

)

𝜏
𝑘

𝐷𝛽𝑘𝑒
−𝑑𝜏𝑘

𝜇Δ
−1

× [

𝜆

𝑑

+ 𝑞
1

(0) 𝑣𝑒
−𝑖𝜔

∗

0
𝜏

∗

0
+ 𝑞
1

(0) 𝑣𝑒
𝑖𝜔

∗

0
𝜏

∗

0
+𝑊
(1)

20

(0)

𝑣
2

2

+𝑊
(1)

11

(0) 𝑣𝑣 + ⋅ ⋅ ⋅]

× [𝑞
3

(0) 𝑣𝑒
−𝑖𝜔

∗

0
𝜏

∗

0
+ 𝑞
3

(0) 𝑣𝑒
𝑖𝜔

∗

0
𝜏

∗

0
+𝑊
(3)

20

(0)

𝑣
2

2

+𝑊
(3)

11

(0) 𝑣𝑣 +𝑊
(3)

02

(0)

𝑣
2

2

+ ⋅ ⋅ ⋅]
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× [

𝜆

𝑑

+ 𝑞
1

(0) 𝑒
−𝑖𝜔

∗

0
𝜏

∗

0
+ 𝑞
1

(0) 𝑣𝑒
𝑖𝜔

∗

0
𝜏

∗

0
+𝑊
(1)

20

(0)

𝑣
2

2

+𝑊
(1)

11

(0) 𝑣𝑣 +𝑊
(1)

02

(0)

𝑣
2

2

+ ⋅ ⋅ ⋅

+ 𝑞
3

(0) 𝑣𝑒
−𝑖𝜔

∗

0
𝜏

∗

0
+ 𝑞
3

(0) 𝑣𝑒
𝑖𝜔

∗

0
𝜏

∗

0
+𝑊
(3)

20

(0)

𝑣
2

2

+𝑊
(3)

11

(0) 𝑣𝑣 +𝑊
(3)

02

(0)

𝑣
2

2

+ ⋅ ⋅ ⋅] ,

(62)

where

Δ
0

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜆

𝑑

+ 𝑞
1

(0) 𝑣 + 𝑞
1

(0) 𝑣 + 𝑊
(1)

20

(0)

𝑣
2

2

+𝑊
(1)

11

(0) 𝑣𝑣

+𝑊
(1)

02

(0)

𝑣
2

2

+ ⋅ ⋅ ⋅ + 𝑞
3

(0) 𝑣 + 𝑞
3

(0) 𝑣

+ 𝑊
(3)

20

(0)

𝑣
2

2

+𝑊
(3)

11

(0) 𝑣𝑣 +𝑊
(3)

02

(0)

𝑣
2

2

+ ⋅ ⋅ ⋅

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

,

Δ
−1

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜆

𝑑

+ 𝑞
1

(0) 𝑣𝑒
−𝑖𝜔

∗

0
𝜏

∗

0
+ 𝑞
3

(0) 𝑣𝑒
𝑖𝜔

∗

0
𝜏

∗

0
+𝑊
(1)

20

(0)

𝑣
2

2

+𝑊
(1)

11

(0) 𝑣𝑣 +𝑊
(1)

02

(0)

𝑣
2

2

+ ⋅ ⋅ ⋅

+ 𝑞
3

(0) 𝑣 + 𝑞
3

(0) 𝑣 + 𝑊
(3)

20

(0)

𝑣
2

2

+𝑊
(3)

11

(0) 𝑣𝑣 +𝑊
(3)

02

(0)

𝑣
2

2

+ ⋅ ⋅ ⋅

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

.

(63)

Straightforward calculation leads to

𝑞
∗

(0) 𝑓
0

(𝜐, 𝜐)

= (𝜌
∗

− 1)

𝛽𝑘

𝜇Δ
0

× [

𝜆

𝑑

(𝑞
1

(0) + 𝑞
3

(0)) 𝑞
3

(0) 𝑣
2

+

𝜆

𝑑

𝑞
1

(0) 𝑞
3

(0) 𝑣
2

+ (

𝜆

𝑑

)

2

𝑊
(3)

20

(0)

𝑣
2

2

+

𝜆

𝑑

(𝑞
1

(0) + 𝑞
3

(0)) 𝑞
3

(0) 𝑣𝑣

+ 2Re{𝜆
𝑑

𝑞
1

(0) 𝑞
3

(0)} 𝑣𝑣

+ (

𝜆

𝑑

)

2

𝑊
(3)

11

(0) 𝑣𝑣 + ⋅ ⋅ ⋅]

+ (𝜎
∗

− 𝜌
∗

)

𝜏
𝑘

𝐷𝛽𝑘𝑒
−𝑑𝜏𝑘

𝜇Δ
−1

× [

𝜆

𝑑

(𝑞
1

(0) + 𝑞
3

(0)) 𝑞
3

(0) 𝑣
2

+

𝜆

𝑑

𝑞
1

(0) 𝑞
3

(0) 𝑣
2

+ (

𝜆

𝑑

)

2

𝑊
(3)

20

(−1)

𝑣
2

2

+

𝜆

𝑑

(𝑞
1

(0) + 𝑞
3

(0)) 𝑞
3

(0) 𝑣𝑣

+ 2Re{𝜆
𝑑

𝑞
1

(0) 𝑞
3

(0)} 𝑣𝑣

+ (

𝜆

𝑑

)

2

𝑊
(3)

11

(−1) 𝑣𝑣 + ⋅ ⋅ ⋅] .

(64)

Comparing the coefficients with (54), we have

𝑓
20

= (𝜌
∗

− 1)

𝛽𝑘

𝜇Δ
0

× [

𝜆

𝑑

(𝑞
1

(0) + 𝑞
3

(0)) 𝑞
3

(0) +

𝜆

𝑑

𝑞
1

(0) 𝑞
3

(0)

+

1

2

(

𝜆

𝑑

)

2

𝑊
(3)

20

(0)]

+ (𝜎
∗

− 𝜌
∗

)

𝜏
𝑘

𝐷𝛽𝑘𝑒
−𝑑𝜏𝑘

𝜇Δ
−1

× [

𝜆

𝑑

(𝑞
1

(0) + 𝑞
3

(0)) 𝑞
3

(0) +

𝜆

𝑑

𝑞
1

(0) 𝑞
3

(0)

+

1

2

(

𝜆

𝑑

)

2

𝑊
(3)

20

(−1)] ,

𝑓
11

=

𝜆

𝑑

(𝑞
1

(0) + 𝑞
3

(0)) 𝑞
3

(0) + 2Re{𝜆
𝑑

𝑞
1

(0) 𝑞
3

(0)}

+ (

𝜆

𝑑

)

2

𝑊
(3)

11

(−1) +

𝜆

𝑑

(𝑞
1

(0) + 𝑞
3

(0)) 𝑞
3

(0)

+ 2Re{𝜆
𝑑

𝑞
1

(0) 𝑞
3

(0)} + (

𝜆

𝑑

)

2

𝑊
(3)

11

(−1) ,

𝑓
02

= (𝜌
∗

− 1)

𝛽𝑘

𝜇Δ
0
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× [

𝜆

𝑑

(𝑞
1

(0) + 𝑞
3

(0)) 𝑞
3

(0) +

𝜆

𝑑

𝑞
1

(0) 𝑞
3

(0)

+ (

𝜆

𝑑

)

2

𝑊
(3)

20

(0)

𝑣
2

2

]

+ (𝜎
∗

− 𝜌
∗

)

𝜏
𝑘

𝐷𝛽𝑘𝑒
−𝑑𝜏𝑘

𝜇Δ
−1

× [

𝜆

𝑑

(𝑞
1

(0) + 𝑞
3

(0)) 𝑞
3

(0) +

𝜆

𝑑

𝑞
1

(0) 𝑞
3

(0)

+

1

2

(

𝜆

𝑑

)

2

𝑊
(3)

20

(−1)] ,

𝑓
21

= (𝜌
∗

− 1)

𝛽𝑘

𝜇Δ
0

× [

𝜆

𝑑

(𝑞
1

(0) + 𝑞
3

(0)) 𝑞
3

(0) +

𝜆

𝑑

𝑞
1

(0) 𝑞
3

(0)

+ (

𝜆

𝑑

)

2

𝑊
(3)

20

(0)

𝑣
2

2

]

+ (𝜎
∗

− 𝜌
∗

)

𝜏
𝑘

𝐷𝛽𝑘𝑒
−𝑑𝜏𝑘

𝜇Δ
−1

× [

𝜆

𝑑

(𝑞
1

(0) + 𝑞
3

(0)) 𝑞
3

(0) +

𝜆

𝑑

𝑞
1

(0) 𝑞
3

(0)

+

1

2

(

𝜆

𝑑

)

2

𝑊
(3)

20

(−1)] .

(65)

Since𝑊
20

(𝑠) and𝑊
11

(𝑠) are in 𝑓
21

, we still need to compute
them. From (40) and (44), we have

𝑊̇ = 𝑥̇
𝑡

− ̇𝜐𝑞 −
̇
𝜐 𝑞

= {

𝐴𝑊 − 2Re {𝑞∗ (0) 𝑓
0

𝑞 (𝑠)} , 𝑠 ∈ [−1, 0) ,

𝐴𝑊 − 2Re {𝑞∗ (0) 𝑓
0

𝑞 (𝑠)} + 𝑓
0

, 𝑠 = 0,

(66)

that is,

𝑊̇ = 𝐴𝑊 +𝐻(𝜐, 𝜐, 𝑠) , (67)

where

𝐻(𝜐, 𝜐, 𝑠) = 𝐻
20

(𝑠)

𝜐
2

2

+ 𝐻
10

(𝑠) 𝜐𝜐 + 𝐻
02

(𝑠)

𝜐
2

2

+ ⋅ ⋅ ⋅ .

(68)

Substituting the corresponding series into (67) and compar-
ing the coefficients, we have

(𝐴 − 2𝑖𝜔
0

𝜏
𝑘

)𝑊
20

(𝑠) = −𝐻
20

(𝑠) ,

𝐴𝑊
11

(𝑠) = −𝐻
11

(𝑠) , . . . .

(69)

From (67), we know that for 𝑠 ∈ [−1, 0),

𝐻(𝜐, 𝜐, 𝑠) = −𝑞
∗

(𝑠) 𝑓
0

𝑞 (𝑠) − 𝑞
∗

(s) 𝑓
0

𝑞 (𝑠)

= −𝑓 (𝜐, 𝜐) 𝑞 (𝑠) − 𝑓 (𝜐, 𝜐) 𝑞 (𝑠) .

(70)

Comparing the coefficients with (68) gives

𝐻
20

(𝑠) = −𝑓
20

𝑞 (𝑠) − 𝑓
02

𝑞 (𝑠) ,

𝐻
11

(𝑠) = −𝑓
11

𝑞 (𝑠) − 𝑓
11

𝑞 (𝑠) .

(71)

From the definition of 𝐴 and (69) and (71), we obtain

𝑊̇
20

(s) = 2𝑖𝜔
0

𝜏
𝑘

𝑊
20

(𝑠) + 𝑓
20

𝑞 (𝑠) + 𝑓
02

𝑞 (𝑠) . (72)

For 𝑞(𝑠) = (1, 𝜌, 𝜎)𝑇𝑒𝑖𝜔0𝜏𝑘𝑠, hence

𝑊
20

(𝑠) =

𝑖𝑓
20

𝜔
0

𝜏
𝑘

𝑞 (0) 𝑒
𝑖𝜔0𝜏𝑘𝑠

+

𝑖𝑓
02

3𝜔
0

𝜏
𝑘

𝑞 (0) 𝑒
−𝑖𝜔0𝜏𝑘𝑠

𝑞 (𝑠) + 𝐸
1

𝑒
2𝑖𝜔0𝜏𝑘𝑠

,

(73)

where 𝐸
1

= (𝐸
(1)

1

, 𝐸
(2)

1

, 𝐸
(3)

1

) is a constant vector. Similarly, we
know that

𝑊
11

(𝑠) = −

𝑖𝑓
11

𝜔
0

𝜏
𝑘

𝑞 (0) 𝑒
𝑖𝜔0𝜏𝑘𝑠

+

𝑖𝑓
11

𝜔
0

𝜏
𝑘

𝑞 (0) 𝑒
−𝑖𝜔0𝜏𝑘𝑠

𝑞 (𝑠) + 𝐸
2

,

(74)

where 𝐸
2

= (𝐸
(1)

2

, 𝐸
(2)

2

, 𝐸
(3)

2

) is a constant vector.
In what follows, we will calculate 𝐸

1

and 𝐸
2

. From the
definition of 𝐴 and (69), we have

∫

0

−1

d𝜂𝑇 (𝑠)𝑊
20

(𝑠) = 2𝑖𝜔
0

𝜏
𝑘

𝑊
20

(0) − 𝐻
20

(0) , (75)

∫

0

−1

d𝜂𝑇 (𝑠)𝑊
11

(𝑠) = −𝐻
11

(0) , (76)

where 𝜂(𝑠) = 𝜂(𝑠, 0). When 𝑠 = 0, we obtain that

𝐻(𝜐, 𝜐, 0) = −2Re {𝑞∗ (0) 𝑓
0

𝑞 (0)} + 𝑓
0

= −𝑞
∗

(0) 𝑓
0

𝑞 (0) − 𝑞
∗

(0) 𝑓
0

𝑞 (0) + 𝑓
0

,

(77)

that is,

𝐻
20

(𝑠)

𝜐
2

2

+ 𝐻
11

(𝑠) 𝜐𝜐 + 𝐻
02

(𝑠)

𝜐
2

2

+ ⋅ ⋅ ⋅

= −𝑞 (0) (𝑓
20

𝜐
2

2

+ 𝑓
11

(𝑠) 𝜐𝜐 + 𝑓
02

(𝑠)

𝜐
2

2

+ 𝑓
21

𝜐
2

𝜐

2

⋅ ⋅ ⋅)

− 𝑞 (0) (𝑓
20

𝜐
2

2

+ 𝑓
11

(𝑠) 𝜐𝜐 + 𝑓
02

(𝑠)

𝜐
2

2

+ 𝑓
21

𝜐
2

𝜐

2

⋅ ⋅ ⋅)

+ 𝑓
0

,

(78)

with

𝑓
0

= 𝜏
𝑘

(

(

−

𝛽𝑘 [𝜙1 (0) + (𝜆/𝑑)] 𝜙3 (0)

𝜇 [𝜙1 (0) + (𝜆/𝑑) + 𝜙3 (0)]

𝛽𝑘 [𝜙1 (0)+(𝜆/𝑑)] 𝜙3(0)

𝜇 [𝜙1 (0)+(𝜆/𝑑)+𝜙3(0)]

−

𝛽𝑘𝑒

−𝑑𝜏𝑘
[𝜙1 (−1)+(𝜆/𝑑)] 𝜙3(−1)

𝜇 [𝜙1 (−1)+(𝜆/𝑑)+𝜙3(−1)]

𝛽𝑘𝑒

−𝑑𝜏𝑘
[𝜙1 (−1) + (𝜆/𝑑)] 𝜙3 (−1)

𝜇 [𝜙1 (−1) + (𝜆/𝑑) + 𝜙3 (−1)]

)

)

.

(79)
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From (50), we have

𝑓
0

=(

𝑓
1

𝑣

2

𝑓
2

𝑣

2

𝑓
3

𝑣

2

)𝜐
2

+(

𝑓
1

𝑣𝑣

𝑓
2

𝑣𝑣

𝑓
3

𝑣𝑣

)𝑣𝑣 + ⋅ ⋅ ⋅ , (80)

where

𝑓
1

𝑣

2 = −

𝛽𝑘

𝜇Δ
0

[

𝜆

𝑑

(𝑞
1

(0) + 𝑞
3

(0)) 𝑞
3

(0) +

𝜆

𝑑

𝑞
1

(0) 𝑞
3

(0)

+

1

2

(

𝜆

𝑑

)

2

× (

𝑖𝑓
20

𝜔
0

𝜏
𝑘

𝑞 (0) 𝑒
𝑖𝜔0𝜏𝑘𝑠

+

𝑖𝑓
02

3𝜔
0

𝜏
𝑘

𝑞 (0) 𝑒
−𝑖𝜔0𝜏𝑘𝑠

𝑞 (𝑠)

+ 𝐸
1

𝑒
2𝑖𝜔0𝜏𝑘𝑠

)] ,

(81)

𝑓
2

𝑣

2 =

𝛽𝑘

𝜇Δ
0

[

𝜆

𝑑

(𝑞
1

(0) + 𝑞
3

(0)) 𝑞
3

(0) +

𝜆

𝑑

𝑞
1

(0) 𝑞
3

(0)

+

1

2

(

𝜆

𝑑

)

2

× (

𝑖𝑓
20

𝜔
0

𝜏
𝑘

𝑞 (0) 𝑒
𝑖𝜔0𝜏𝑘𝑠

+

𝑖𝑓
02

3𝜔
0

𝜏
𝑘

𝑞 (0) 𝑒
−𝑖𝜔0𝜏𝑘𝑠

𝑞 (𝑠)

+ 𝐸
1

𝑒
2𝑖𝜔0𝜏𝑘𝑠

)]

+

𝜆

𝑑

(𝑞
1

(0) + 𝑞
3

(0)) 𝑞
3

(0)

+ 2Re{𝜆
𝑑

𝑞
1

(0) 𝑞
3

(0)} + (

𝜆

𝑑

)

2

𝑊
(3)

11

(−1)

+

𝜆

𝑑

(𝑞
1

(0) + 𝑞
3

(0)) 𝑞
3

(0)

+ 2Re{𝜆
𝑑

𝑞
1

(0) 𝑞
3

(0)} + (

𝜆

𝑑

)

2

𝑊
(3)

11

(−1) ,

(82)

𝑓
3

𝑣

2 = −

𝛽𝑘𝑒
−𝑑𝜏𝑘

𝜇Δ
−1

[

𝜆

𝑑

(𝑞
1

(0) + 𝑞
3

(0)) 𝑞
3

(0) +

𝜆

𝑑

𝑞
1

(0) 𝑞
3

(0)

+

1

2

(

𝜆

𝑑

)

2

× (

𝑖𝑓
20

𝜔
0

𝜏
𝑘

𝑞 (0) 𝑒
𝑖𝜔0𝜏𝑘𝑠

+

𝑖𝑓
02

3𝜔
0

𝜏
𝑘

𝑞 (0) 𝑒
−𝑖𝜔0𝜏𝑘𝑠

𝑞 (𝑠)

+ 𝐸
1

𝑒
2𝑖𝜔0𝜏𝑘𝑠

)] .

(83)

By (70) and (71), we have

𝐻
20

(𝑠) = −𝑓
20

𝑞 (𝑠) − 𝑓
02

𝑞 (𝑠) + 𝑓
𝑣

2 ,

𝐻
11

(𝑠) = −𝑓
11

𝑞 (𝑠) − 𝑓
11

𝑞 (𝑠) + 𝑓
𝑣𝑣

.

(84)

For 𝑖𝜔
0

𝜏
𝑘

is the eigenvalue of 𝐴(0) and 𝑞(0) is the
corresponding eigenvector, we obtain

[𝑖𝜔
0

𝜏
𝑘

𝐼 − ∫

0

−1

𝑒
𝑖𝜔0𝜏𝑘𝑠d𝜂 (𝑠)] 𝑞 (0) = 0,

[−𝑖𝜔
0

𝜏
𝑘

𝐼 − ∫

0

−1

𝑒
−𝑖𝜔0𝜏𝑘𝑠d𝜂 (𝑠)] 𝑞 (0) = 0.

(85)

So substituting (66) and (73) into (68), we obtain

[2𝑖𝜔
0

𝜏
𝑘

𝐼 − ∫

0

−1

𝑒
2𝑖𝜔0𝜏𝑘𝑠d𝜂 (s)] 𝐸

1

=(

𝑓
1

𝑣

2

𝑓
2

𝑣

2

𝑓
3

𝑣

2

), (86)

that is,

(

2𝑖𝜔
0

𝜏
𝑘

+ (𝑑 + 𝐴) 0 𝐵

𝐴 (𝑒
−𝑑𝜏𝑘

𝑒
−2𝑖𝜔0𝜏𝑘

− 1) 2𝑖𝜔
0

𝜏
𝑘

+ 𝑑 𝐵 (𝑒
−𝑑𝜏𝑘

𝑒
−2𝑖𝜔0𝜏𝑘

− 1)

−𝐴𝑒
−𝑑𝜏𝑘

𝑒
−2𝑖𝜔0𝜏𝑘

0 2𝑖𝜔
0

𝜏
𝑘

+ 𝑎 + 𝐵𝑒
−𝑑𝜏𝑘

𝑒
−2𝑖𝜔0𝜏𝑘

)𝐸
1

=(

𝑓
1

𝑣

2

𝑓
2

𝑣

2

𝑓
3

𝑣

2

). (87)

It follows that
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𝐸
(1)

1

=

1

𝑀
1

det(

𝑓
1

𝑣

2 0 𝐵

𝑓
2

𝑣

2 2𝑖𝜔
0

𝜏
𝑘

+ 𝑑 𝐵 (𝑒
−𝑑𝜏𝑘

𝑒
−2𝑖𝜔0𝜏𝑘

− 1)

𝑓
3

𝑣

2 0 2𝑖𝜔
0

𝜏
𝑘

+ 𝑎 + 𝐵𝑒
−𝑑𝜏𝑘

𝑒
−2𝑖𝜔0𝜏𝑘

),

𝐸
(2)

1

=

1

𝑀
1

det(

2𝑖𝜔
0

𝜏
𝑘

+ (𝑑 + 𝐴) 𝑓
1

𝑣

2 𝐵

𝐴 (𝑒
−𝑑𝜏𝑘

𝑒
−2𝑖𝜔0𝜏𝑘

− 1) 𝑓
2

𝑣

2 𝐵 (𝑒
−𝑑𝜏𝑘

𝑒
−2𝑖𝜔0𝜏𝑘

− 1)

−𝐴𝑒
−𝑑𝜏𝑘

𝑒
−2𝑖𝜔0𝜏𝑘

𝑓
3

𝑣

2 2𝑖𝜔
0

𝜏
𝑘

+ 𝑎 + 𝐵𝑒
−𝑑𝜏𝑘

𝑒
−2𝑖𝜔0𝜏𝑘

),

𝐸
(3)

1

=

1

𝑀
1

det(

2𝑖𝜔
0

𝜏
𝑘

+ (𝑑 + 𝐴) 0 𝑓
1

𝑣

2

𝐴(𝑒
−𝑑𝜏𝑘

𝑒
−2𝑖𝜔0𝜏𝑘

− 1) 2𝑖𝜔
0

𝜏
𝑘

+ 𝑑 𝑓
2

𝑣

2

−𝐴𝑒
−𝑑𝜏𝑘

𝑒
−2𝑖𝜔0𝜏𝑘

0 𝑓
3

𝑣

2

),

(88)

where

𝑀
1

= det(

2𝑖𝜔
0

𝜏
𝑘

+ (𝑑 + 𝐴) 0 𝐵

𝐴 (𝑒
−𝑑𝜏𝑘

𝑒
−2𝑖𝜔0𝜏𝑘

− 1) 2𝑖𝜔
0

𝜏
𝑘

+ 𝑑 𝐵 (𝑒
−𝑑𝜏𝑘

𝑒
−2𝑖𝜔0𝜏𝑘

− 1)

−𝐴𝑒
−𝑑𝜏𝑘

𝑒
−2𝑖𝜔0𝜏𝑘

0 2𝑖𝜔
0

𝜏
𝑘

+ 𝑎 + 𝐵𝑒
−𝑑𝜏𝑘

𝑒
−2𝑖𝜔0𝜏𝑘

). (89)

Similarly, substituting (67) and (74) into (69), we get

𝐸
(1)

2

=

1

𝑀
2

det(

𝑓
1

𝑣𝑣

0 𝐵

𝑓
2

𝑣𝑣

𝑑 𝐵 (𝑒
−𝑑𝜏𝑘

𝑒
−𝑖𝜔0𝜏𝑘

− 1)

𝑓
3

𝑣𝑣

0 𝑎 + 𝐵𝑒
−𝑑𝜏𝑘

𝑒
−𝑖𝜔0𝜏𝑘

),

𝐸
(2)

2

=

1

𝑀
2

det(

(𝑑 + 𝐴) 𝑓
1

𝑣𝑣

𝐵

𝐴 (𝑒
−𝑑𝜏𝑘

𝑒
−𝑖𝜔0𝜏𝑘

− 1) 𝑓
2

𝑣𝑣

𝐵 (𝑒
−𝑑𝜏𝑘

𝑒
−𝑖𝜔0𝜏𝑘

− 1)

−𝐴𝑒
−𝑑𝜏𝑘

𝑒
−𝑖𝜔0𝜏𝑘

𝑓
3

𝑣𝑣

𝑎 + 𝐵𝑒
−𝑑𝜏𝑘

𝑒
−𝑖𝜔0𝜏𝑘

),

𝐸
(3)

2

=

1

𝑀
2

det(

(𝑑 + 𝐴) 0 𝑓
1

𝑣𝑣

𝐴(𝑒
−𝑑𝜏𝑘

𝑒
−𝑖𝜔0𝜏𝑘

− 1) 𝑑 𝑓
2

𝑣𝑣

−𝐴𝑒
−𝑑𝜏𝑘

𝑒
−𝑖𝜔0𝜏𝑘

0 𝑓
3

𝑣𝑣

),

(90)

where
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𝑀
2

= det(

(𝑑 + 𝐴) 0 𝐵

𝐴 (𝑒
−𝑑𝜏𝑘

𝑒
−𝑖𝜔0𝜏𝑘

− 1) 𝑑 𝐵 (𝑒
−𝑑𝜏𝑘

𝑒
−𝑖𝜔0𝜏𝑘

− 1)

−𝐴𝑒
−𝑑𝜏𝑘

𝑒
−𝑖𝜔0𝜏𝑘

0 𝑎 + 𝐵𝑒
−𝑑𝜏𝑘

𝑒
−𝑖𝜔0𝜏𝑘

). (91)

Thus, we can determine𝑊
20

(𝑠) and𝑊
11

(𝑠) from (66) and
(67). Furthermore, we can compute 𝑓

21

by (55). Thus, we can
compute the following values:

𝑐
(1)

(0) =

𝑖

2𝜔
0

𝜏
𝑘

(𝑓
20

𝑓
11

− 2
󵄨
󵄨
󵄨
󵄨
𝑓
11

󵄨
󵄨
󵄨
󵄨

2

−

󵄨
󵄨
󵄨
󵄨
𝑓
02

󵄨
󵄨
󵄨
󵄨

2

3

) +

𝑓
21

2

,

𝜗
2

= −

Im {𝑐
1

(0)}

Re {𝜆󸀠 (𝜏
𝑘

)}

,

𝜎
2

= 2Re {𝑐
(1)

(0)} ,

𝑇
2

= −

Im {𝑐
1

(0)} + 𝜗
2

Re {𝜆󸀠 (𝜏
𝑘

)}

𝜔
0

𝜏
𝑘

.

(92)

Then from [8], we can give the properties of bifurcating
periodic solution in the center manifold at the critical values
𝜏
𝑘

. More specifically, we have the following theorem.

Theorem 10. The properties of the Hopf bifurcation are deter-
mined by the values in (75).

(1) 𝜗
2

determines the directions of the Hopf bifurcation:
if 𝜗
2

> 0 (𝜗
2

< 0), then the Hopf bifurcation is
supercritical (subcritical), and the bifurcating periodic
solutions exist for 𝜏 > 𝜏

𝑘

(𝜏 < 𝜏
𝑘

).
(2) 𝜗
2

determines the stability of the bifurcating periodic
solutions: the bifurcating periodic solutions are stable
(unstable) if 𝜗

2

> 0 (𝜗
2

< 0).
(3) 𝑇
2

determines the period of the bifurcating periodic
solutions: the period increases (decreases) if 𝑇

2

>

0 (𝑇
2

< 0).

4. Numerical Simulations

As an example, we consider the system given in [1] with 𝜆 =
1.5 × 10

5, 𝑑 = 0.011, 𝛽 = 9.8 × 10
−7, 𝑘 = 150, 𝑎 = 0.1,

and 𝜇 = 0.67, then, there is a chronic infected equilibrium𝐸
∗

which satisfies the conditions indicated inTheorem 9. When
𝜏 = 0, the chronic infected equilibrium 𝐸

∗

= (−1.3515 ×

10
7

, −1.0120 × 10
5

, 1.2090 × 10
5

) is asymptotically stable
(see Figure 1(a) which is the amplified part of Figure 1(b)
during time interval [0, 30]). It follows from the discussion in
Section 2 that 𝜔

0

= 0.6029, 𝜏
0

= 8.1786 and 𝜆(𝜏
0

) = 0.2103 −

0.3942𝑖. From the formulae (92) in Section 3, it follows that
𝑐
1

(0) = −0.1052−0.3061𝑖,𝜗
2

= 8.2963 > 0, 𝜎
2

= −0.2103 < 0,
and 𝑇

2

= 1.6737 > 0. Thus, the chronic infected equilibrium
𝐸
∗ is asymptotically stable when 0 ≤ 𝜏 < 𝜏

0

as illustrated by
the computer simulations (see Figures 2 and 3).
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Figure 1: The response of the system (5) initial data
(1.2𝑒7, 1.8𝑒6, 6𝑒5)

𝑇, when 𝜏 = 0.

When 𝜏 passes through the critical value 𝜏
0

, 𝐸∗ loses
its stability, and a Hopf bifurcation occurs, that is, a family
of periodic solutions bifurcate from 𝐸

∗. Since 𝜗
2

and 𝜎
2

=

−0.2103 < 0, the Hopf bifurcation is supercritical, and the
direction of the bifurcation is 𝜏 > 𝜏

0

, and these bifurcating
periodic solutions from𝐸

∗ at 𝜏
0

are stable, which are depicted
in Figures 2 and 3.

In Figure 4, we try to reflect the changes of stability of
chronic infected equilibrium 𝐸

∗ as 𝜏 increases from 0 to 9. In
Figure 4, each vertical blue strip corresponds to component
of 𝑥(𝑡), 𝑒(𝑡), and 𝑦(𝑡) at each 𝜏, respectively. From Figure 3,
we see that if 𝜏 ∈ (0, 8.1786 4293), approximately, the vertical
amplitudes of 𝑥(𝑡), 𝑒(𝑡), and 𝑦(𝑡) are as small as a point,
suggesting that 𝐸∗ is asymptotically stable; if 𝜏 increases, the
vertical amplitudes of 𝑥(𝑡), 𝑒(𝑡), and 𝑦(𝑡) will become larger
and larger, showing that𝐸∗ becomesmore andmore unstable.
In particular, if 𝜏 = 8.1787, points are well distributed
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Figure 3: 3-phase portrait of the system (5) initial data
(1.2𝑒7, 1.8𝑒6, 6𝑒5)

𝑇, when 𝜏 = 8.1786 < 𝜏
0

.

around the positive equilibrium, and their amplitudes are all
equivalent. This shows that periodic solution near positive
equilibrium may occur.

5. Conclusions

In this paper, a delay differential equation of hepatitis B
virus infection is formulated. We analyzed the stability of the
equilibria; a sufficient condition was given to guarantee the
global stability of the origin. Local stability of the chronic
infected equilibrium was considered. By choosing time delay
𝜏 as a bifurcated parameter, a sufficient condition has been
presented for checking the existence of the Hopf bifurcation.
The explicit formulae determining the direction, stability, and
other properties of bifurcating periodic solutions were given

0 100 200 300 400 500 600 700

0

0.5

1

1.5

2

2.5

So
lu

tio
n
𝑦

𝑥(𝑡)

𝑒(𝑡)

𝑦(𝑡)

Time 𝑡

−0.5

−1

−2

−1.5

×108 (𝑥(𝑡), 𝑒(𝑡), 𝑦(𝑡)) phase space plot of system (5)

Figure 4: The response of the system (5) initial data
(1.2𝑒7, 1.8𝑒6, 6𝑒5)

𝑇, when 𝜏 = 8.21 > 𝜏
0

.

0
1

2
3

40
5

4

0

2

Solution 𝑦 Time 𝑡

3-phase portrait of system (5)

×106

×108

×108

−2

−4

−5

−10 −1

Figure 5: 3-phase portrait of the system (5) initial data
(1.2𝑒7, 1.8𝑒6, 6𝑒5)

𝑇, when 𝜏 = 8.21 > 𝜏
0

.

by using the normal form theory and the center manifold
theorem. Some numerical simulations were performed to
support the analytical results found. Although bifurcations
in a population dynamics with delay has been investigated
by many researchers. However, to the best of our knowledge,
there are few papers on the bifurcation of delay differential
equation of hepatitis B virus infection dynamics with delay.
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