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We consider an implicit algorithm for the split fixed point and convex feasibility problems. Strong convergence theorem is obtained.

1. Introduction

Due to their broad applicability in many areas, especially in
signal processing (e.g., phase retrieval) and image restoration,
the split feasibility problems continue to receive great atten-
tion; see, for example, [1–6]. The present paper is devoted
to this topic. Now we recall that the split feasibility problem
originally introduced by Censor and Elfving [7] is to find 𝑥†
such that

𝑥
†
∈ C, A𝑥

†
∈ Q, (1)

where C and Q are two closed convex subsets of two Hilbert
spaces H1 and H2, respectively, and A : H1 → H2 is
a bounded linear operator. A special case of (1) is when
Q = {𝑏} is singleton, and then (1) is reduced to the convexly
constrained linear inverse problem

𝑥
†
∈ C, A𝑥

†
= 𝑏, (2)

which has received considerable attention. We can use
projected Landweber algorithm to solve (2). The projected
Landweber algorithm generates a sequence {𝑥𝑘} in such away
that

𝑥
𝑘+1
= projC (𝑥

𝑘
+ 𝛾A
∗
(𝑏 − A𝑥

𝑘
)) , (3)

where projC denotes the nearest point projection from H1
onto C, 𝛾 > 0 is a parameter such that 0 < 𝛾 < 2/‖A‖

2,

andA∗ is the transpose ofA. When the system (2) is reduced
to the unconstrained linear system

A𝑥
∗
= 𝑏, (4)

then the projected Landweber algorithm is turned to the
Landweber algorithm

𝑥
𝑘+1
= 𝑥
𝑘
+ 𝛾A
∗
(𝑏 − A𝑥

𝑘
) . (5)

Note that (1) is equivalent to the fixed point equation

𝑥
†
= projC (𝐼 − 𝜂A

∗
(𝐼 − projQ)A) 𝑥

†
. (6)

Using this relation, we can suggest the following iterative
algorithm:

𝑥
𝑘+1
= projC (𝑥

𝑘
− 𝜁A
∗
(𝐼 − projQ)A𝑥

𝑘
) , 𝑘 ∈ N, (7)

which is refereed as CQ algorithm and was devised by Byrne
[8]. CQ algorithm has been extensively studied; see, for
instance, [9–11].

The CQ algorithm (7) is proved to converge weakly but
fails to converge in norm in general infinite-dimensional
Hilbert spaces H1 and H2. Tikhonov’s regularization method
can solve this problem. First, we define a convex function 𝑓
by

𝑓 (𝑥) =

1

2





A𝑥 − projQA𝑥






2 (8)
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with its gradient

∇𝑓 (𝑥) = A
∗
(𝐼 − projQ)A𝑥 (9)

and consider the minimization problem

min
𝑥∈C

𝑓 (𝑥) . (10)

It is known that 𝑥∗ ∈ C solves (1) if and only if 𝑓(𝑥∗). We
know that (10) is ill-posed. So regularization is needed. We
consider Tikhonov’s regularization:

min
𝑥∈C

𝑓𝛼 (𝑥) :=
1

2





(𝐼 − projQ)A𝑥






2
+

1

2

𝛼‖𝑥‖
2
, (11)

where 𝛼 > 0 is the regularization parameter.The gradient∇𝑓𝛼
of 𝑓𝛼 is given by

∇𝑓𝛼 (𝑥) = ∇𝑓 (𝑥) + 𝛼𝑥 = A
∗
(𝐼 − projQ)A𝑥 + 𝛼𝑥. (12)

Define a Picard iterates

𝑥
𝑘+1

𝛼
= projC (𝐼 − 𝛿 (A

∗
(𝐼 − projQ)A + 𝛼𝐼)) 𝑥

𝑘

𝛼
, 𝑘 ∈ N.

(13)

Xu [12] proves that if (1) is solvable, then as 𝑘 → ∞, 𝑥𝑘
𝛼
→

𝑥𝛼 and consequently the strong lim𝛼→0𝑥𝛼 exists and is the
minimum-norm solution of (1). Note that (13) is a double-
step iteration. Xu [12] introduced a single step regularized
method:

𝑥
𝑘+1
= projC (𝐼 − 𝛿𝑘∇𝑓𝜉𝑘) 𝑥

𝑘

= projC ((1 − 𝜉𝑘𝛿𝑘) 𝑥
𝑘

−𝛿𝑘A
∗
(𝐼 − projQ)A𝑥

𝑘
) , 𝑘 ∈ N.

(14)

It is shown that the sequence {𝑥𝑘} generated by (14) converges
to the solution of (1) provided that the parameters {𝜉𝑘} ⊂
(0, 1) and {𝛿𝑘} ⊂ (0, 𝜉𝑛/(‖𝐴‖

2
+ 𝜉𝑛)) satisfy

lim
𝑘→∞

𝜉𝑘 = 0,

∞

∑

𝑘=1

𝜉𝑘𝛿𝑘 = ∞,

lim
𝑘→∞





𝛿𝑘+1 − 𝛿𝑘





+ 𝛿𝑘





𝜉𝑘+1 − 𝜉𝑘






(𝜉𝑘+1𝛿𝑘+1)
2

= 0.

(15)

Inspired by (14), Ceng et al. [3] introduced the following
relaxed extragradient method:

𝑦
𝑘
= projC (𝑥

𝑘
− 𝜉𝑘 (∇𝑓 (𝑥𝑘) + 𝜃𝑘𝑥

𝑘
)) ,

𝑥
𝑘+1
= 𝛽𝑘𝑥

𝑘
+ 𝛾𝑘𝑦
𝑘
+ 𝛿𝑘projC

× (𝑥
𝑘
− 𝜉𝑘 (∇𝑓 (𝑦

𝑘
) + 𝜃𝑘𝑦

𝑘
)) , 𝑘 ∈ N,

(16)

where the sequences {𝜃𝑘} ⊂ (0, 1), {𝛽𝑘} ⊂ (0, 1), {𝛾𝑘} ⊂

(0, 1), {𝛿𝑘} ⊂ (0, 1), and {𝜉𝑘} ⊂ (0, 𝜃𝑘/(‖𝐴‖
2
+ 𝜃𝑘)
2
) satisfy

the conditions

lim
𝑘→∞

𝜃𝑘 = lim
𝑘→∞

𝜉𝑘 = lim
𝑘→∞





𝜉𝑘+1 − 𝜉𝑘





+ 𝜉𝑘





𝜃𝑘+1 − 𝜃𝑘






𝜃
3

𝑘+1
𝜉
2

𝑘+1
𝛿𝑘+1

= 0,

∞

∑

𝑘=1

𝜃
2

𝑘
𝜉𝑘𝛿𝑘 = ∞,

2𝛿𝑘

‖𝐴‖
2
+ 𝜃𝑘

≤ 𝛾𝑘𝜉𝑘

(17)

for all 𝑘 ∈ N. Ceng et al. proved that the sequence {𝑥𝑘}
generated by (16) converges to the solution of (1) which
is the the minimum-norm element. Recently, Ceng et al.
[13] further introduced another regularization for the split
feasibility problem and the fixed point problem:

𝑦
𝑘
= projC (𝑥

𝑘
− 𝛾𝑘 (∇𝑓 (𝑥𝑘) + 𝜃𝑘𝑥

𝑘
)) ,

𝑥
𝑘+1
= 𝜗𝑘𝑥

𝑘
+ (1 − 𝜗𝑘)

×𝑈projC (𝑥
𝑘
− 𝛾𝑘 (∇𝑓 (𝑦

𝑘
) + 𝜃𝑘𝑦

𝑘
)) , 𝑘 ∈ N.

(18)

Ceng et al. proved that algorithm (18) has weak convergence.
Motivated by the above works, in this paper, our main

purpose is to introduce an implicit algorithm for solving the
split fixed point and convex feasibility problems. We show
that the implicit algorithm converges strongly to the solution
of the split fixed point and convex feasibility problems.

2. Preliminaries

Let H be a real Hilbert space with inner product ⟨⋅, ⋅⟩ and
norm ‖ ⋅ ‖, respectively. Let C be a nonempty closed convex
subset of H.

Definition 1. A mapping U : C → C is called nonexpansive
if





U𝑝 − U𝑞





≤




𝑝 − 𝑞






(19)

for all 𝑝, 𝑞 ∈ C.

We will use Fix(U) to denote the set of fixed points of U;
that is, Fix(U) = {𝑥‡ ∈ 𝐶 : 𝑥‡ = U𝑥‡}.

Definition 2. A mappingC : C → C is called contractive if




C (𝑝) −C (𝑞)





≤ 𝜅





𝑝 − 𝑞






(20)

for all 𝑝, 𝑞 ∈ C and for some constant 𝜅 ∈ (0, 1). In this case,
we callC a 𝜅-contraction.

Definition 3. A linear bounded operatorB : H → H is called
strongly positive if there exists a constant 𝛾 > 0 such that

⟨B𝑥
‡
, 𝑥
‡
⟩ ≥ 𝛾






𝑥
‡




2 (21)

for all 𝑥‡ ∈ H.
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Definition 4. We call that projC : H → C is the metric
projection if for each 𝑥‡ ∈ H






𝑥
‡
− projC (𝑥

‡
)






= inf {


𝑥
‡
− 𝑥






: 𝑥 ∈ C} . (22)

It is well known that the metric projection projC : H →

C is characterized by

⟨𝑥
‡
− projC (𝑥

‡
) , 𝑥 − projC (𝑥

‡
)⟩ ≤ 0 (23)

for all 𝑥‡ ∈ H, 𝑥 ∈ C. From this, we can deduce that projC is
firmly nonexpansive; that is,






projC (𝑥

‡
) − projC (𝑥)







2

≤ ⟨𝑥
‡
− 𝑥, projC (𝑥

‡
) − projC (𝑥)⟩

(24)

for all 𝑥‡, 𝑥 ∈ H. Hence projC is nonexpansive.

Lemma 5 (see [14]). Let C be a closed convex subset of a real
Hilbert space H, and let U : C → C be a nonexpansive
mapping.Then, the mapping 𝐼−U is demiclosed.That is, if {𝑥𝑘}
is a sequence in𝐶 such that 𝑥𝑘 → 𝑥

§ weakly and (𝐼−U)𝑥𝑘 →
𝑦 strongly, then (𝐼 − U)𝑥§ = 𝑦.

3. Main Result

In this section, we first introduce our algorithm for solving
this problem and consequently we give convergence analysis.

Let H1 and H2 be two Hilbert spaces and C ⊂ H1 and
Q ⊂ H2 two nonempty closed convex sets. Let A : H1 →

H2 be a bounded linear operator with its adjoint A∗. Let B
be a strongly positive bounded linear operator on H1 with
coefficient 𝛾 > 0. Let C : H1 → H1 be a 𝜅-contraction. Let
V : Q → Q andU : C → C be two nonexpansivemappings.

In the sequel, our objective is to

Find𝑥† ∈ C ∩ Fix (U) such that A𝑥† ∈ Q ∩ Fix (V) . (25)

We use Ω to denote the solution set of (25); that is,

Ω = {𝑥
†
| 𝑥
†
∈ C ∩ Fix (U) ,A𝑥† ∈ Q ∩ Fix (V)} . (26)

Now, we introduce the following implicit algorithm.

Algorithm 6. Define an implicit algorithm {𝑥𝑡} as follows:

𝑥𝑡 = 𝑡𝜁C (𝑥𝑡) + (𝐼 − 𝑡B)UprojC

× (𝑥𝑡 − 𝛿A
∗
(𝐼 − VprojQ)A𝑥𝑡) , 𝑡 ∈ (0, 1) ,

(27)

where 𝜁 ∈ (0, 𝛾/𝜅) and 𝛿 ∈ (0, 1/‖𝐴‖2) are two constants.

Remark 7. {𝑥𝑡} is well-defined. Define amappingR : C → C

as

R𝑥 = projC (𝑥 − 𝛿A
∗
(𝐼 − VprojQ)A𝑥) , ∀𝑥 ∈ C. (28)

Then, we have





R𝑥 −R𝑦






2
=




projC (𝑥 − 𝛿A

∗
(𝐼 − VprojQ)A𝑥)

−projC (𝑦 − 𝛿A
∗
(𝐼 − VprojQ)A𝑦)






2

≤




(𝑥 − 𝛿A

∗
(𝐼 − VprojQ)A𝑥)

− (𝑦 − 𝛿A
∗
(𝐼 − VprojQ)A𝑦)






2

=




(𝑥 − 𝑦) + 𝛿A

∗

×[(VprojQA𝑥−A𝑥) −(VprojQA𝑦−A𝑦)]





2

=




𝑥 − 𝑦






2

+ 2𝛿 ⟨𝑥 − 𝑦,A
∗
[(VprojQA𝑥 − A𝑥)

− (VprojQA𝑦 − A𝑦)]⟩

+ 𝛿
2 



A
∗
[(VprojQA𝑥 − A𝑥)

− (VprojQA𝑦 − A𝑦)]





2

=




𝑥−𝑦






2
+2𝛿 ⟨A (𝑥−𝑦) , (VprojQA𝑥−A𝑥)

− (VprojQA𝑦 − A𝑦)⟩

+ 𝛿
2 



A
∗
[(VprojQA𝑥 − A𝑥)

− (VprojQA𝑦 − A𝑦)]





2

=




𝑥 − 𝑦






2

+2𝛿⟨VprojQA𝑥 − VprojQA𝑦,

(VprojQA𝑥−A𝑥)−(VprojQA𝑦−A𝑦)⟩

− 2𝛿




(VprojQA𝑥 − A𝑥)

− (VprojQA𝑦 − A𝑦)





2

+ 𝛿
2 



A
∗
[(VprojQA𝑥 − A𝑥)

− (VprojQA𝑦 − A𝑦)]





2

=




𝑥 − 𝑦






2
+ 𝛿 (





VprojQA𝑥 − VprojQA𝑦






2

+




(VprojQA𝑥 − A𝑥)

− (VprojQA𝑦 − A𝑦)





2

−




A𝑥 − A𝑦






2
)

− 2𝛿




(VprojQA𝑥 − A𝑥)

− (VprojQA𝑦 − A𝑦)





2

+ 𝛿
2 



A
∗
[(VprojQA𝑥 − A𝑥)

− (VprojQA𝑦 − A𝑦)]





2
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≤




𝑥 − 𝑦






2
− 𝛿





(VprojQA𝑥 − A𝑥)

− (VprojQA𝑦 − A𝑦)





2

+ 𝛿
2
‖A‖
2 



(VprojQA𝑥 − A𝑥)

− (VprojQA𝑦 − A𝑦)





2

≤




𝑥 − 𝑦






2
.

(29)

This indicates that 𝑅 is nonexpansive. Consequently, for fixed
𝑡 ∈ (0, 1), we have that the mapping 𝑡𝜁C + (𝐼 − 𝑡B)U𝑅 is
contractive due to the facts thatC is a 𝜅-contraction andU is
nonexpansive. Therefore, {𝑥𝑡} is well-defined.

Next, we prove the convergence of (27).

Theorem8. Suppose thatΩ ̸= 0.Then the net {𝑥𝑡} generated by
algorithm (25) converges strongly to𝑝† = proj

Ω
(𝜁C+𝐼−B)𝑝†

which solves the following variational inequality:

⟨(𝜁C − B) 𝑥, 𝑦 − 𝑥⟩ ≤ 0, ∀𝑦 ∈ Ω. (30)

Proof. Set 𝑟𝑡 = projQA𝑥𝑡, V𝑡 = 𝑥𝑡 − 𝛿A
∗
(𝐼 − VprojQ)A𝑥𝑡, and

𝑢𝑡 = projC(𝑥𝑡 − 𝛿A
∗
(𝐼 − VprojQ)A𝑥𝑡) for all 𝑡 ∈ (0, 1). Then

𝑢𝑡 = projCV𝑡. It is clear that the solution of (30) is unique. Let
𝑝
†
= proj

Ω
(𝜁C + 𝐼 − B)𝑝†. Then, we have 𝑝† ∈ C ∩ Fix(U)

and A𝑝† ∈ Q ∩ Fix(V). First, we easily deduce the following
three inequalities:






𝑟𝑡 − A𝑝

†



=






projQA𝑥𝑡 − A𝑝

†



≤






A𝑥𝑡 − A𝑝

†



, (31)






𝑢𝑡 − 𝑝

†



=






projCV𝑡 − 𝑝

†



≤






V𝑡 − 𝑝

†



, (32)






V𝑟𝑡 − A𝑝

†




2

≤






𝑟𝑡 − A𝑝

†




2

≤






A𝑥𝑡 − A𝑝

†




2

−




𝑟𝑡 − A𝑥𝑡






2
.

(33)

From (25), we have






𝑥𝑡 − 𝑝

†



=






𝑡 (𝜁C (𝑥𝑡) − B𝑝

†
)

+ (𝐼 − 𝑡B) (U𝑢𝑡 − 𝑝
†
)







≤ 𝑡𝜁






C (𝑥𝑡) −C (𝑝

†
)







+ 𝑡






𝜁C (𝑝

†
) − B𝑝

†




+ (1 − 𝑡𝛾)






𝑢𝑡 − 𝑝

†



.

(34)

Note that






V𝑡 − 𝑝

†




2

=






𝑥𝑡 − 𝑝

†
+ 𝛿A
∗
(V𝑟𝑡 − A𝑥𝑡)







2

=






𝑥𝑡 − 𝑝

†




2

+ 𝛿
2



A
∗
(V𝑟𝑡 − A𝑥𝑡)






2

+ 2𝛿 ⟨𝑥𝑡 − 𝑝
†
,A
∗
(V𝑟𝑡 − A𝑥𝑡)⟩ .

(35)

Since 𝐴 is a linear operator andA∗ is the adjoint ofA, we get

⟨𝑥𝑡 − 𝑝
†
,A
∗
(V𝑟𝑡 − A𝑥𝑡)⟩

= ⟨A (𝑥𝑡 − 𝑝
†
) ,V𝑟𝑡 − A𝑥𝑡⟩

= ⟨A𝑥𝑡 − A𝑝
†
+ V𝑟𝑡 − A𝑥𝑡

− (V𝑟𝑡 − A𝑥𝑡) ,V𝑟𝑡 − A𝑥𝑡⟩

= ⟨V𝑟𝑡 − A𝑝
†
,V𝑟𝑡 − A𝑥𝑡⟩ −





V𝑟𝑡 − A𝑥𝑡






2
.

(36)

At the same time, we know

⟨V𝑟𝑡 − A𝑝
†
,V𝑟𝑡 − A𝑥𝑡⟩

=

1

2

(






V𝑟𝑡 − A𝑝

†




2

+




V𝑟𝑡 − A𝑥𝑡






2
−






A𝑥𝑡 − A𝑝

†




2

) .

(37)

By (33), (36), and (37), we get

⟨𝑥𝑡 − 𝑝
†
,A
∗
(V𝑟𝑡 − A𝑥𝑡)⟩

=

1

2

(






V𝑟𝑡 − A𝑝

†




2

+




V𝑟𝑡 − A𝑥𝑡






2

−






A𝑥𝑡 − A𝑝

†




2

) −




V𝑟𝑡 − A𝑥𝑡






2

≤

1

2

(






A𝑥𝑡 − A𝑝

†




2

−




𝑟𝑡 − A𝑥𝑡






2

+




V𝑟𝑡 − A𝑥𝑡






2
−






A𝑥𝑡 − A𝑝

†




2

)

−




V𝑟𝑡 − A𝑥𝑡






2

= −

1

2





𝑟𝑡 − A𝑥𝑡






2
−

1

2





V𝑟𝑡 − A𝑥𝑡






2
.

(38)

Substituting (38) into (35) to deduce






V𝑡 − 𝑝

†




2

≤






𝑥𝑡 − 𝑝

†




2

+ 𝛿
2
‖A‖
2



V𝑟𝑡 − A𝑥𝑡






2

+ 2𝛿 (−

1

2





𝑟𝑡 − A𝑥𝑡






2
−

1

2





V𝑟𝑡 − A𝑥𝑡






2
)

=






𝑥𝑡 − 𝑝

†




2

+ (𝛿
2
‖A‖
2
− 𝛿)






V𝑟𝑡−A𝑥𝑡







2

− 𝛿




𝑟𝑡 − A𝑥𝑡






2

≤






𝑥𝑡 − 𝑝

†




2

.

(39)

It follows that






V𝑡 − 𝑝

†



≤






𝑥𝑡 − 𝑝

†



. (40)
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Thus, from (34), we get





𝑥𝑡 − 𝑝

†



≤ 𝑡𝜁𝜅






𝑥𝑡 − 𝑝

†




+ 𝑡






𝜁C (𝑝

†
) − B𝑝

†




+ (1 − 𝑡𝛾)






𝑥𝑡 − 𝑝

†




= [1 − (𝛾 − 𝜁𝜅) 𝑡]






𝑥𝑡 − 𝑝

†




+ 𝑡






𝜁C (𝑝

†
) − 𝐵𝑝

†



.

(41)

So,






𝑥𝑡 − 𝑝

†



≤






𝜁C (𝑝†) − 𝐵𝑝†







𝛾 − 𝜁𝜅

. (42)

The boundedness of the net {𝑥𝑡} yields.
Since 𝑥𝑡 − U𝑢𝑡 = 𝑡(𝜁C(𝑥𝑡) − BU𝑢𝑡), we obtain

lim
𝑡→0





𝑥𝑡 − U𝑢𝑡





= 0. (43)

Using the firmly nonexpansive necessity of projC, we have






𝑢𝑡 − 𝑝

†




2

=






projCV𝑡 − 𝑝

†




2

≤






V𝑡 − 𝑝

†




2

−




projCV𝑡 − V𝑡






2

=






V𝑡 − 𝑝

†




2

−




𝑢𝑡 − V𝑡






2
.

(44)

From (34), we derive that






𝑥𝑡 − 𝑝

†




2

=






𝑡 (𝜁C (𝑥𝑡) − B𝑝

†
) + (𝐼 − 𝑡B) (U𝑢𝑡 − 𝑝

†
)







2

≤






(𝐼 − 𝑡B) (U𝑢𝑡 − 𝑝

†
)







2

+ 2𝑡 ⟨𝜁C (𝑥𝑡) − B𝑝
†
, 𝑥𝑡 − 𝑝

†
⟩

≤ [‖𝐼 − 𝑡B‖





U𝑢𝑡 − 𝑝

†



]

2

+ 2𝑡






𝜁C (𝑥𝑡) − B𝑝

†









𝑥𝑡 − 𝑝

†




≤ (1 − 𝑡𝛾)
2



𝑢𝑡 − 𝑝

†




2

+ 2𝑡






𝜁C (𝑥𝑡) − B𝑝

†









𝑥𝑡 − 𝑝

†



.

(45)

This together with (44) implies that






𝑥𝑡 − 𝑝

†




2

≤






V𝑡 − 𝑝

†




2

−




𝑢𝑡 − V𝑡






2

+ 2𝑡






𝜁C (𝑥𝑡) − B𝑝

†









𝑥𝑡 − 𝑝

†




≤






𝑥𝑡 − 𝑝

†




2

−




𝑢𝑡 − V𝑡






2

+ 2𝑡






𝜁C (𝑥𝑡) − B𝑝

†









𝑥𝑡 − 𝑝

†



.

(46)

It follows that





𝑢𝑡 − V𝑡






2
≤ 2𝑡






𝜁C (𝑥𝑡) − 𝐵𝑝

†









𝑥𝑡 − 𝑝

†



. (47)

Hence,

lim
𝑡→0





𝑢𝑡 − V𝑡





= 0. (48)

Returning to (45) and using (39), we have






𝑥𝑡 − 𝑝

†




2

≤ (1 − 𝑡𝛾)
2



𝑢𝑡 − 𝑝

†




2

+ 2𝑡






𝜁C (𝑥𝑡) − B𝑝

†









𝑥𝑡 − 𝑝

†




≤






V𝑡 − 𝑝

†




2

+ 2𝑡






𝜁C (𝑥𝑡) − B𝑝

†









𝑥𝑡 − 𝑝

†




≤






𝑥𝑡 − 𝑝

†




2

+ (𝛿
2
‖A‖
2
− 𝛿)





V𝑟𝑡 − A𝑥𝑡






2

− 𝛿




𝑟𝑡 − A𝑥𝑡






2

+ 2𝑡






𝜁C (𝑥𝑡) − B𝑝

†









𝑥𝑡 − 𝑝

†



.

(49)

Thus,

(𝛿 − 𝛿
2
‖A‖
2
)




V𝑟𝑡 − A𝑥𝑡






2
+ 𝛿




𝑟𝑡 − A𝑥𝑡






2

≤ 2𝑡






𝜁C (𝑥𝑡) − B𝑝

†









𝑥𝑡 − 𝑝

†



,

(50)

which implies that

lim
𝑡→0





V𝑟𝑡 − A𝑥𝑡





= lim
𝑡→0





𝑟𝑡 − A𝑥𝑡





= 0. (51)

So,

lim
𝑡→0





V𝑟𝑡 − 𝑟𝑡





= 0. (52)

Note that





V𝑡 − 𝑥𝑡





=




𝛿A
∗
(VprojQ − 𝐼)A𝑥𝑡






≤ 𝛿 ‖A‖




V𝑟𝑡 − A𝑥𝑡





.

(53)

It follows from (51) that

lim
𝑡→0





𝑥𝑡 − V𝑡





= 0. (54)

From (43), (48), and (54), we get

lim
𝑡→0





𝑥𝑡 − U𝑥𝑡





= 0. (55)

Next we show that the net {𝑥𝑡} is relatively norm-compact as
𝑡 → 0

+. Assume that {𝑡𝑛} ⊂ (0, 1) is such that 𝑡𝑛 → 0
+ as

𝑛 → ∞. Put 𝑥𝑛 := 𝑥𝑡𝑛 and V𝑛 := V𝑡𝑛 .
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From (45), we have






𝑥𝑡 − 𝑝

†




2

≤ (1 − 𝑡𝛾)
2



𝑢𝑡 − 𝑝

†




2

+ 2𝑡 ⟨𝜁C (𝑥𝑡) − B𝑝
†
, 𝑥𝑡 − 𝑝

†
⟩

≤ (1 − 𝑡𝛾)
2



𝑥𝑡 − 𝑝

†




2

+ 2𝑡𝜁 ⟨C (𝑥𝑡) −C (𝑝
†
) , 𝑥𝑡 − 𝑝

†
⟩

+2𝑡 ⟨𝜁C (𝑝
†
) − 𝐵𝑝

†
, 𝑥𝑡 − 𝑝

†
⟩

≤ (1 − 𝑡𝛾)
2



𝑥𝑡 − 𝑝

†




2

+ 2𝑡𝜁𝜅






𝑥𝑡 − 𝑝

†




2

+ 2𝑡 ⟨𝜁C (𝑝
†
) − B𝑝

†
, 𝑥𝑡 − 𝑝

†
⟩ .

(56)

It follows that






𝑥𝑡 − 𝑝

†




2

≤

1

𝛾 − 𝜁𝜅

⟨𝜁C (𝑝
†
) − B𝑝

†
, 𝑥𝑡 − 𝑝

†
⟩

+

𝛾
2



𝑥𝑡 − 𝑝

†




2

2 (𝛾 − 𝜁𝜅)

𝑡

≤

1

𝛾 − 𝜁𝜅

⟨𝜁C (𝑝
†
) − B𝑝

†
, 𝑥𝑡 − 𝑝

†
⟩ +𝑀𝑡,

(57)

where𝑀 > 0 is a constant satisfying sup
𝑡∈(0,1)

(𝛾
2
‖𝑥𝑡 − 𝑝

†
‖

2/
2(𝛾 − 𝜁𝜅)) ≤ 𝑀. In particular, we have






𝑥𝑛 − 𝑝

†




2

≤

1

𝛾 − 𝜁𝜅

⟨𝜁C (𝑝
†
) − B𝑝

†
, 𝑥𝑛 − 𝑝

†
⟩ +𝑀𝑡𝑛,

(58)

since {𝑥𝑛} is bounded, without loss of generality, we may
assume that {𝑥𝑛} converges weakly to a point 𝑞† ∈ 𝐶. We
deduce from the above results that

V𝑛 ⇀ 𝑞
†
, 𝑢𝑛 ⇀ 𝑞

†
, A𝑥𝑛 ⇀ 𝑞

†
, 𝑟𝑛 ⇀ A𝑞

†
.

(59)

By the demiclosed principle of the nonexpansive mappings
V and U (see Lemma 5), we deduce 𝑞† ∈ Fix(U) and A𝑞† ∈

Fix(V). Note that 𝑢𝑛𝑖 = projCV𝑛𝑖 ∈ C and 𝑟𝑛𝑖 = projQA𝑥𝑛𝑖 ∈
Q. From (58), we deduce 𝑞† ∈ C and A𝑞† ∈ Q. To this end,
we deduce 𝑞† ∈ C∩Fix(U) andA𝑞† ∈ Q∩Fix(V). So, 𝑞† ∈ Ω.
We substitute 𝑝† for 𝑞† in (58) to obtain






𝑥𝑛 − 𝑞

†




2

≤

1

𝛾 − 𝜁𝜅

⟨𝜁C (𝑞
†
) − B𝑞

†
, 𝑥𝑛 − 𝑞

†
⟩ +𝑀𝑡𝑛,

(60)

since 𝑥𝑛 weakly converges to 𝑞†, we deduce that 𝑥𝑛 → 𝑞
†

strongly. Therefore, the net {𝑥𝑡} is relatively norm-compact.

In (58), we take the limit as 𝑛 → ∞ to deduce






𝑞
†
− 𝑝
†




2

≤

1

𝛾 − 𝜁𝜅

× ⟨𝜁C (𝑝
†
) − B𝑝

†
, 𝑞
†
− 𝑝
†
⟩ , 𝑝

†
∈ Ω.

(61)

Hence, 𝑞† solves the variational inequality

𝑞
†
∈ Ω, ⟨𝜁C (𝑝

†
) − B𝑝

†
, 𝑞
†
− 𝑝
†
⟩ ≥ 0, 𝑝

†
∈ Ω,

(62)

which is equivalent to its dual variational inequality

𝑞
†
∈ Ω, ⟨𝜁C (𝑞

†
) − 𝐵𝑞

†
, 𝑞
†
− 𝑝
†
⟩ ≥ 0,

𝑝
†
∈ Ω.

(63)

Therefore, 𝑞† = proj
Ω
(𝜁C + 𝐼 − B)𝑞†. That is, 𝑞† is the

unique solution in VI(C,A) of the contraction proj
Ω
(𝜁C +

𝐼 − B). Clearly this is sufficient to deduce that {𝑥𝑡} converges
strongly to 𝑞† as 𝑡 → 0

+. The proof is completed.
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