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We consider the generalized minimax programming problem (P) in which functions are locally Lipschitz (𝐺, 𝛽)-invex. Not only
𝐺-sufficient but also 𝐺-necessary optimality conditions are established for problem (P). With 𝐺-necessary optimality conditions
and (𝐺, 𝛽)-invexity on hand, we construct dual problem (DI) for the primal one (P) and prove duality results between problems
(P) and (DI). These results extend several known results to a wider class of programs.

1. Introduction

Convexity plays a central role in many aspects of mathe-
matical programming including analysis of stability, suffi-
cient optimality conditions, and duality. Based on convex-
ity assumptions, nonlinear programming problems can be
solved efficiently. There have been many attempts to weaken
the convexity assumptions in order to treat many practical
problems. Therefore, many concepts of generalized convex
functions have been introduced and applied to mathemat-
ical programming problems in the literature [1]. One of
these concepts, invexity, was introduced by Hanson in [2].
Hanson has shown that invexity has a common property
in mathematical programming with convexity that Karush-
Kuhn-Tucker conditions are sufficient for global optimality
of nonlinear programming under the invexity assumptions.
Ben-Israel and Mond [3] introduced the concept of preinvex
functions which is a special case of invexity.

Recently, Antczak extended further invexity to𝐺-invexity
[4] for scalar differentiable functions and introduced new
necessary optimality conditions for differentiable mathemat-
ical programming problem. Antczak also applied the intro-
duced𝐺-invexity notion to develop sufficient optimality con-
ditions and new duality results for differentiable mathemati-
cal programming problems. Furthermore, in the natural way,
Antczak’s definition of 𝐺-invexity was also extended to the

case of differentiable vector-valued functions. In [5], Antczak
defined vector𝐺-invex (𝐺-incave) functions with respect to 𝜂

and applied this vector𝐺-invexity to develop optimality con-
ditions for differentiable multiobjective programming prob-
lems with both inequality and equality constraints. He also
established the so-called 𝐺-Karush-Kuhn-Tucker necessary
optimality conditions for differentiable vector optimization
problems under the Kuhn-Tucker constraint qualification
[5]. With this vector 𝐺-invexity concept, Antczak proved
new duality results for nonlinear differentiablemultiobjective
programming problems [6]. A number of new vector duality
problems such as 𝐺-Mond-Weir, 𝐺-Wolfe, and 𝐺-mixed dual
vector problems to the primal one were also defined in [6].

In the last few years, many concepts of generalized con-
vexity, which include (𝑝, 𝑟)-invexity [7], (𝐹, 𝜌)-convexity [8],
(𝐹, 𝛼, 𝜌, 𝑑)-convexity [9], (𝐶, 𝛼, 𝜌, 𝑑)-convexity [10], (𝜙, 𝜌)-
invexity [11], 𝑉-𝑟-invexity [12], and their extensions, have
been introduced and applied to different mathematical pro-
gramming problems. In particular, they have also been
applied to deal with minimax programming; see [13–17] for
details. However, we have not found a paper which deals with
generalized minimax programming problem (P) under 𝐺-
invexity or its generalizations assumptions.

Note that the function 𝐺 ∘ 𝑓 may not be differentiable
even if the function 𝐺 is differentiable. Yuan et al. [18] intro-
duced the (𝐺𝑓, 𝛽𝑓)-invexity concept for the locally Lipschtiz
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function 𝑓. This (𝐺𝑓, 𝛽𝑓)-invexity extended Antczak’s 𝐺-
invexity concept to the nonsmooth case. In this paper, we deal
with nondifferentiable generalized minimax programming
problem (P) with the vector (𝐺, 𝛽)-invexity proposed in [18].
Here, the generalized minimax programming problem (P) is
presented as follows:

min sup
𝑦∈𝑌

𝜙 (𝑥, 𝑦)

subject to 𝑔𝑗 (𝑥) ≤ 0, 𝑗 = 1, . . . , 𝑚,

(P)

where 𝑌 is a compact subset of R𝑝, 𝜙(⋅, ⋅) : R𝑛 × R𝑝 →

R, and 𝑔𝑗(⋅) : R𝑛 → R (𝑗 ∈ 𝑀). Let 𝐸𝑃 be the set of
feasible solutions of problem (P); in other words, 𝐸𝑃 = {𝑥 ∈

R𝑛 | 𝑔𝑗(𝑥) ≤ 0, 𝑗 ∈ 𝑀}. For convenience, let us define the
following sets for every 𝑥 ∈ 𝐸:

𝐽 (𝑥) = {𝑗 ∈ 𝑀 | 𝑔𝑗 (𝑥) = 0} ,

𝑌 (𝑥) = {𝑦 ∈ 𝑌 | 𝜙 (𝑥, 𝑦) = sup
𝑧∈𝑌

𝜙 (𝑥, 𝑧)} .

(1)

The rest of the paper is organized as follows. In Section 2,
we present concepts in regards to nondifferentiable vector
(𝐺, 𝛽)-invexity. In Section 3, we present not only 𝐺-sufficient
but also 𝐺-necessary optimality conditions for problem (P).
When the 𝐺-necessary optimality conditions and the (𝐺, 𝛽)-
invexity concept are utilized, dual problem (DI) is formulated
for the primal one (P) and duality results between them are
presented in Section 4.

2. Notations and Preliminaries

In this section, we provide some definitions and results that
we will use in the sequel. The following convention for
equalities and inequalities will be used throughout the paper.
For any 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛)

𝑇, 𝑦 = (𝑦1, 𝑦2, . . . , 𝑦𝑛)
𝑇, we define

the following:

𝑥 > 𝑦 if and only if𝑥𝑖 > 𝑦𝑖, for 𝑖 = 1, 2, . . . , 𝑛,

𝑥 ≧ 𝑦 if and only if𝑥𝑖 ≥ 𝑦𝑖, for 𝑖 = 1, 2, . . . , 𝑛,

𝑥 ⩾ 𝑦 if and only if𝑥𝑖 ≥ 𝑦𝑖, for 𝑖=1, 2, . . . , 𝑛, but𝑥 ̸= 𝑦,

𝑥 ̸> 𝑦 is the negation of𝑥 > 𝑦,

𝑥 �⩾𝑦 is the negation of𝑥 ⩾ 𝑦.

(2)

Let R𝑛+ = {𝑥 ∈ R𝑛 | 𝑥 ≧ 0}, Ṙ𝑛+ = {𝑥 ∈ R𝑛 | 𝑥 > 0} and 𝑋 be
a subset ofR𝑛. For our convenience, denote𝑄 := {1, 2, . . . , 𝑞},
𝑄
∗
:= {1, 2, . . . , 𝑞

∗
},𝐾 := {1, 2, . . . , 𝑘}, and𝑀 := {1, 2, . . . , 𝑚}.

Further, we recall some definitions and a lemma.

Definition 1 (see [19]). Let 𝑑 ∈ R𝑛,𝑋 be a nonempty set ofR𝑛
and 𝑓 : 𝑋 → R. If

𝑓
0
(𝑥; 𝑑) := lim

𝑦→𝑥
𝜇↓0

sup 1

𝜇
(𝑓 (𝑦 + 𝜇𝑑) − 𝑓 (𝑦)) (3)

exists, then 𝑓
0
(𝑥; 𝑑) is called the Clarke derivative of 𝑓 at 𝑥

in the direction 𝑑. If this limit superior exists for all 𝑑 ∈ R𝑛,
then 𝑓 is called the Clarke differentiable at 𝑥. The set

𝜕𝑓 (𝑥) = {𝜁 | 𝑓
0
(𝑥; 𝑑) ≥ ⟨𝜁, 𝑑⟩, ∀𝑑 ∈ R

𝑛
} (4)

is called the Clarke subdifferential of 𝑓 at 𝑥.

Note that if a given function 𝑓 is locally Lipschitz, then
the Clarke subdifferential 𝜕𝑓(𝑥) exists.

Lemma 2 (see [18]). Let 𝜓 be a real-valued Lipschitz contin-
uous function defined on 𝑋 and denote the image of 𝑋 under
𝜓 by 𝐼𝜓(𝑋); let 𝜑 : 𝐼𝜓(𝑋) → R be a differentiable function
such that 𝜑(𝛾) is continuous on 𝐼𝜓(𝑋) and 𝜑


(𝛾) ≥ 0 for each

𝛾 ∈ 𝐼𝜓(𝑋). Then the chain rule

(𝜑 ∘ 𝜓)
0
(𝑥, 𝑑) = 𝜑


(𝜓 (𝑥)) 𝜓

0
(𝑥, 𝑑) , (5)

holds for each 𝑑 ∈ R𝑛. Therefore,

𝜕 (𝜑 ∘ 𝜓) (𝑥) = 𝜑

(𝜓 (𝑥)) 𝜕 (𝜓) (𝑥) . (6)

Definition 3. Let 𝑓 = (𝑓1, . . . , 𝑓𝑘) be a vector-valued locally
Lipschitz function defined on a nonempty set 𝑋 ⊂ R𝑛.
Consider the functions 𝜂 : 𝑋 × 𝑋 → R𝑛, 𝐺𝑓𝑖 : 𝐼𝑓𝑖(𝑋) → R,
and 𝛽

𝑓
𝑖 : 𝑋 × 𝑋 → R+ for 𝑖 ∈ 𝐾. Moreover, 𝐺𝑓𝑖 is strictly

increasing on its domain 𝐼𝑓𝑖
(𝑋) for each 𝑖 ∈ 𝐾. If

𝐺𝑓𝑖
∘ 𝑓𝑖 (𝑥) − 𝐺𝑓𝑖

∘ 𝑓𝑖 (𝑢)

≥ (>) 𝛽
𝑓
𝑖 (𝑥, 𝑢) 𝐺


𝑓𝑖
(𝑓𝑖 (𝑢)) ⟨𝜁𝑖, 𝜂 (𝑥, 𝑢)⟩ , ∀𝜁𝑖 ∈ 𝜕𝑓𝑖 (𝑢) ,

(7)

holds for all 𝑥 ∈ 𝑋 (𝑥 ̸= 𝑢) and 𝑖 ∈ 𝐾, then 𝑓 is said to
be a (strictly) nondifferentiable vector (𝐺𝑓, 𝛽𝑓)-invex at 𝑢

on 𝑋 (with respect to 𝜂) (or shortly, (𝐺𝑓, 𝛽𝑓)-invex at 𝑢 on
𝑋), where 𝐺𝑓 = (𝐺𝑓1

, . . . , 𝐺𝑓𝑘
) and 𝛽 := (𝛽

𝑓
1 , 𝛽
𝑓
2 , . . . , 𝛽

𝑓

𝑘
).

If 𝑓 is a (strictly) nondifferentiable vector (𝐺𝑓, 𝛽𝑓)-invex at
𝑢 on 𝑋 (with respect to 𝜂) for all 𝑢 ∈ 𝑋, then 𝑓 is a
(strictly) nondifferential vector (𝐺𝑓, 𝛽𝑓)-invex on 𝑋 (with
respect to 𝜂).

3. Optimality Conditions

In this section, we firstly establish the𝐺-necessary optimality
conditions for problem (P) involving functions which are
locally Lipschitz with respect to the variable 𝑥. For this
purpose, we will need some additional assumptions with
respect to problem (P).

Condition 4. Assume the following: (a) the set 𝑌 is compact;
(b) 𝜙(𝑥, 𝑦) and 𝜕𝜙𝑥(𝑥, 𝑦) are upper semicontinuous at

(𝑥, 𝑦);
(c) 𝜙(𝑥, 𝑦) is locally Lipschitz in 𝑥 and this Lipschitz

continuity is uniform for 𝑦 in 𝑌;
(d) 𝜙(𝑥, 𝑦) is regular in 𝑥; that is, 𝜙∘𝑥(𝑥, 𝑦; ⋅) = 𝜙


𝑥(𝑥, 𝑦; ⋅);

(e) 𝑔𝑗, 𝑗 ∈ 𝑀 are regular and locally Lipschitz at 𝑥0.
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Condition 5. For each 𝜂 = (𝜂1, . . . , 𝜂𝑚) ∈ R𝑚 satisfying the
conditions

𝜂𝑗 = 0, ∀𝑗 ∈ 𝑀 \ 𝐽 (𝑥
∗
) ,

𝜂𝑗 ≥ 0, ∀𝑗 ∈ 𝐽 (𝑥
∗
) ,

(8)

the following implication holds:

𝑧
∗
𝑗 ∈ 𝜕𝑔𝑗 (𝑥

∗
) (∀𝑗 ∈ 𝑀) ,

𝑚

∑

𝑗=1

𝜂𝑗𝑧
∗
𝑗 = 0 ⇒ 𝜂𝑗 = 0, 𝑗 ∈ 𝑀.

(9)

We will also use the following auxiliary programming prob-
lem (G-P):

min sup
𝑦∈𝑌

𝐺𝜙 ∘ 𝜙 (𝑥, 𝑦)

s.t. 𝐺𝑔 ∘ 𝑔 (𝑥)

:= (𝐺𝑔1
∘ 𝑔1 (𝑥) , 𝐺𝑔2

∘ 𝑔2 (𝑥) , . . . , 𝐺𝑔𝑚
∘ 𝑔𝑚 (𝑥))

≦ 𝐺𝑔 (0) ,

(G-P)

where 𝐺𝑔(0) := (𝐺𝑔1
(0), 𝐺𝑔2

(0), . . . , 𝐺𝑔𝑚
(0)). We denote by

𝐸𝐺-𝑃 = {𝑥 ∈ R𝑛 | 𝐺𝑔 ∘ 𝑔(𝑥) ≦ 𝐺𝑔(0)}, 𝐽

(𝑥) := {𝑗 ∈ 𝑀 :

𝐺𝑔𝑗
∘ 𝑔𝑗(𝑥) = 𝐺𝑔𝑗

(0)}. If function 𝐺𝑔𝑗
is strictly increasing on

𝐼𝑔𝑗
(𝑋) for each 𝑗 ∈ M, then 𝐸𝑃 = 𝐸𝐺-𝑃 and 𝐽(𝑥) = 𝐽


(𝑥).

So, we represent the set of all feasible solutions and the set
of constraint active indices for either (P) or (G-P) by the
notations 𝐸 and 𝐽(𝑥), respectively.

The following necessary optimality conditions are pre-
sented in [20].

Theorem 6 (necessary optimality conditions). Let 𝑥∗ be an
optimal solution of (P). One also assumes that Conditions 4
and 5 hold.Then there exist positive integer 𝑞∗ and vectors 𝑦𝑖 ∈
𝑌(𝑥
∗
) together with scalars 𝜆∗𝑖 (𝑖 ∈ 𝑄

∗
) and 𝜇

∗
𝑗 (𝑗 ∈ 𝑀) such

that

0 ∈

𝑞∗

∑

𝑖=1

𝜆
∗
𝑖 𝜕𝑥𝜙 (𝑥

∗
, 𝑦𝑖) +

𝑚

∑

𝑗=1

𝜇
∗
𝑗 𝜕𝑔𝑗 (𝑥

∗
) ,

𝜇
∗
𝑗 𝑔𝑗 (𝑥

∗
) = 0, 𝜇

∗
𝑗 ≥ 0, 𝑗 ∈ 𝑀,

𝑞∗

∑

𝑖=1

𝜆
∗
𝑖 = 1, 𝜆

∗
𝑖 > 0, 𝑖 ∈ 𝑄

∗
.

(10)

Furthermore, if 𝛼 is the number of nonzero 𝜆
∗
𝑖 and 𝛽 is the

number of nonzero 𝜇
∗
𝑗 , then

1 ≤ 𝛼 + 𝛽 ≤ 𝑛 + 1. (11)

Making use of Theorem 6, we can derive the follow-
ing 𝐺-necessary conditions theorem for problem (P), see
Theorem 7, here we require the scalars 𝜆∗𝑖 (𝑖 = 1, . . . , 𝑞

∗
) to

be positive.

Theorem7 (𝐺-necessary optimality conditions). Let problem
(P) satisfy Conditions 4 and 5; let 𝑥∗ be an optimal solution
of problem (P). Assume that 𝐺𝜙 is both continuously differ-
entiable and strictly increasing on 𝐼𝜙(𝑋, 𝑌). If 𝐺𝑔𝑗

is both
continuously differentiable and strictly increasing on 𝐼𝑔𝑗

(𝑋)

with 𝐺

𝑔𝑗
(𝑔𝑗(𝑥
∗
)) > 0 for each 𝑗 ∈ 𝑀, then there exist positive

integer 𝑞∗ (1 ≤ 𝑞
∗
≤ 𝑛 + 1) and vectors 𝑦𝑖 ∈ 𝑌(𝑥

∗
) together

with scalars 𝜆∗𝑖 (𝑖 ∈ 𝑄
∗
) and 𝜇

∗
𝑗 (𝑗 ∈ 𝑀) such that

0 ∈

𝑞∗

∑

𝑖=1

𝜆
∗
𝑖 𝐺

𝜙 (𝜙 (𝑥

∗
, 𝑦𝑖)) 𝜕𝑥𝜙 (𝑥

∗
, 𝑦𝑖)

+

𝑚

∑

𝑗=1

𝜇
∗
𝑗𝐺

𝑔𝑗
(𝑔𝑗 (𝑥

∗
)) 𝜕𝑔𝑗 (𝑥

∗
) ,

(12)

𝜇
∗
𝑗 (𝐺𝑔𝑗

∘ 𝑔𝑗 (𝑥
∗
) − 𝐺𝑔𝑗

(0)) = 0, 𝜇
∗
𝑗 ≥ 0, 𝑗 ∈ 𝑀,

(13)

𝑞∗

∑

𝑖=1

𝜆
∗
𝑖 = 1, 𝜆

∗
𝑖 ≥ 0, 𝑖 ∈ 𝑄

∗
. (14)

Proof. Since 𝑥
∗ is an optimal solution to problem (P), it is

easy to see that 𝑥∗ is an optimal solution to problem (G-P).
Consider problem (G-P), it is easy to check that problem
(G-P) satisfies the assumptions of Theorem 6. Therefore, we
choose 𝑦𝑖 ∈ 𝑌(𝑥

∗
) and 𝑖 ∈ 𝑄

∗ with 𝑞
∗
≤ 𝑛 + 1, such that they

satisfy Theorem 6.
Now, for each 𝑦𝑖, we consider the scalar programming

(𝐺-𝑃𝑦𝑖) as follows:

min 𝐺𝜙 ∘ 𝜙 (𝑥, 𝑦𝑖)

subject to 𝐺𝑔𝑗
∘ 𝑔𝑗 (𝑥) ≤ 0, 𝑗 ∈ 𝑀.

(𝐺-𝑃𝑦𝑖)

It is easy to see that 𝑥∗ is an optimal solution to problem
(𝐺-𝑃𝑦𝑖). Thus, there exist 𝜆𝑖 > 0 and 𝜇𝑗𝑖 ≥ 0 for 𝑗 ∈ 𝑀 such
that

0 ∈ 𝜆𝑖𝜕𝑥 (𝐺𝜙 ∘ 𝜙) (𝑥
∗
, 𝑦𝑖) +

𝑚

∑

𝑗=1

𝜇
∗
𝑗𝑖𝜕 (𝐺𝑔𝑗

∘ 𝑔𝑗) (𝑥
∗
) , (15)

𝜇𝑗𝑖 (𝐺𝑔𝑗
∘ 𝑔𝑗 (𝑥

∗
) − 𝐺𝑔𝑗

(0)) = 0, 𝜇𝑗𝑖 ≥ 0, 𝑗 ∈ 𝑀.

(16)

So, we obtain from (15) that

0 ∈

𝑞∗

∑

𝑖=1

𝜆𝑖𝜕𝑥 (𝐺𝜙 ∘ 𝜙) (𝑥
∗
, 𝑦𝑖)

+

𝑚

∑

𝑗=1

(

𝑞∗

∑

𝑖=1

𝜇𝑗𝑖)𝜕(𝐺𝑔𝑗
∘ 𝑔𝑗) (𝑥

∗
) ,

(17)

or

0 ∈

𝑞∗

∑

𝑖=1

𝜆
∗
𝑖 (𝐺𝜙 ∘ 𝜙) (𝑥

∗
, 𝑦𝑖) +

𝑚

∑

𝑗=1

𝜇
∗
𝑗 𝜕 (𝐺𝑔𝑗

∘ 𝑔𝑗) (𝑥
∗
) ,

(18)
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where 𝜆∗𝑖 = 𝜆𝑖/∑
𝑞∗

𝑗=1 𝜆𝑗, 𝜇
∗
𝑗 = ∑

𝑞∗

𝑖=1 𝜇𝑗𝑖/∑
𝑞∗

𝑖=1 𝜆𝑖. By Lemma 2,
we have
𝜕𝑥 (𝐺𝜙 ∘ 𝜙) (𝑥

∗
, 𝑦𝑖) = 𝐺


𝜙 (𝜙 (𝑥

∗
, 𝑦𝑖)) 𝜕𝑥𝜙 (𝑥

∗
, 𝑦𝑖) , 𝑖 ∈ 𝑄

∗
,

𝜕 (𝐺𝑔𝑗
∘ 𝑔𝑗) (𝑥

∗
) = 𝐺

𝑔𝑗
(𝑔𝑗 (𝑥

∗
)) 𝜕𝑔𝑗 (𝑥

∗
) , 𝑗 ∈ 𝑀.

(19)
Now, from (18), we can deduce the required results.

Next, we derive 𝐺-sufficient optimality conditions for
problem (P) under the assumption of (𝐺, 𝛽)-invexity pro-
posed in [18].

Theorem 8 (𝐺-sufficient optimality conditions). Let (𝑥∗, 𝜇∗,
𝜈
∗
, 𝑞
∗
, 𝜆
∗
, 𝑦) satisfy conditions (12)–(14), where 𝜈

∗
= 𝜙(𝑥

∗
,

𝑦1)= ⋅ ⋅ ⋅ =𝜙(𝑥
∗
, 𝑦𝑞∗); let𝐺𝜙 be both continuously differentiable

and strictly increasing on 𝐼𝜙(𝑋, 𝑌); let𝐺𝑔𝑗 be both continuously
differentiable and strictly increasing on 𝐼𝑔𝑗

(𝑋) for each 𝑗 ∈ 𝑀.
Assume that 𝜙(⋅, 𝑦𝑖) is (𝐺𝜙, 𝛽

𝜙
𝑖 )-invex at 𝑥

∗ on 𝐸 for each 𝑖∈𝑄
∗

and 𝑔𝑗 is (𝐺
𝑔
𝑗 , 𝛽
𝑔
𝑗 )-invex at 𝑥

∗ on 𝐸 for each 𝑗 ∈ 𝑀. Then, 𝑥∗

is an optimal solution to (P).

Proof. Suppose, contrary to the result, that 𝑥
∗ is not an

optimal solution for problem (P). Hence, there exists 𝑥0 ∈ 𝐸

such that
sup
𝑦∈𝑌

𝜙 (𝑥0, 𝑦) < 𝜙 (𝑥
∗
, 𝑦𝑖) , 𝑖 ∈ 𝑄

∗
. (20)

By the monotonicity of 𝐺𝜙, we have

𝐺𝜙 ∘ 𝜙 (𝑥0, 𝑦𝑖) < 𝐺𝜙 ∘ 𝜙 (𝑥
∗
, 𝑦𝑖) , 𝑖 ∈ 𝑄

∗
. (21)

Employing (13), (14), and the fact that

𝐺𝑔𝑗
∘ 𝑔𝑗 (𝑥0) ≤ 𝐺𝑔𝑗

(0) = 𝐺𝑔𝑗
∘ 𝑔𝑗 (𝑥

∗
) , 𝑗 ∈ 𝐽 (𝑥

∗
) ,

(22)
we can write the following statement

∑
𝑞∗

𝑖=1 𝜆
∗
𝑖 (𝐺𝜙 ∘ 𝜙 (𝑥0, 𝑦𝑖) − 𝐺𝜙 ∘ 𝜙 (𝑥

∗
, 𝑦𝑖))

𝛽
𝜙
𝑖 (𝑥0, 𝑥

∗)

+

∑
𝑚
𝑗=1 𝜇
∗
𝑗 (G𝑔𝑗 ∘ 𝑔𝑗 (𝑥0) − 𝐺𝑔𝑗

∘ 𝑔𝑗 (𝑥
∗
))

𝛽
𝑔
𝑗 (𝑥0, 𝑥

∗)
< 0.

(23)

By the generalized invexity assumptions of 𝜙(⋅, 𝑦𝑖) and 𝑔𝑗, we
have

𝐺𝜙 ∘ 𝜙 (𝑥0, 𝑦𝑖) − 𝐺𝜙 ∘ 𝜙 (𝑥
∗
, 𝑦𝑖)

≥ (>) 𝛽
𝜙
𝑖 (𝑥0, 𝑥

∗
) 𝐺

𝜙 (𝜙 (𝑥

∗
, 𝑦𝑖)) ⟨𝜉

𝜙
𝑖 , 𝜂 (𝑥0, 𝑥

∗
)⟩ ,

∀𝜉
𝜙
𝑖 ∈ 𝜕𝑥𝜙 (𝑥

∗
, 𝑦𝑖) , 𝑖 ∈ 𝑄

∗
,

𝐺𝑔𝑗
∘ 𝑔𝑗 (𝑥0) − 𝐺𝑔𝑗

∘ 𝑔𝑗 (𝑥
∗
)

≥ (>) 𝛽
𝑔
𝑗 (𝑥0, 𝑥

∗
) 𝐺

𝑔𝑗
(𝑔𝑗 (𝑥

∗
)) ⟨𝜉
𝑔
𝑗 , 𝜂 (𝑥0, 𝑥

∗
)⟩ ,

∀𝜉
𝑔
𝑗 ∈ 𝜕𝑔𝑗 (𝑥

∗
) , 𝑗 ∈ 𝑀.

(24)

Employing (24) to (23), we have

𝑞∗

∑

𝑖=1

𝜆
∗
𝑖 𝐺

𝜙 (𝜙 (𝑥

∗
, 𝑦𝑖)) ⟨𝜉

𝜙
𝑖 , 𝜂 (𝑥0, 𝑥

∗
)⟩

+

𝑚

∑

𝑗=1

𝜇
∗
𝑗𝐺

𝑔𝑗
(𝑔𝑗 (𝑥

∗
)) ⟨𝜉
𝑔
𝑗 , 𝜂 (𝑥0, 𝑥

∗
)⟩ < 0

(25)

or

⟨

𝑞∗

∑

𝑖=1

𝜆
∗
𝑖 𝐺

𝜙 (𝜙 (𝑥

∗
, 𝑦𝑖)) 𝜉

𝜙
𝑖

+

𝑚

∑

𝑗=1

𝜇
∗
𝑗𝐺

𝑔𝑗
(𝑔𝑗 (𝑥

∗
)) 𝜉
𝑔
𝑗 , 𝜂 (𝑥0, 𝑥

∗
)⟩ < 0,

(26)

which implies that

0 �∈
𝑞∗

∑

𝑖=1

𝜆
∗
𝑖 𝐺

𝜙 (𝜙 (𝑥

∗
, 𝑦𝑖)) 𝜕𝑥𝜙 (𝑥

∗
, 𝑦𝑖)

+

𝑚

∑

𝑗=1

𝜇
∗
𝑗𝐺

𝑔𝑗
(𝑔𝑗 (𝑥

∗
)) 𝜕𝑔𝑗 (𝑥

∗
) .

(27)

This is a contradiction to condition (12).

Example 9. Let 𝑌 = [0, 1]. Define

𝜙 (𝑥, 𝑦) = {
𝑒
𝑥+2𝑦

, 𝑦 ≥ 𝑥

𝑒
2𝑥+𝑦

, 𝑥 < 𝑦,

𝑔 (𝑥) =


𝑥 −

3

2


−

1

2
.

(28)

Then, 𝜙(⋅, 𝑦) is (log, 1)-invex at 𝑥 = 1 for each 𝑦 ∈ 𝑌, 𝑔 is
1-invex at 𝑥 = 1, and

𝑓 (𝑥) := sup
𝑦∈𝑌

𝜙 (𝑥, 𝑦) = {
𝑒
𝑥+2

, 𝑦 ≥ 𝑥

𝑒
2𝑥+1

, 𝑥 < 𝑦.
(29)

Since

log (𝜙 (𝑥, 𝑦)) = {
𝑥 + 2𝑦, 𝑦 ≥ 𝑥

2𝑥 + 𝑦, 𝑥 < 𝑦,
(30)

then

𝜕𝑥 log (𝜙 (𝑥, 𝑦)) =

{{

{{

{

1, 𝑦 ≥ 𝑥

[1, 2] , 𝑥 = 𝑦

2, 𝑥 < 𝑦.

(31)

Consider 𝑥0 = 1. Since 𝑌(𝑥0) = {1}, then we can assume that
𝑞 = 1. Therefore,

0 ∈ 𝜆𝐺

𝜙 (𝜙 (1, 1)) 𝜕𝑥𝜙 (1, 1) − 𝜇𝑔


𝑗 (1) = 𝜆 [1, 2] − 𝜇, (32)

where 𝜆 = 𝜇 = 1. Now, from Theorem 8, we can say that
𝑥0 = 1 is an optimal solution to (P).



Journal of Applied Mathematics 5

4. Duality

Making use of the optimality conditions of the preceding
section, we present dual problem (DI) to the primal one (P)
and establish𝐺-weak,𝐺-strong, and𝐺-strict converse duality
theorems. For convenience, we use the following notations:

𝐾 (𝑥) = { (𝑞, 𝜆, 𝑦) ∈ N × Ṙ
𝑞
+ ×R

𝑝𝑞
| 1 ≤ 𝑞 ≤ 𝑛 + 1,

𝜆 = (𝜆1, . . . , 𝜆𝑞) ∈ Ṙ
𝑞
+

with
𝑞

∑

𝑖=1

𝜆𝑖 = 1, 𝑦 = (𝑦1, . . . 𝑦𝑞)

with 𝑦𝑖 ∈ 𝑌 (𝑥) , 𝑖 = 1, . . . 𝑞} .

(33)

𝐻1(𝑞, 𝜆, 𝑦) denotes the set of all triplets (𝑧, 𝜇, 𝜈) ∈ R𝑛 ×R𝑚+ ×

R+ satisfying

0 ∈

𝑞

∑

𝑖=1

𝜆𝑖𝐺

𝜙 (𝜙 (𝑧, 𝑦𝑖)) 𝜕𝑧𝜙 (𝑧, 𝑦𝑖) +

𝑚

∑

𝑗=1

𝜇𝑗𝐺

𝑔𝑗
(𝑔𝑗 (𝑧)) 𝜕𝑔𝑗 (𝑧) ,

(34)

𝜙 (𝑧, 𝑦𝑖) ≥ 𝜈, 𝑖 = 1, 2, . . . , 𝑞, (35)

𝜇𝑗𝑔𝑗 (𝑧) ≥ 0, 𝑗 ∈ 𝑀, (36)

𝑦𝑖 ∈ 𝑌 (𝑧) , (𝑞, 𝜆, 𝑦) ∈ 𝐾 (𝑧) . (37)

Our dual problem (DI) can be stated as follows:

max
(𝑞,𝜆,𝑦)∈𝐾(𝑧)

sup
(𝑧,𝜇,𝜈)∈𝐻1(𝑞,𝜆,𝑦)

𝜈.
(DI)

Note that if 𝐻1(𝑞, 𝜆, 𝑦) is empty for some triplet (𝑞, 𝜆, 𝑦) ∈

𝐾(𝑧), then define sup(𝑧,𝜇,𝜈)∈𝐻1(𝑞,𝜆,𝑦)𝜈 = −∞.

Theorem 10 (𝐺-weak duality). Let 𝑥 and (𝑧, 𝜇, 𝜈, 𝑞, 𝜆, 𝑦) be
(𝑃)-feasible and (𝐷𝐼)-feasible, respectively; let 𝐺𝜙 be both con-
tinuously differentiable and strictly increasing on 𝐼𝜙(𝑋, 𝑌); let
𝐺𝑔𝑗

be both continuously differentiable and strictly increasing
on 𝐼𝑔𝑗

(𝑋) for each 𝑗 ∈ 𝑀. If 𝜙(⋅, 𝑦𝑖) is (𝐺𝜙, 𝛽
𝜙
𝑖 )-invex at 𝑧 for

each 𝑖 ∈ 𝑄 and 𝑔𝑗 is (𝐺𝑔𝑗 , 𝛽
𝑔
𝑗 )-invex at 𝑧 for each 𝑗 ∈ 𝑀, then

sup
𝑦∈𝑌

𝜙 (𝑥, 𝑦) ⩾ 𝜈. (38)

Proof. Suppose to the contrary that sup𝑦∈𝑌 𝜙(𝑥, 𝑦) < 𝜈.
Therefore, we obtain

𝜙 (𝑥, 𝑦) < 𝜈 ≤ 𝜙 (𝑧, 𝑦𝑖) , 𝑦𝑖 ∈ 𝑌 (𝑧) , ∀𝑦 ∈ 𝑌, 𝑖 ∈ 𝑄.

(39)

Thus, we obtain from themonotonicity assumption of𝐺𝜙 that

𝐺𝜙 ∘ 𝜙 (𝑥, 𝑦𝑖) < 𝐺𝜙 ∘ 𝜙 (𝑧, 𝑦𝑖) , 𝑦𝑖 ∈ 𝑌 (𝑧) , 𝑖 ∈ 𝑄. (40)

Again, we obtain from the monotonicity assumption of 𝐺𝑔𝑗
and the fact

𝑔𝑗 (𝑥) ≤ 0, 𝜇𝑗𝑔𝑗 (𝑧) ≥ 0, 𝜇𝑗 ≥ 0, 𝑗 ∈ 𝑀 (41)

that

𝐺𝑔𝑗
∘ 𝑔𝑗 (𝑥) ≤ 𝐺𝑔𝑗

∘ 𝑔𝑗 (𝑧) , 𝑗 ∈ 𝑀. (42)

Hence,

𝑞

∑

𝑖=1

𝜆𝑖

𝐺𝜙 ∘ 𝜙 (𝑥, 𝑦𝑖) − 𝐺𝜙 ∘ 𝜙 (𝑧, 𝑦𝑖)

𝛽
𝜙
𝑖 (𝑥, 𝑧)

+

𝑚

∑

𝑗=1

𝜇𝑗

𝐺𝑔𝑗
∘ 𝑔𝑗 (𝑥) − 𝐺𝑔𝑗

∘ 𝑔𝑗 (𝑧)

𝛽
𝑔
𝑗 (𝑥, 𝑧)

< 0.

(43)

Similar to the proof ofTheorem 8, by (43) and the generalized
invexity assumptions of 𝜙(⋅, 𝑦𝑖) and 𝑔𝑗, we have

⟨

𝑞

∑

𝑖=1

𝜆𝑖𝐺

𝜙 (𝜙 (𝑧, 𝑦𝑖)) 𝜉

𝜙
𝑖 +

𝑚

∑

𝑗=1

𝜇𝑗𝐺

𝑔𝑗
(𝑔𝑗 (𝑧)) 𝜉

𝑔
𝑗 , 𝜂 (𝑥, 𝑧)⟩<0,

(44)

which follows that

0 �∈
𝑞

∑

𝑖=1

𝜆𝑖𝐺

𝜙 (𝜙 (𝑧, 𝑦𝑖)) 𝜕𝑥𝜙 (𝑧, 𝑦𝑖) +

𝑚

∑

𝑗=1

𝜇𝑗𝐺

𝑔𝑗
(𝑔𝑗 (𝑧)) 𝜕𝑔𝑗 (𝑧) .

(45)

Thus, we have a contradiction to (34). So sup𝑦∈𝑌 𝜙(𝑥, 𝑦) ⩾

𝜈.

Theorem 11 (𝐺-strong duality). Let problem (P) satisfy Con-
ditions 4 and 5; let 𝑥∗ be an optimal solution of problem (P).
Suppose that 𝐺𝜙 is both continuously differentiable and strictly
increasing on 𝐼𝜙(𝑋, 𝑌) and 𝐺𝑔𝑗

is both continuously differen-
tiable and strictly increasing on 𝐼𝑔𝑗

(𝑋) with 𝐺

𝑔𝑗
(𝑔𝑗(𝑥
∗
)) >

0 for each 𝑗 ∈ 𝑀. If the hypothesis of Theorem 10 holds
for all (𝐷𝐼)-feasible points (𝑧, 𝜇, 𝜈, 𝑞, 𝜆, 𝑦), then there exist
(𝑞
∗
, 𝜆
∗
, 𝑦
∗
) ∈ 𝐾(𝑧) and (𝑥

∗
, 𝜇
∗
, 𝜈
∗
) ∈ 𝐻1(𝑞

∗
, 𝜆
∗
, 𝑦
∗
) such

that (𝑞∗, 𝜆∗, 𝑦∗, 𝑥∗, 𝜇∗, 𝜈∗) is a (DI) optimal solution, and the
two problems (P) and (DI) have the same optimal values.

Proof. By Theorem 7, there exists 𝜈∗ = 𝜙(𝑥
∗
, 𝑦
∗
𝑖 ), 𝑖 = 1, . . . ,

𝑞
∗, satisfying the requirements specified in the theorem, such
that (𝑞

∗
, 𝜆
∗
, 𝑦
∗
, 𝑥
∗
, 𝜇
∗
, 𝜈
∗
) is a (DI) feasible solution, then

the optimality of this feasible solution for (DI) follows from
Theorem 10.

Theorem 12 (𝐺-strict converse duality). Let 𝑥 and (𝑧, 𝜇,

𝜈, 𝑞, 𝜆, 𝑦) be optimal solutions for (P) and (DI), respectively.
Suppose that 𝐺𝜙 is both continuously differentiable and strictly
increasing on 𝐼𝜙(𝑋, 𝑌) and 𝐺𝑔𝑗

is both continuously differen-
tiable and strictly increasing on 𝐼𝑔𝑗

(𝑋) for each 𝑗 ∈ 𝑀. If𝜙(⋅, 𝑦𝑖)
is (𝐺𝜙, 𝛽

𝜙
𝑖 )-invex at 𝑧 for each 𝑖 ∈ 𝑄 and 𝑔𝑗 is (𝐺𝑔𝑗 , 𝛽

𝑔
𝑗 )-invex

at 𝑧 for each 𝑗 ∈ 𝑀, then 𝑥 = 𝑧; that is, 𝑧 is a (𝑃)-optimal
solution and sup𝑦∈𝑌𝜙(𝑥, 𝑦) = 𝜈.
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Proof. Suppose to the contrary that 𝑥 ̸= 𝑧. Similar to the
arguments as in the proof of Theorem 8, there exist 𝜉

𝜙
𝑖 ∈

𝜙(𝑧, 𝑦𝑖) and 𝜉
𝑔
𝑗 ∈ 𝑔𝑗(𝑧) such that

0 = ⟨

𝑞

∑

𝑖=1

𝜆𝑖𝐺

𝜙 (𝜙 (𝑧, 𝑦𝑖)) 𝜉

𝜙
𝑖 +

𝑚

∑

𝑗=1

𝜇𝑗𝐺

𝑔𝑗
(𝑔𝑗 (𝑧)) 𝜉

𝑔
𝑗 , 𝜂 (𝑥, 𝑧)⟩

<

𝑞

∑

𝑖=1

𝜆𝑖

𝐺𝜙 ∘ 𝜙 (𝑥, 𝑦𝑖) − 𝐺𝜙 ∘ 𝜙 (𝑧, 𝑦𝑖)

𝛽
𝜙
𝑖 (𝑥, 𝑧)

+

𝑚

∑

𝑗=1

𝜇𝑗

𝐺𝑔𝑗
∘ 𝑔𝑗 (𝑥) − 𝐺𝑔𝑗

∘ 𝑔𝑗 (𝑧)

𝛽
𝑔
𝑗 (𝑥, 𝑧)

,

𝑚

∑

𝑗=1

𝜇𝑗

𝐺𝑔𝑗
∘ 𝑔𝑗 (𝑥) − 𝐺𝑔𝑗

∘ 𝑔𝑗 (𝑧)

𝛽
𝑔
𝑗 (𝑥, 𝑧)

≤ 0.

(46)

Therefore,
𝑞

∑

𝑖=1

𝜆𝑖

𝐺𝜙 ∘ 𝜙 (𝑥, 𝑦𝑖) − 𝐺𝜙 ∘ 𝜙 (𝑧, 𝑦𝑖)

𝛽
𝜙
𝑖 (𝑥, 𝑧)

> 0. (47)

From the above inequality, we can conclude that there exists
𝑖0 ∈ 𝑄, such that

𝐺𝜙 ∘ 𝜙 (𝑥, 𝑦𝑖0
) − 𝐺𝜙 ∘ 𝜙 (𝑧, 𝑦𝑖0

) > 0 (48)

or

𝜙 (𝑥, 𝑦𝑖0
) > 𝜙 (𝑧, 𝑦𝑖0

) . (49)

It follows that

sup
𝑦∈𝑌

𝜙 (𝑥, 𝑦) ≥ 𝜙 (𝑥, 𝑦𝑖0
) > 𝜙 (𝑧, 𝑦𝑖0

) > 𝜈. (50)

On the other hand, we know fromTheorem 10 that

sup
𝑦∈𝑌

𝜙 (𝑥, 𝑦) = 𝜈. (51)

This contradicts to (50).

5. Conclusion

In this paper, we have discussed the applications of (𝐺, 𝛽)-
invexity for a class of nonsmooth minimax programming
problem (P). Firstly, we established 𝐺-necessary optimality
conditions for problem (P). Under the nondifferential (𝐺, 𝛽)-
invexity assumptions, we have also derived the sufficiency of
the 𝐺-necessary optimality conditions for the same problem.
Further, we have constructed a dual model (DI) and derived
𝐺-duality results between problems (P) and (DI). Note that
many researchers are interested in dealing with the minimax
programming under generalized invexity assumptions; see [1,
10, 11, 14–17]. However, we have not found results forminimax
programming problems under the𝐺-invexity or its extension
assumptions. Hence, this work extends the applications of𝐺-
invexity to the generalized minimax programming as well as
to the nonsmooth case.
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ming under new invexity assumptions,” Revue Roumaine de
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