
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 852698, 10 pages
http://dx.doi.org/10.1155/2013/852698

Research Article
Stationary Patterns of a Cross-Diffusion Epidemic Model

Yongli Cai,1,2 Dongxuan Chi,3 Wenbin Liu,4 and Weiming Wang2

1 School of Mathematics and Computational Science, Sun Yat-sen University, Guangzhou 510275, China
2 College of Mathematics and Information Science, Wenzhou University, Wenzhou 325035, China
3Department of Applied Mathematics, Shanghai Finance University, Shanghai 201209, China
4College of Physics and Electronic Information Engineering, Wenzhou University, Wenzhou 325035, China

Correspondence should be addressed to Yongli Cai; caiyongli06@163.com

Received 16 September 2013; Accepted 3 October 2013

Academic Editor: Carlo Bianca

Copyright © 2013 Yongli Cai et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We investigate the complex dynamics of cross-diffusion 𝑆𝐼 epidemic model. We first give the conditions of the local and global
stability of the nonnegative constant steady states, which indicates that the basic reproduction number determines whether there
is an endemic outbreak or not. Furthermore, we prove the existence and nonexistence of the positive nonconstant steady states,
which guarantees the existence of the stationary patterns.

1. Introduction

In epidemiology, epidemic compartmental models, since the
pioneer work of Kermack and McKendrick [1], are widely
used for increasing the understanding of infectious disease
dynamics and for determining preventivemeasures to control
infection spread qualitatively and quantitatively [2]. More
recently, many studies have shown that a spatial epidemic
model is an appropriate tool for investigating the fundamen-
tal mechanism of complex spatiotemporal epidemic dynam-
ics. In these studies, reaction-diffusion equations have been
intensively used to describe spatiotemporal dynamics [3–21].
Spatial epidemiology with diffusion has become a principal
scientific discipline aiming at understanding the causes and
consequences of spatial heterogeneity in disease transmission
[20].

In addition, from a biological perspective, the diffusion
of individuals may be connected with other things, such as
searching for food, escaping high infection risks. In the first
case, individuals tend to diffuse in the direction of lower den-
sity of a population, where there are richer resources. In the
second, individualsmaymove along the gradient of infectious
individuals to avoid higher infection [12, 22]. Keeping these
in view, cross-diffusion arises, which was proposed first
by Kerner [23] and first applied in competitive population
system by Shigesada et al. [24]. In particular, Sun et al. [16],

by using the standard linear analysis, studied the pattern
formation in a cross-diffusion 𝑆𝐼 epidemic model. And in
[19], the authors presentedTuring pattern selection in a cross-
diffusion 𝑆𝐼 epidemic model with zero-flux boundary condi-
tions, gave the conditions of Hopf and Turing bifurcations,
and derived the amplitude equations for the excited modes.

In the past decades, it has been shown that the reaction-
diffusion system is capable to generate complex spatiotempo-
ral patterns, and the existence of stationary patterns induced
by diffusion has attracted the extensive attention of a great
number of biologists and mathematicians, and lots of fasci-
nating and important phenomena have been observed [25–
33]. In particular, in the field of epidemiology, there are many
contributions to the existence of steady states in the diffusive
epidemic models [34–45]. But in the studies on the steady
states of diffusive epidemic models, little attention has been
paid to study on the effect of cross-diffusion.

The main focus of this paper is to investigate how cross-
diffusion affects disease’s dynamics through studying the
existence of the constant and nonconstant steady states of a
cross-diffusion 𝑆𝐼 epidemic model.

The rest of this paper is organized as follows. In Section 2,
we derive a cross-diffusion 𝑆𝐼 epidemic model. In Section 3,
we give the global existence and positivity of the solution.
In Section 4, we study the local and global stability of the
nonnegative steady states of the model. In Section 5, we first
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give a priori estimates for the positive solutions of the model
and then give some results on the existence and nonexistence
of positive nonconstant steady states of the model. The paper
ends with a brief discussion in Section 6.

2. Model Derivation

Assume that the habitat Ω ⊂ R𝑚 (𝑚 ≥ 1) is a bounded
domainwith smooth boundary 𝜕Ω (when𝑚 > 1), andn is the
outward unit normal vector on 𝜕Ω.We consider the following
cross-diffusion 𝑆𝐼 epidemic model:

𝜕𝑆

𝜕𝑡
− 𝑑
𝑆
Δ𝑆 = 𝑟𝑆 (1 −

𝑆

𝐾
) −

𝛽𝑆𝐼

𝑆 + 𝐼
, 𝑥 ∈ Ω, 𝑡 > 0,

𝜕𝐼

𝜕𝑡
− 𝐷Δ𝑆 − 𝑑

𝐼
Δ𝐼 =

𝛽𝑆𝐼

𝑆 + 𝐼
− 𝜇𝐼, 𝑥 ∈ Ω, 𝑡 > 0,

𝜕𝑆

𝜕n
=
𝜕𝐼

𝜕n
= 0, 𝑥 ∈ 𝜕Ω,

𝑆 (𝑥, 0) = 𝑆
0
(𝑥) > 0, 𝐼 (𝑥, 0) = 𝐼

0
(𝑥) ≥ 0, 𝑥 ∈ Ω,

(1)

where 𝑆(𝑥, 𝑡) and 𝐼(𝑥, 𝑡) denote the density of susceptible and
infected individuals at location𝑥 ∈ Ω and time 𝑡, respectively,
𝑑
𝑆
and 𝑑

𝐼
are the self-diffusion coefficients for the susceptible

and infected individuals, and 𝐷 is the cross-diffusion coeffi-
cient. 𝑟 stands for the susceptible population intrinsic growth
rate,𝛽 the rate of transmission,𝜇 the death rate of the infected
population 𝐼, and𝐾 the carrying capacity.The symbolΔ is the
Laplacian operator. The homogeneous Neumann boundary
condition implies that the above model is self-contained and
there is no infection across the boundary.

It is worthy to note that the diffusion coefficients 𝑑
𝑆
, 𝑑
𝐼
,

and 𝐷 are such that 𝑑
𝑆
, 𝑑
𝐼
> 0, 𝐷 ≥ 0 and 𝑑

𝑆
> 𝑑
𝐼
, 𝐷2 <

4𝑑
𝑆
𝑑
𝐼
which is the parabolic condition.

For model (1), the basic reproduction number is defined
as

𝑅
0
=
𝛽

𝜇
. (2)

The steady states of model (1) satisfy

−𝑑
𝑆
Δ𝑆 = 𝑟𝑆 (1 −

𝑆

𝐾
) −

𝛽𝑆𝐼

𝑆 + 𝐼
, 𝑥 ∈ Ω,

−𝐷Δ𝑆 − 𝑑
𝐼
Δ𝐼 =

𝛽𝑆𝐼

𝑆 + 𝐼
− 𝜇𝐼, 𝑥 ∈ Ω,

𝜕𝑆

𝜕n
=
𝜕𝐼

𝜕n
= 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0.

(3)

Throughout this paper, the positive solution (𝑆, 𝐼) satis-
fying (1) refers to a classical one with 𝑆 > 0, 𝐼 > 0 on Ω.
Clearly,model (1) has a semitrivial constant solution (disease-
free equilibrium) 𝐸

0
= (𝐾, 0) and a positive constant solution

(endemic equilibrium)

𝐸
∗

= (𝑆
∗

, 𝐼
∗

)

= (
𝐾

𝑟
(𝑟 − (𝑅

0
− 1) 𝜇) ,

𝐾

𝑟
(𝑟 − (𝑅

0
− 1) 𝜇) (𝑅

0
− 1))

(4)

if 1 < 𝑅
0
< 1 + (𝑟/𝜇).

3. Global Existence and Positivity of
the Solution

In this section, we show the existence of unique positive
global solution of model (1).

First, we convert model (1) into an abstract first-order
system 𝐶(Ω) × 𝐶(Ω) of the form

𝑈


(𝑡) = 𝐴𝑈 (𝑡) + 𝐹 (𝑈 (𝑡)) , 𝑡 > 0,

𝑈 (0) = 𝑈
0
∈ 𝐶 (Ω) × 𝐶 (Ω) ,

(5)

where

𝐴𝑈 (𝑡) = (𝑑
𝑆
Δ𝑆,𝐷Δ𝑆 + 𝑑

𝐼
Δ𝐼) ,

𝐹 (𝑈 (𝑡)) = (𝑟𝑆 (1 −
𝑆

𝐾
) −

𝛽𝑆𝐼

𝑆 + 𝐼
,
𝛽𝑆𝐼

𝑆 + 𝐼
− 𝜇𝐼) .

(6)

Since 𝐹 is locally Lipschitz in 𝐶(Ω) × 𝐶(Ω), for every initial
date 𝑈

0
∈ 𝐶(Ω) × 𝐶(Ω), system (5) admits a unique local

solution on [0, 𝑇max), where 𝑇max is the maximal existence
time for solution of system (5) [46].

Set 𝑍 = 𝐼 − (𝐷/(𝑑
𝑆
− 𝑑
𝐼
))𝑆. Then model (1) leads to

𝜕𝑆

𝜕𝑡
− 𝑑
𝑆
Δ𝑆 = 𝑟𝑆 (1 −

𝑆

𝐾
)

−
𝛽𝑆𝐼

𝑆 + 𝐼
:= Λ (𝑆, 𝑍) , 𝑥 ∈ Ω, 𝑡 > 0,

𝜕𝑍

𝜕𝑡
− 𝑑
𝐼
Δ𝑍 =

𝐷

𝑑
𝑆
− 𝑑
𝐼

(𝑟𝑆 (1 −
𝑆

𝐾
) −

𝛽𝑆𝐼

𝑆 + 𝐼
)

+
𝛽𝑆𝐼

𝑆 + 𝐼
− 𝜇𝐼 := Υ (𝑆, 𝑍) , 𝑥 ∈ Ω, 𝑡 > 0,

𝜕𝑆

𝜕n
=
𝜕𝑍

𝜕n
= 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,

𝑆 (𝑥, 0) = 𝑆
0
(𝑥) > 0,

𝑍 (𝑥, 0) = 𝑍
0
(𝑥) = 𝐼

0
(𝑥) −

𝐷

𝑑
𝑆
− 𝑑
𝐼

𝑆
0
(𝑥) , 𝑥 ∈ Ω.

(7)

A simple application of a comparison theorem to model
(7) implies (see [47]) that for positive initial date 𝑆

0
(𝑥) > 0

and 𝑍
0
(𝑥) ≥ 0 we have that

𝑆 (𝑥, 𝑡) > 0, 𝐼 (𝑥) ≥
𝐷

𝑑
𝑆
− 𝑑
𝐼

𝑆 (𝑥, 𝑡) , ∀𝑥 ∈ Ω, 𝑡 > 0.

(8)

Applying the comparison principle we get that 𝑆(𝑥, 𝑡) ≤
max{‖𝑆

0
‖
∞
, 𝐾}. To establish the uniform boundedness of

𝐼(𝑥, 𝑡), it is sufficient to show the uniform boundedness of
𝑍(𝑥, 𝑡). This task is carried out using a result found in Henry
[48], from which it is sufficient to derive a uniform estimate
for ‖Υ(𝑆, 𝑍)‖

𝑝
. Hence, we apply the same method of [49, 50]

to study the existence of global solution of model (1). And we
have the following result.
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Theorem 1. The solution of model (1) is global and uniformly
bounded in [0,∞[.

For the sake of simplicity, we omit the proof, and the
interested readers may refer to [49, 50] for details.

4. Stability of Nonnegative Constant
Steady States

In this section, we consider the stability behavior of nonneg-
ative constant steady states to model (1).

4.1. Local Stability of Nonnegative Steady States. In this
subsection, we will discuss the local stability of the constant
steady states 𝐸

0
= (𝐾, 0) and 𝐸∗ = (𝑆∗, 𝐼∗). For this purpose,

we need to introduce some notations.
Let 0 = 𝜆

0
< 𝜆
1
< 𝜆
2
< ⋅ ⋅ ⋅ be the eigenvalues of the

operator-Δ onΩwith the homogeneous Neumann boundary
conditions. Let X = {(𝑆, 𝐼) ∈ [𝐶

2

(Ω)]
2

| 𝜕𝑆/𝜕n = 𝜕𝐼/𝜕n =

0, 𝑥 ∈ 𝜕Ω}, {𝜙
𝑖𝑗
| 𝑗 = 1, . . . , dim𝐸(𝜆

𝑖
)} be an orthonormal

basis of 𝐸(𝜆
𝑖
), and X

𝑖𝑗
= {c𝜙

𝑖𝑗
| c ∈ R2}; then X = ⨁

∞

𝑖=1
X
𝑖

where X
𝑖
= ⨁

dim𝐸(𝜆𝑖)
𝑗=1

X
𝑖𝑗
.

Theorem 2. For model (1),

(a) if 1 < 𝑅
0
< 1 + (𝑟/𝜇) and 𝑑

𝐼
(𝜇𝑅
2

0
− 𝑟𝑅
0
− 𝜇) +

𝐷𝜇(𝑅
0
− 1)
2

< 𝑑
𝑆
𝜇(𝑅
0
−1), the positive constant steady

state 𝐸∗ = (𝑆∗, 𝐼∗) is locally asymptotically stable;

(b) if 𝑅
0
≤ 1, the semitrivial constant steady state 𝐸

0
=

(𝐾, 0) is locally asymptotically stable.

Proof. (a) The linearization of model (1) at the positive
constant steady state 𝐸∗ = (𝑆∗, 𝐼∗) can be expressed by

𝜕𝜉

𝜕𝑡
= 𝑑
𝑆
Δ𝜉 +

𝜇𝑅
2

0
− 𝑟𝑅
0
− 𝜇

𝑅
0

𝜉 −
𝜇

𝑅
0

𝜁, 𝑥 ∈ Ω, 𝑡 > 0,

𝜕𝜁

𝜕𝑡
= 𝐷Δ𝜉 + 𝑑

𝐼
Δ𝜁 +

𝜇(𝑅
0
− 1)
2

𝑅
0

𝜉

−
𝜇 (𝑅
0
− 1)

𝑅
0

𝜁, 𝑥 ∈ Ω, 𝑡 > 0,

𝜕𝜉

𝜕n
=
𝜕𝜁

𝜕n
= 0, 𝑥 ∈ 𝜕Ω.

(9)

Let

£ = (
𝑑
𝑆
Δ +

𝜇𝑅
2

0
− 𝑟𝑅
0
− 𝜇

𝑅
0

−
𝜇

𝑅
0

𝐷Δ +
𝜇(𝑅
0
− 1)
2

𝑅
0

𝑑
𝐼
Δ −

𝜇 (𝑅
0
− 1)

𝑅
0

). (10)

For each 𝑖 ≥ 0,X
𝑖
is invariant under the operator £, and 𝜂 is an

eigenvalue of £ if and only if 𝜂 is an eigenvalue of the matrix

𝐴
𝑖
= (

−𝑑
𝑆
𝜆
𝑖
+
𝜇𝑅
2

0
− 𝑟𝑅
0
− 𝜇

𝑅
0

−
𝜇

𝑅
0

−𝐷𝜆
𝑖
+
𝜇(𝑅
0
− 1)
2

𝑅
0

−𝑑
𝐼
𝜆
𝑖
−
𝜇 (𝑅
0
− 1)

𝑅
0

),

(11)

for some 𝑖 ≥ 0. Thus the stability of the positive constant
steady state is reduced to consider the characteristic equation:

det (𝜂𝐼 − 𝐴
𝑖
) = 𝜂
2

− trace (𝐴
𝑖
) 𝜂 + det (𝐴

𝑖
) := 𝜑

𝑖
(𝜂) , (12)

where

trace (𝐴
𝑖
) = −𝜆

𝑖
(𝑑
𝑆
+ 𝑑
𝐼
) − (𝑟 − 𝜇 (𝑅

0
− 1)) < 0,

det (𝐴
𝑖
) = 𝑑
𝑆
𝑑
𝐼
𝜆
2

𝑖
+
1

𝑅
0

(𝑑
𝑆
𝜇 (𝑅
0
− 1) − 𝑑

𝐼
(𝜇𝑅
2

0
− 𝑟𝑅
0
− 𝜇)

−𝐷𝜇(𝑅
0
− 1)
2

) 𝜆
𝑖

+
𝜇 (𝑅
0
− 1) (𝑟 − 𝜇 (𝑅

0
− 1))

𝑅
0

.

(13)

It follows from 𝑑
𝐼
(𝜇𝑅
2

0
− 𝑟𝑅
0
− 𝜇) + 𝐷𝜇(𝑅

0
− 1)
2

< 𝑑
𝑆
𝜇(𝑅
0
−

1) that det(𝐴
𝑖
) > 0. Therefore, the eigenvalues of the matrix

𝐴
𝑖
have negative real parts. It thus follows from the Routh-

Hurwitz criterion that, for each 𝑖 ≥ 0, the two roots 𝜂
𝑖1
and

𝜂
𝑖2
of 𝜑
𝑖
(𝜂) = 0 all have negative real parts.

In the following, we prove that there exists 𝜅 > 0 such that

R {𝜂
𝑖1
} ,R {𝜂

𝑖2
} ≤ −𝜅. (14)

Let 𝜂 = 𝜆
𝑖
𝜉; then 𝜑

𝑖
(𝜂) = 𝜆

2

𝑖
𝜉
2

− tr(𝐴
𝑖
)𝜆
𝑖
𝜉 + det(𝐴

𝑖
) := 𝜑

𝑖
(𝜂).

Since 𝜆
𝑖
→ ∞ as 𝑖 → ∞, it follows that

lim
𝑖→∞

𝜑
𝑖
(𝜂)

𝜆
2

𝑖

= 𝜉
2

+ (𝑑
𝑆
+ 𝑑
𝐼
) 𝜉 + 𝑑

𝑆
𝑑
𝐼
:= 𝜑 (𝜉) . (15)

Clearly, 𝜑(𝜉) = 0 has two negative roots: −𝑑
𝑆
, −𝑑
𝐼
. Let 𝑑 =

min{𝑑
𝑆
, 𝑑
𝐼
}. By continuity, we see that there exists 𝑖

0
such that

the two roots 𝜉
𝑖1
, 𝜉
𝑖2
of 𝜑
𝑖
(𝜂) = 0 satisfy R{𝜉

𝑖1
},R{𝜉

𝑖2
} ≤

−(𝑑/2), ∀𝑖 ≥ 𝑖
0
. In turn,R{𝜂

𝑖1
},R{𝜂

𝑖2
} ≤ −(𝜆

𝑖
𝑑/2) ≤ −(𝑑/2),

∀𝑖 ≥ 𝑖
0
. Let −𝜅 = max

1≤𝑖≤𝑖0
{R{𝜂
𝑖1
},R{𝜂

𝑖2
}}. Then 𝜅 > 0 and

(14) holds for 𝜅 = min{𝜅, 𝑑/2}.
Consequently, the spectrum of £ which consists of eigen-

values lies in {R{𝜂} ≤ −𝜅}. In the sense of [48], we obtain
that the positive constant steady state solution 𝐸∗ = (𝑆

∗

, 𝐼
∗

)

of model (1) is uniformly asymptotically stable.
(b) The stability of the semitrivial constant steady state

𝐸
0
= (𝐾, 0) is reduced to consider the characteristic equation:

det (𝜂𝐼 − 𝐴
𝑖
) = 𝜂
2

− trace (𝐴
𝑖
) 𝜂 + det (𝐴

𝑖
) , (16)
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where

trace (𝐴
𝑖
)

= −𝜆
𝑖
(𝑑
𝑆
+ 𝑑
𝐼
) − (𝑟 + 𝜇 (𝑅

0
− 1)) < 0,

det (𝐴
𝑖
)

= 𝑑
𝑆
𝑑
𝐼
𝜆
2

𝑖
+ (𝑑
𝑆
𝜇 (1 − 𝑅

0
) + 𝑑
𝐼
𝑟) 𝜆
𝑖
+ 𝑟𝜇 (1 − 𝑅

0
) > 0.

(17)

The remaining arguments are rather similar as above. The
proof is complete.

4.2. Global Stability of the Nonnegative Steady States. This
subsection is devoted to the global stability of 𝐸

0
= (𝐾, 0)

and 𝐸∗ = (𝑆∗, 𝐼∗) for model (1).
First, we have the following lemma regarding the persis-

tence property of the susceptible individuals which will play a
critical role in the proof of the global stability of𝐸∗ = (𝑆∗, 𝐼∗).

Lemma 3. If 𝑅
0
< 𝑟/𝜇, 𝑆(𝑥, 𝑡) satisfies

lim inf
𝑡→∞

min
Ω

𝑆 (𝑥, 𝑡) ≥ 𝐾(1 −
𝑅
0
𝜇

𝑟
) . (18)

Proof. For all 𝑡 ≥ 0, 𝑆(𝑥, 𝑡) is an upper solution of the
following problem:

𝜕𝑧

𝜕𝑡
− 𝑑
𝑆
Δ𝑧 = 𝑟𝑧(1 −

𝛽

𝑟
−
𝑧

𝐾
) , 𝑥 ∈ Ω, 𝑡 > 0,

𝜕𝑧

𝜕n
= 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,

𝑧 (𝑥, 0) = 𝑆
0
(𝑥) > 0, 𝑥 ∈ Ω.

(19)

Let 𝑆(𝑡) be the unique positive solution of the problem

𝜕𝑤

𝜕𝑡
= 𝑟𝑤(1 −

𝛽

𝑟
−
𝑤

𝐾
) , 𝑡 > 0,

𝑤 (0) = max
Ω

𝑆
0
(𝑥) > 0.

(20)

Then 𝑆(𝑡) is a lower solution of (20). Since 𝛽 < 𝑟 we have

lim
𝑡→∞

𝑆 (𝑡) = 𝐾(1 −
𝛽

𝑟
) = 𝐾(1 −

𝑅
0
𝜇

𝑟
) . (21)

It follows by a comparison argument that

lim inf
𝑡→∞

min
Ω

𝑆 (𝑥, 𝑡) ≥ 𝐾(1 −
𝑅
0
𝜇

𝑟
) . (22)

The proof is complete.

Now, we give the result of the global stability of𝐸
0
and𝐸∗.

Theorem 4. For model (1),

(a) if 𝜇 < 𝑟 and 1 < 𝑅
0
< (𝑟 + 𝜇)/2𝜇, then positive

constant steady state𝐸∗ = (𝑆∗, 𝐼∗) of model (1) globally
asymptotically stable;

(b) if 𝑅
0
≤ 1, the semitrivial constant steady state 𝐸

0
=

(𝐾, 0) of model (1) is globally asymptotically stable.

Proof. (a) We adopt the Lyapunov function:

𝑉 (𝑡) = ∫
Ω

[𝑉
1
(𝑆 (𝑥, 𝑡)) + ]𝑉

2
(𝐼 (𝑥, 𝑡))] 𝑑𝑥, (23)

where 𝑉
1
(𝑆) = ∫

𝑆

𝑆
∗
((𝜉 − 𝑆

∗

)/𝜉)𝑑𝜉, 𝑉
2
(𝐼) = ]∫

𝐼

𝐼
∗
((𝜂 − 𝐼

∗

)/𝜂)𝑑𝜂,
and ] = 𝑆

∗

/𝐼
∗

= 1/(𝑅
0
− 1). Then 𝑉(𝑡) ≥ 0 and 𝑉(𝑡) = 0 if

and only if (𝑆, 𝐼) = (𝑆∗, 𝐼∗). Then,

𝑑𝑉

𝑑𝑡
= ∫
Ω

(
𝑆 − 𝑆
∗

𝑆

𝜕𝑆

𝜕𝑡
+
] (𝐼 − 𝐼∗)

𝐼

𝜕𝐼

𝜕𝑡
) 𝑑𝑥

= ∫
Ω

(𝑆 − 𝑆
∗

) (𝑟 −
𝑟𝑆

𝐾
−

𝛽𝐼

𝑆 + 𝐼
+ 𝑑
𝑆

Δ𝑆

𝑆
)𝑑𝑥

+ ∫
Ω

] (𝐼 − 𝐼∗) (
𝛽𝑆

𝑆 + 𝐼
− 𝜇 + 𝑑

𝐼

Δ𝐼

𝐼
+ 𝐷

Δ𝑆

𝐼
) 𝑑𝑥

= ∫
Ω

𝑃 (𝑆, 𝐼) 𝑑𝑥

−∫
Ω

(
𝑑
𝑆
𝑆
∗

𝑆2
|∇𝑆|
2

+
𝑑
𝐼
]𝐼∗

𝐼2
|∇𝐼|
2

+
𝐷]𝐼∗

𝐼2
|∇𝑆| |∇𝐼|) 𝑑𝑥,

(24)

where

𝑃 (𝑆, 𝐼) = (𝑆 − 𝑆
∗

) (𝑟 −
𝑟𝑆

𝐾
−

𝛽𝐼

𝑆 + 𝐼
)

+ ] (𝐼 − 𝐼∗) (
𝛽𝑆

𝑆 + 𝐼
− 𝜇) .

(25)

It follows from Lemma 3 that, for any 𝜀 > 0, there exists 𝑡
0
>

0, such that 𝑆 + 𝐼 ≥ 𝑆 ≥ 𝐾(1 − (𝜇𝑅
0
/𝑟)) − 𝜀 for all 𝑥 ∈ Ω and

𝑡 ≥ 𝑡
0
. And by some computational analysis, we have

𝑃 (𝑆, 𝐼) = (𝑆 − 𝑆
∗

)
2

(−
𝑟

𝐾
+

𝛽𝐼
∗

(𝑆∗ + 𝐼∗) (𝑆 + 𝐼)
)

−
]𝑆∗

(𝑆∗ + 𝐼∗) (𝑆 + 𝐼)
(𝐼 − 𝐼

∗

)
2

= −(𝑆 − 𝑆
∗

)
2

(
𝑟

𝐾
−
𝜇 (𝑅
0
− 1)

𝑆 + 𝐼
)

−
1

𝑅
0
(𝑅
0
− 1) (𝑆 + 𝐼)

(𝐼 − 𝐼
∗

)
2

≤ −(𝑆 − 𝑆
∗

)
2

(
𝑟

𝐾
−

𝜇 (𝑅
0
− 1)

𝐾 (1 − 𝜇𝑅
0
/𝑟) − 𝜀

)

−
1

𝑅
0
(𝑅
0
− 1) (𝑆 + 𝐼)

(𝐼 − 𝐼
∗

)
2

.

(26)

Hence, in view of the conditions of the theorem and the
arbitrariness of 𝜀, we have 𝑃(𝑆, 𝐼) ≤ 0; that is, 𝑑𝑉/𝑑𝑡 ≤ 0

for all 𝑥 ∈ Ω and 𝑡 ≥ 𝑡
0
. So 𝑉(𝑡) decreases monotonically
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along a solution orbit and 𝐸∗ is globally asymptotically stable
under the assumptions of the theorem.

(b) We adopt the Lyapunov function:

𝑉 (𝑡) = ∫
Ω

𝐼 𝑑𝑥. (27)

Then 𝑉(𝑡) ≥ 0 and 𝑉(𝑡) = 0 if and only if 𝐼 = 0. Then, if
𝑅
0
≤ 1, we obtain

𝑑𝑉

𝑑𝑡
= ∫
Ω

𝜕𝐼

𝜕𝑡
𝑑𝑥

= ∫
Ω

(
𝛽𝑆𝐼

𝑆 + 𝐼
− 𝜇𝐼 + 𝑑

𝐼
Δ𝐼 + 𝐷Δ𝑆)𝑑𝑥

≤ ∫
Ω

𝜇𝐼 (𝑅
0
− 1) 𝑑𝑥 ≤ 0.

(28)

It follows from 𝐼 = 0 and the second equation of model (1)
that 𝑆 is a constant. As a consequence, from the first equation
of model (1) and 𝑆 ̸= 0, we have 𝑆 = 𝐾. Hence, 𝐸

0
= (𝐾, 0) is

globally asymptotically stable.

5. Existence and Nonexistence of Positive
Nonconstant Steady States

In this section, we provide some sufficient conditions for the
existence and nonexistence of nonconstant positive solution
of model (3) by using the Leray-Schauder degree theory [51].
For the purpose, it is necessary to establish a priori positive
upper and lower bounds for the positive solution of model
(3).

5.1. A Priori Estimates. In order to obtain the desired bounds,
we recall the followingmaximum principle [22] andHarnack
inequality [52].

Lemma5 (maximumprinciple, see [22]). LetΩ be a bounded
Lipschitz domain in R𝑚 and 𝑔 ∈ 𝐶(Ω ×R).

(a) Assume that 𝑤 ∈ 𝐶
2

(Ω) ∩ 𝐶
1

(Ω) and satisfies

Δ𝑤 (𝑥) + 𝑔 (𝑥, 𝑤 (𝑥)) ≥ 0 in Ω, 𝜕𝑤

𝜕n
≤ 0 on 𝜕Ω.

(29)

If 𝑤(𝑥
0
) = max

Ω
𝑤(𝑥), then 𝑔(𝑥

0
, 𝑤(𝑥
0
)) ≥ 0.

(b) Assume that 𝑤 ∈ 𝐶
2

(Ω) ∩ 𝐶
1

(Ω) and satisfies

Δ𝑤 (𝑥) + 𝑔 (𝑥, 𝑤 (𝑥)) ≤ 0 in Ω, 𝜕𝑤

𝜕n
≥ 0 on 𝜕Ω.

(30)

If 𝑤(𝑥
0
) = min

Ω
𝑤(𝑥), then 𝑔(𝑥

0
, 𝑤(𝑥
0
)) ≤ 0.

Lemma 6 (Harnack inequality, see [52]). Let 𝑤 ∈ 𝐶
2

(Ω) ∩

𝐶
1

(Ω) be a positive solution to Δ𝑤(𝑥) + 𝑐(𝑥)𝑤(𝑥) = 0, where
𝑐 ∈ 𝐶(Ω), satisfying the homogeneous Neumann boundary

conditions.Then there exists a positive constant𝐶∗ = 𝐶∗(‖𝑐‖
∞
,

Ω), such that

max
Ω

𝑤 ≤ 𝐶
∗min
Ω

𝑤. (31)

For convenience, let us denote the constants 𝑟, 𝐾, 𝛽, and 𝜇
collectively by Λ. The positive constants 𝐶, 𝐶, 𝐶, and so forth
will depend only on the domainsΩ and Λ.

Theorem7. Assume that 1 < 𝑅
0
< 𝑟/𝜇. Let𝐷

1
be an arbitrary

fixed positive number. Then there exist positive constants 𝐶 =

𝐶(Λ,Ω,𝐷
1
) and 𝐶 = 𝐶(Λ,Ω,𝐷

1
), such that if 𝑑

𝑆
, 𝑑
𝐼
≥ 𝐷
1
,

any positive solution (𝑆(𝑥), 𝐼(𝑥)) of model (3) satisfies

𝐶 ≤ 𝑆 (𝑥) , 𝐼 (𝑥) ≤ 𝐶. (32)

Proof. By applying Lemma 5, we have 𝐾(1 − (𝜇𝑅
0
/𝑟)) <

𝑆(𝑥) < 𝐾 for all 𝑥 ∈ Ω. Let 𝜙 = 𝐷𝑆 + 𝑑
𝐼
𝐼 > 0 and set

𝜙(𝑥
0
) = max

Ω
𝜙. Then, by applying (i) of Lemma 5 again, we

have that

𝐼 (𝑥
0
) ≤ (𝑅

0
− 1) 𝑆 (𝑥

0
) < (𝑅

0
− 1)𝐾. (33)

Thus,

max
Ω

𝐼 ≤ 𝑑
−1

𝐼
max
Ω

𝜙 ≤ 𝐾 (𝑅
0
− 1 + 𝐷𝑑

−1

𝐼
) . (34)

Let 𝑐
1
(𝑥) = (1/𝑑

𝑆
)(𝑟𝑆(1 − (𝑆/𝐾)) − (𝛽𝑆𝐼/(𝑆 + 𝐼))).

Then, there exists a positive constant 𝐶 = 𝐶(Λ) such that
‖𝑐
1
(𝑥)‖
∞

≤ 𝐶 provided that 𝑑
𝑆
> 𝐷
1
. It follows from

Lemma 6 that there exists a positive constant𝐶∗ = 𝐶∗(Λ,𝐷
1
)

such that max
Ω
𝑆 ≤ 𝐶

∗min
Ω
𝑆. On the other hand, 𝜙 satisfies

−Δ𝜙 =
(𝛽 − 𝜇) 𝑆𝐼 − 𝜇𝐼

2

(𝑆 + 𝐼) (𝐷𝑆 + 𝑑
𝐼
𝐼)
𝜙, 𝑥 ∈ Ω,

𝜕𝜙

𝜕n
= 0, 𝑥 ∈ 𝜕Ω.

(35)

Set 𝑐(𝑥) = ((𝛽 − 𝜇)𝑆𝐼 − 𝜇𝐼2)/(𝑆 + 𝐼)(𝐷𝑆 + 𝑑
𝐼
𝐼). Then

‖𝑐 (𝑥)‖
∞
≤
𝛽 − 𝜇

𝑑
𝐼

+
𝜇

𝑑
𝐼

=
𝛽

𝑑
𝐼

≤
𝛽

𝐷
1

. (36)

It follows from Lemma 6 that there exists a positive constant
𝐶
∗

= 𝐶
∗

(Λ,𝐷
1
) such that max

Ω
𝜙 ≤ 𝐶

∗min
Ω
𝜙. As a

consequence,

max
Ω
𝐼

min
Ω
𝐼
=
max
Ω
𝜙 − 𝐷min

Ω
𝑆

min
Ω
𝜙 − 𝐷max

Ω
𝑆
≤

𝐶
∗min
Ω
𝜙

min
Ω
𝜑 − 𝐷max

Ω
𝑆
≤ 𝐶.

(37)

Now, it suffices to verify the lower bounds of 𝐼(𝑥). We will
verify the conclusion by a contradiction argument.

On the contrary, suppose that the conclusion is not true;
then there exist sequences {𝑑

𝑆,𝑖
}
∞

𝑖=1
, {𝑑
𝐼,𝑖
}
∞

𝑖=1
, and {𝐷

𝑖
}
∞

𝑖=1
with

𝑑
𝑆,𝑖
≥ 𝑑, 𝑑

𝐼,𝑖
> 𝐷
1
, 𝐷
𝑖
≥ 0, and the positive solution (𝑆

𝑖
, 𝐼
𝑖
) of

model (3) corresponding to (𝑑
𝑆
, 𝑑
𝐼
, 𝐷) = (𝑑

𝑆,𝑖
, 𝑑
𝐼,𝑖
, 𝐷
𝑖
), such

that
min
Ω

𝐼
𝑖
(𝑥) → 0 as 𝑖 → ∞. (38)
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It follows from Lemma 6 that

𝐼
𝑖
(𝑥) → 0 uniformly on Ω as 𝑖 → ∞. (39)

(𝑆
𝑖
, 𝐼
𝑖
) satisfies

−𝑑
𝑆,𝑖
Δ𝑆
𝑖
= 𝑟𝑆
𝑖
(1 −

𝑆
𝑖

𝐾
) −

𝛽𝑆
𝑖
𝐼
𝑖

𝑆
𝑖
+ 𝐼
𝑖

, 𝑥 ∈ Ω,

−𝐷
𝑖
Δ𝑆
𝑖
− 𝑑
𝐼,𝑖
Δ𝐼
𝑖
=
𝛽𝑆
𝑖
𝐼
𝑖

𝑆
𝑖
+ 𝐼
𝑖

− 𝜇𝐼
𝑖
, 𝑥 ∈ Ω,

𝜕𝑆
𝑖

𝜕n
=
𝜕𝐼
𝑖

𝜕n
= 0, 𝑥 ∈ 𝜕Ω.

(40)

Integrating by parts, we obtain that, for 𝑖 = 1, 2, . . .,

∫
Ω

𝑆
𝑖
(𝑟 (1 −

𝑆
𝑖

𝐾
) −

𝛽𝐼
𝑖

𝑆
𝑖
+ 𝐼
𝑖

)𝑑𝑥 = 0,

∫
Ω

𝐼
𝑖
(

𝛽𝑆
𝑖

𝑆
𝑖
+ 𝐼
𝑖

− 𝜇)𝑑𝑥 = 0.

(41)

By the regularity theory for elliptic equations [53], we see that
there exist a subsequence of {(𝑆

𝑖
, 𝐼
𝑖
)}
∞

𝑖
, which we will still

denote by {(𝑆
𝑖
, 𝐼
𝑖
)}
∞

𝑖
and two nonnegative functions 𝑆, 𝐼 ∈

𝐶
2

(Ω), such that (𝑆
𝑖
, 𝐼
𝑖
) → (𝑆, 𝐼) in [𝐶2(Ω)]2 as 𝑖 → ∞.

By (39), we have that 𝐼 ≡ 0. Letting 𝑖 → ∞ in (41) we obtain
that

∫
Ω

𝑆(𝑟 −
𝑟

𝐾
𝑆 −

𝛽𝐼

𝑆 + 𝐼
)𝑑𝑥 = 0,

∫
Ω

𝐼 (
𝛽𝑆

𝑆 + 𝐼
− 𝜇)𝑑𝑥 = 0.

(42)

Since 𝐼 = 0, the first equation of (42) becomes ∫
Ω

𝑆(𝑟 −

(𝑟/𝐾)𝑆)𝑑𝑥 = 0. As 𝐾(1 − 𝛽) < 𝑆(𝑥) < 𝐾, we derive a
contradiction. This completes the proof.

5.2. Nonexistence of Positive Nonconstant Steady States. This
subsection is devoted to the consideration of the nonexistence
for the nonconstant positive solutions of model (3), and,
in the below results, the diffusion coefficients do play a
significant role.

Theorem 8. Assume that 𝑅
0
> 1. Let 𝜀 > 0 be an arbitrary

constant with 4𝑑
𝑆
𝜀 > 𝐷

2 and 𝑑
𝐼
> 𝜀. Then model (3) has no

positive nonconstant solution provided that (4𝑑
𝑆
𝜀 − 𝐷

2

)𝜆
1
>

4(𝑟𝜀 + 𝛽
2

) and (𝑑
𝐼
− 𝜀)𝜆
1
> 𝜇(𝑅

0
− 1) + 𝜀.

Proof. Let (𝑆(𝑥), 𝐼(𝑥)) be any positive solution of model (3)
and denote 𝑔 = |Ω|

−1

∫
Ω

𝑔𝑑𝑥. Then, multiplying the first

equation of model (3) by (𝑆 − 𝑆), integrating overΩ, we have
that

𝑑
𝑆
∫
Ω

|∇𝑆|
2

𝑑𝑥

= ∫
Ω

(𝑆 − 𝑆) 𝑆 (𝑟 −
𝑟𝑆

𝐾
−

𝛽𝐼

𝑆 + 𝐼
) 𝑑𝑥

= ∫
Ω

(𝑆 − 𝑆)
2

(𝑟 −
𝑟

𝐾
(𝑆 + 𝑆) −

𝛽𝐼𝐼

(𝑆 + 𝐼) (𝑆 + 𝐼)

)𝑑𝑥

− ∫
Ω

𝛽𝑆𝑆

(𝑆 + 𝐼) (𝑆 + 𝐼)

(𝑆 − 𝑆) (𝐼 − 𝐼) 𝑑𝑥

≤ 𝑟∫
Ω

(𝑆 − 𝑆)
2

+ 𝛽∫
Ω


𝑆 − 𝑆




𝐼 − 𝐼


𝑑𝑥.

(43)

In a similar manner, we multiply the second equation in
model (3) by (𝐼 − 𝐼) to have

∫
Ω

(𝑑
𝐼
|∇𝐼|
2

+ 𝐷∇𝑆 ⋅ ∇𝐼) 𝑑𝑥

= ∫
Ω

(𝐼 − 𝐼) (
𝛽𝑆𝐼

𝑆 + 𝐼
− 𝜇𝐼)𝑃𝑑𝑥

= ∫
Ω

(𝐼 − 𝐼)
2

(−𝜇 +
𝛽𝑆𝑆

(𝑆 + 𝐼) (𝑆 + 𝐼)

)𝑑𝑥

+ ∫
Ω

𝛽𝐼𝐼

(𝑆 + 𝐼) (𝑆 + 𝐼)

(𝑆 − 𝑆) (𝐼 − 𝐼) 𝑑𝑥

≤ 𝜇 (𝑅
0
− 1)∫

Ω

(𝐼 − 𝐼)
2

𝑑𝑥

+ ∫
Ω

𝛽

𝑆 − 𝑆




𝐼 − 𝐼


𝑑𝑥.

(44)

It follows from (43), (44), and the 𝜀-Young inequality that

∫
Ω

(𝑑
𝑆
|∇𝑆|
2

+ 𝑑
𝐼
|∇𝐼|
2

) 𝑑𝑥

≤ ∫
Ω

((𝑟 +
𝛽
2

𝜀
) (𝑆 − 𝑆)

2

+ (𝜇 (𝑅
0
− 1) + 𝜀) (𝐼 − 𝐼)

2

)𝑑𝑥

+ ∫
Ω

(
𝐷
2

4𝜀
|∇𝑆|
2

+ 𝜀|∇𝐼|
2

)𝑑𝑥.

(45)

Thanks to the well-known Poincaré inequality

𝜆
1
∫
Ω

(𝑔 − 𝑔)
2

𝑑𝑥 ≤ ∫
Ω

∇ (𝑔 − 𝑔)


2

𝑑𝑥, (46)
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it follows that

∫
Ω

(𝑑
𝑆
|∇𝑆|
2

+ 𝑑
𝐼
|∇𝐼|
2

) 𝑑𝑥

≤ ∫
Ω

4 (𝑟𝜀 + 𝛽
2

) + 𝐷
2

𝜆
1

4𝜀𝜆
1

|∇𝑆|
2

𝑑𝑥

+
𝜇 (𝑅
0
− 1) + 𝜀 (1 + 𝜆

1
)

𝜆
1

∫
Ω

|∇𝐼|
2

𝑑𝑥.

(47)

Since 4𝑑
𝑆
𝜀𝜆
1
> 4(𝑟𝜀 + 𝛽

2

) + 𝐷
2

𝜆
1
and 𝑑

𝐼
𝜆
1
> 𝜇(𝑅

0
− 1) +

𝜀(1 + 𝜆
1
) from the assumption, one can conclude that 𝑆 = 𝑆

and 𝐼 = 𝐼, which asserts our results.

5.3. Existence of Positive Nonconstant Steady States. In this
section, we discuss the global existence of nonconstant
positive classical solutions tomodel (3), which guarantees the
existence of the stationary patterns [25, 27, 29, 30].

Unless otherwise specified, in this section, we always
require that 1 < 𝑅

0
< 1 + (𝑟/𝜇), which guarantees that model

(3) has one positive constant solution 𝐸∗. From now on, let
us denote

𝑊 = 𝐷𝑆 + 𝑑
𝐼
𝐼, 𝑊

∗

= 𝐷𝑆
∗

+ 𝑑
𝐼
𝐼
∗

. (48)

We also define

u = (𝑆,𝑊) , (49)

u∗ = (𝑆∗,𝑊∗)

= (
𝐾

𝑟
(𝑟 − 𝜇 (𝑅

0
− 1)) ,

𝐾

𝑟
(𝑟 − 𝜇 (𝑅

0
− 1)) (𝑑

𝐼
(𝑅
0
− 1) + 𝐷)) .

(50)

Let X = {u ∈ [𝐶2(Ω)]2 | 𝜕u/𝜕n = 0, 𝑥 ∈ 𝜕Ω} and X+ = {u ∈
X | 𝑆,𝑊 > 0, 𝑥 ∈ Ω}. Then we write model (3) in the form

−Δu = G (u) , 𝑥 ∈ Ω,

𝜕u
𝜕n

= 0, 𝑥 ∈ 𝜕Ω,

(51)

where

G (u) = (

𝑆

𝑑
𝑆

(𝑟 −
𝑟

𝐾
𝑆 −

𝛽 (𝑊 − 𝐷𝑆)

(𝑑
𝐼
− 𝐷) 𝑆 +𝑊

)

(𝑊 − 𝐷𝑆)(
𝛽𝑆

(𝑑
𝐼
− 𝐷) 𝑆 +𝑊

−
𝜇

𝑑
𝐼

)

). (52)

Define a compact operatorF : X+ → X+ by

F (u) := (I − Δ)−1 {G (u) + u} , (53)

where (I − Δ)−1 is the inverse operator of I − Δ subject to the
zero-flux boundary condition.Then u is a positive solution of
model (51) if and only if u satisfies

(I −F) u = 0, 𝑥 ∈ Ω. (54)

To apply the index theory, we investigate the eigenvalue
of the problem

− (I −Fw (w
∗

)) Ψ = 𝜉Ψ, Ψ ̸= 0, (55)

where Ψ = (Ψ
1
, Ψ
2
)
𝑇 andFw(w∗) = (I − Δ)

−1

(I + A) with

A = (

𝜇𝑑
𝐼
𝑅
2

0
− 𝑟𝑑
𝐼
𝑅
0
− 𝜇𝑑
𝐼
+ 𝜇𝐷

𝑑
𝑆
𝑑
𝐼
𝑅
0

−
𝜇

𝑑
𝑆
𝑑
𝐼
𝑅
0

𝜇 (𝑑
𝐼
𝑅
0
− 𝑑
𝐼
+ 𝐷) (𝑅

0
− 1)

𝑑
𝐼
𝑅
0

−
𝜇 (𝑅
0
− 1)

𝑑
𝐼
𝑅
0

). (56)

If 0 is not an eigenvalue of (55), byTheorem 2.8.1 in [51], the
index of I −F at u∗ is given by

index (I −F, u∗) = (−1)𝛾, (57)

where 𝛾 = ∑
𝜆>0

𝑛
𝜆
and 𝑛

𝜆
is the algebraic multiplicity of the

positive eigenvalue 𝜉 of (55).
In fact, after calculation, (55) can be rewritten as

− (𝜉 + 1) ΔΨ + (𝜉I − A) = 0, 𝑥 ∈ Ω,

𝜕Ψ

𝜕n
= 0, 𝑥 ∈ 𝜕Ω.

(58)

Observe that (58) has a nontrivial solution if and only if
det(𝜉I+(𝜆

𝑖
+1)
−1

(𝜆
𝑖
I−A)) = 0 for some 𝜉 ≥ 0 and 𝑖 ≥ 0.That

is to say, 𝜉 is an eigenvalue of (55), and so (58), if and only if 𝜉
is an eigenvalue of the matrix (𝜆

𝑖
+1)
−1

(𝜆
𝑖
I−A) for any 𝑖 ≥ 0.

Therefore, I −Fu(u∗) is invertible if and only if, for any 𝑖 ≥ 0
the matrix 𝜆

𝑖
I − A is invertible.

Let 𝑚(𝜆
𝑖
) be the multiplicity of 𝜆

𝑖
. For the sake of

convenience, we denote

𝐻(𝜆
𝑖
) = det (𝜆

𝑖
I − A) . (59)

Then if 𝜆
𝑖
I − A is invertible for any 𝑖 ≥ 0, with the same

arguments as in [25], we have

index (F, u∗) = (−1)𝛾, where 𝛾 = ∑

𝑖≥0,𝐻(𝜆𝑖)<0

𝑚(𝜆
𝑖
) .

(60)

To compute index (F, u∗), we have to consider the sign
of𝐻(𝜆

𝑖
). A straightforward computation yields

𝐻(𝜆
𝑖
) = 𝜆
2

𝑖
− trace (A) 𝜆

𝑖
+ det (A) , (61)

where
trace (A)

=
𝜇𝑑
𝐼
𝑅
2

0
− (𝜇𝑑

𝑆
+ 𝑟𝑑
𝐼
) 𝑅
0
+ 𝜇𝑑
𝑆
− 𝜇𝑑
𝐼
+ 𝜇𝐷

𝑑
𝑆
𝑑
𝐼
𝑅
0

,

det (A) =
𝜇 (𝑅
0
− 1) (𝑟 − 𝜇 (𝑅

0
− 1))

𝑑
𝐼
𝑅
0

.

(62)

If trace(A)2−4 det(A) ≥ 0, then𝐻(𝜆) = 0has two positive
solutions 𝜆± given by

𝜆
±

=
1

2
(trace (A) ± √trace(A)2 − 4 det (A)) . (63)



8 Abstract and Applied Analysis

Theorem 9. Assume that trace(A)2 − 4 det(A) ≥ 0. Then if
𝜆
−

∈ (𝜆
𝑖
, 𝜆
𝑖+1
) and 𝜆+ ∈ (𝜆

𝑗
, 𝜆
𝑗+1
) for some 0 ≤ 𝑖 < 𝑗 and

∑
𝑗

𝑘=𝑖+1
𝑚(𝜆
𝑘
) is odd, then model (3) has at least one noncon-

stant solution.

Proof. Suppose that model (3) has no nonconstant positive
solution. ByTheorem 8, we can fix𝐷 > 𝑑

𝑆
such that,

(i) model (3) with diffusion coefficients𝐷, 𝑑
𝐼
, and𝐷 has

no nonconstant solutions;
(ii) 𝐻(𝜆

𝑖
) > 0 for all 𝜆

𝑖
≥ 0.

By virtue of Theorem 7, there exists a positive constant
𝐶 = 𝐶(Λ,Ω) such that, for 𝑑

𝑆
≥ 𝑑
𝑆
, any solution (𝑆(𝑥), 𝐼(𝑥))

of model (3) with diffusion coefficients 𝑑
𝑆
, 𝑑
𝐼
, and𝐷 satisfies

𝐶
−1

< 𝑆, 𝐼 < 𝐶.
Set

M = {(𝑆,𝑊) ∈ 𝐶 (Ω) × 𝐶 (Ω) : 𝐶
−1

< 𝑆,𝑊 < 𝐶, 𝑥 ∈ Ω} ,

(64)

and define

Φ :M × [0, 1] → 𝐶(Ω) × 𝐶 (Ω) (65)

by

Φ (u, 𝜃) = (I − Δ)−1 {G (u, 𝜃) + u} , (66)

where
G (u, 𝜃)

= (

(𝜃𝑑
𝑆
+ (1 − 𝜃)𝐷)

−1

(𝑆(𝑟 −
𝑟

𝐾
𝑆 −

𝛽 (𝑊 − 𝐷𝑆)

(𝑑
𝐼
− 𝐷) 𝑆 +𝑊

))

(𝑊 − 𝐷𝑆)(
𝛽𝑆

(𝑑
𝐼
− 𝐷) 𝑆 +𝑊

−
𝜇

𝑑
𝐼

)

).

(67)
It is clear that finding the positive solution of model (51)

becomes equivalent to finding the fixed point ofΦ(u, 1) inM.
Φ(u, 𝜃) has no fixed points in 𝜕M for all 0 ≤ 𝜃 ≤ 1.

Since Φ(u, 𝑡) is compact, the Leray-Schauder topological
degree deg(I − Φ(u, 𝜃),M, 0) is well defined. From the
invariance of Leray-Schauder degree at the homotopy, we
deduce

deg (I − Φ (u, 1) ,M, 0) = deg (I − Φ (u, 0) ,M, 0) . (68)

Clearly, I − Φ(u, 1) = I − F. Thus, if model (3) has no
other solutions except the constant one u∗, we have

deg (I − Φ (u, 1) ,M, 0)

= index (I −F, u∗) = (−1)∑
𝑗

𝑘=𝑖+1
𝑚(𝜆𝑘) = −1.

(69)

On the contrary, by the choice of𝐷, we have that u∗ is the
only solution ofΦ(u, 0) = 0 and therefore

deg (I − Φ (u, 0) ,M, 0) = index (I −F, u∗) = (−1)0 = 1.
(70)

From (68) to (70), we get a contradiction. Therefore, there
exists a nonconstant solution of model (3). The proof is
completed.

6. Concluding Remarks

In this paper, we investigate the effect of cross-diffusion on
the disease’s dynamics through studying the existence and
nonexistence positive constant steady states of a spatial 𝑆𝐼
epidemicmodel.The values of this study lie in twofolds. First,
we show the local and global stability of the nonnegative
steady states, which indicates that the disease reproduction
number 𝑅

0
determines whether there is an endemic outbreak

or not: the disease free dynamics occurs if 𝑅
0
≤ 1 while the

unique endemic steady state is globally stable if 𝜇 < 𝑟 and
1 < 𝑅

0
< (𝑟 + 𝜇)/2𝜇. Second, we show that even though

the unique positive constant steady state (endemic state) is
uniformly asymptotically stable for (1), nonconstant positive
steady states can exist due to the emergence of cross-
diffusion, which demonstrates that stationary patterns can be
found as a result of cross-diffusion.

On the other hand, there have been studies of pattern
formation in the spatial epidemic model, starting with the
pioneering work of Turing [54]. Turing’s revolutionary idea
was that passive diffusion could interact with the chemical
reaction in such a way that even if the reaction by itself has
no symmetry-breaking capabilities, diffusion can destabilize
the symmetry so that the system with diffusion can have
them. Spatial epidemiology with self-diffusion has become
a principal scientific discipline aiming at understanding the
causes and consequences of spatial heterogeneity in disease
transmission. And in the present paper, we prove the exis-
tence and nonexistence of the positive nonconstant steady
states, which guarantees the existence of the stationary Turing
patterns. The numerical results about the Turing patterns for
model (1) can be found in [19].

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors would like to thank the editors and referees
for their helpful comments and suggestions. This research
was supported by the National Science Foundation of China
(11171357, 61272018, and 61373005) and Zhejiang Provincial
Natural Science Foundation (R1110261, and LY12A01014).

References

[1] W. O. Kermack and A. G. McKendrick, “Contributions to the
mathematical theory of epidemics-I,” Bulletin of Mathematical
Biology, vol. 53, no. 1-2, pp. 33–55, 1991.

[2] Z. Ma, Y. Zhou, and J. Wu,Modeling and Dynamics of Infectious
Diseases, Higher Education Press, 2009.

[3] E. E. Holmes, M. A. Lewis, J. E. Banks, and R. R. Veit,
“Partial differential equations in ecology: spatial interactions
andpopulation dynamics,”Ecology, vol. 75, no. 1, pp. 17–29, 1994.

[4] A. Okubo and S. A. Levin, Diffusion and Ecological Problems:
Modern Perspectives, vol. 14 of Interdisciplinary Applied Mathe-
matics, Springer, New York, NY, USA, 2nd edition, 2001.



Abstract and Applied Analysis 9

[5] C. Neuhauser, “Mathematical challenges in spatial ecology,”
Notices of the AmericanMathematical Society, vol. 48, no. 11, pp.
1304–1314, 2001.

[6] B. T. Grenfell, O. N. Bjørnstad, and J. Kappey, “Travelling waves
and spatial hierarchies in measles epidemics,” Nature, vol. 414,
no. 6865, pp. 716–723, 2001.

[7] J. D.Murray,Mathematical Biology. II, vol. 18 of Interdisciplinary
Applied Mathematics, Springer, New York, NY, USA, 3rd edi-
tion, 2003.

[8] L. Rass and J. Radcliffe, Spatial Deterministic Epidemics, vol. 102
of Mathematical Surveys and Monographs, American Mathe-
matical Society, Providence, RI, USA, 2003.

[9] R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-
Diffusion Equations, Wiley Series in Mathematical and Com-
putational Biology, John Wiley & Sons, Chichester, UK, 2003.

[10] A. L. Lloyd and V. A. A. Jansen, “Spatiotemporal dynamics of
epidemics: synchrony in metapopulation models,” Mathemati-
cal Biosciences, vol. 188, pp. 1–16, 2004.

[11] W. M. Van Ballegooijen and M. C. Boerlijst, “Emergent trade-
offs and selection for outbreak frequency in spatial epidemics,”
Proceedings of the National Academy of Sciences of the United
States of America, vol. 101, no. 52, pp. 18246–18250, 2004.

[12] G. Mulone, B. Straughan, and W. Wang, “Stability of epidemic
models with evolution,” Studies in AppliedMathematics, vol. 118,
no. 2, pp. 117–132, 2007.

[13] H. Malchow, S. V. Petrovskii, and E. Venturino, Spatiotempo-
ral Patterns in Ecology Andepidemiology-Theory, Models, and
Simulation, Mathematical and Computational Biology Series,
Chapman & Hall/CRC, Boca Raton, Fla, USA, 2008.

[14] R. K. Upadhyay, N. Kumari, and V. S. H. Rao, “Modeling the
spread of bird flu and predicting outbreak diversity,” Nonlinear
Analysis: Real World Applications, vol. 9, no. 4, pp. 1638–1648,
2008.

[15] K. Wang, W. Wang, and S. Song, “Dynamics of an HBV model
with diffusion and delay,” Journal ofTheoretical Biology, vol. 253,
no. 1, pp. 36–44, 2008.

[16] G.-Q. Sun, Z. Jin, Q.-X. Liu, and L. Li, “Spatial pattern in
an epidemic system with cross-diffusion of the susceptible,”
Journal of Biological Systems, vol. 17, no. 1, pp. 141–152, 2009.

[17] M. Bendahmane and M. Saad, “Mathematical analysis and
pattern formation for a partial immune system modeling the
spread of an epidemic disease,”ActaApplicandaeMathematicae,
vol. 115, no. 1, pp. 17–42, 2011.

[18] Y. Cai and W. Wang, “Spatiotemporal dynamics of a reaction-
diffusion epidemic model with nonlinear incidence rate,” Jour-
nal of Statistical Mechanics: Theory and Experiment, vol. 2011,
no. 2, Article ID P02025, 2011.

[19] W.Wang, Y. Lin, H.Wang, H. Liu, and Y. Tan, “Pattern selection
in an epidemic model with self and cross diffusion,” Journal of
Biological Systems, vol. 19, no. 1, pp. 19–31, 2011.

[20] W. Wang, Y. Cai, M. Wu, K. Wang, and Z. Li, “Complex
dynamics of a reaction-diffusion epidemic model,” Nonlinear
Analysis: Real World Applications, vol. 13, no. 5, pp. 2240–2258,
2012.

[21] Y. Cai, W. Liu, Y. Wang, and W. Wang, “Complex dynamics of
a diffusive epidemic model with strong Allee effect,” Nonlinear
Analysis: Real World Applications, vol. 14, no. 4, pp. 1907–1920,
2013.

[22] Y. Lou and W.-M. Ni, “Diffusion, self-diffusion and cross-
diffusion,” Journal of Differential Equations, vol. 131, no. 1, pp.
79–131, 1996.

[23] E. H. Kerner, “Further considerations on the statistical mechan-
ics of biological associations,” The Bulletin of Mathematical
Biophysics, vol. 21, no. 2, pp. 217–255, 1959.

[24] N. Shigesada, K. Kawasaki, and E. Teramoto, “Spatial segrega-
tion of interacting species,” Journal of Theoretical Biology, vol.
79, no. 1, pp. 83–99, 1979.

[25] M. Wang, “Non-constant positive steady states of the Sel’kov
model,” Journal of Differential Equations, vol. 190, no. 2, pp. 600–
620, 2003.

[26] P. Y. H. Pang and M. Wang, “Strategy and stationary pattern
in a three-species predator-prey model,” Journal of Differential
Equations, vol. 200, no. 2, pp. 245–273, 2004.

[27] M. Wang, “Stationary patterns of strongly coupled prey-
predator models,” Journal of Mathematical Analysis and Appli-
cations, vol. 292, no. 2, pp. 484–505, 2004.

[28] M. Wang, “Stationary patterns caused by cross-diffusion for a
three-species prey-predator model,” Computers & Mathematics
with Applications, vol. 52, no. 5, pp. 707–720, 2006.

[29] R. Peng, J. Shi, and M. Wang, “Stationary pattern of a ratio-
dependent food chain model with diffusion,” SIAM Journal on
Applied Mathematics, vol. 67, no. 5, pp. 1479–1503, 2007.

[30] R. Peng, J. Shi, and M. Wang, “On stationary patterns of a
reaction-diffusionmodel with autocatalysis and saturation law,”
Nonlinearity, vol. 21, no. 7, pp. 1471–1488, 2008.

[31] R. Peng and J. Shi, “Non-existence of non-constant positive
steady states of two Holling type-II predator-prey systems:
strong interaction case,” Journal of Differential Equations, vol.
247, no. 3, pp. 866–886, 2009.

[32] F. Yi, J.Wei, and J. Shi, “Bifurcation and spatiotemporal patterns
in a homogeneous diffusive predator-prey system,” Journal of
Differential Equations, vol. 246, no. 5, pp. 1944–1977, 2009.

[33] B. Li and M.Wang, “Stationary patterns of the stage-structured
predator-prey model with diffusion and cross-diffusion,”Math-
ematical and Computer Modelling, vol. 54, no. 5-6, pp. 1380–
1393, 2011.

[34] S. A. Levin and L. A. Segel, “Pattern generation in space and
aspect,” SIAM Review, vol. 27, no. 1, pp. 45–67, 1985.
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[43] M. Qiao, A. Liu, and U. Foryś, “Qualitative analysis of the SICR
epidemic model with impulsive vaccinations,” Mathematical
Methods in the Applied Sciences, vol. 36, no. 6, pp. 695–706, 2013.

[44] L. Wang, Z. Teng, and H. Jiang, “Global attractivity of a
discrete SIRS epidemic model with standard incidence rate,”
Mathematical Methods in the Applied Sciences, vol. 36, no. 5, pp.
601–619, 2013.

[45] S. Wang, W. Liu, Z. Guo, and W. Wang, “Traveling wave
solutions in a reaction-diffusion epidemic model,” Abstract and
Applied Analysis, vol. 2013, Article ID 216913, 13 pages, 2013.

[46] A. Pazy, Semigroups of Linear Operators and Applications to
Partial Differential Equations, vol. 44 of Applied Mathematical
Sciences, Springer, New York, NY, USA, 1983.

[47] M. Kirane, “Global bounds and asymptotics for a system of
reaction-diffusion equations,” Journal of Mathematical Analysis
and Applications, vol. 138, no. 2, pp. 328–342, 1989.

[48] D. Henry, Geometric Theory of Semilinear Parabolic Equations,
vol. 840 of Lecture Notes in Mathematics, Springer, Berlin,
Germany, 1981.

[49] L. Melkemi, A. Z. Mokrane, and A. Youkana, “On the uniform
boundedness of the solutions of systems of reaction-diffusion
equations,” Electronic Journal of Qualitative Theory of Differen-
tial Equations, no. 24, pp. 1–10, 2005.

[50] E. H. Daddiouaissa, “Existence of global solutions for a system
of reaction-diffusion equations having a triangular matrix,”
Electronic Journal of Differential Equations, vol. 2008, no. 141,
pp. 1–9, 2008.

[51] L. Nirenberg, Topics in Nonlinear Functional Analysis, vol. 6,
AMS Bookstore, 2001.

[52] C.-S. Lin, W.-M. Ni, and I. Takagi, “Large amplitude stationary
solutions to a chemotaxis system,” Journal of Differential Equa-
tions, vol. 72, no. 1, pp. 1–27, 1988.

[53] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential
Equations of Second Order, vol. 224, Springer, Berlin, Germany,
2nd edition, 1983.

[54] A. M. Turing, “The chemical basis of morphogenesis,” Philo-
sophical Transactions of The Royal Society of London B, vol. 237,
no. 641, pp. 37–72, 1952.


