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We use Jacobi’s necessary condition for the variational minimizer to study the periodic solution for spatial restricted 𝑁 + 1-body
problems with a zero mass on the vertical axis of the plane for 𝑁 equal masses. We prove that the minimizer of the Lagrangian
action on the anti-T/2 or odd symmetric loop space must be a nonconstant periodic solution for any 2 ≤ 𝑁 ≤ 472; hence the zero
mass must oscillate, so that it cannot be always in the same plane with the other bodies. This result contradicts with our intuition
that the small mass should always be at the origin.

1. Introduction and Main Result

The Newtonian n-body problem [1] is a classical problem.
Spatial restricted 3-body model was studied by Sitnikov
[2]. Mathlouthi [3] et al. studied the periodic solutions for
the spatial circular restricted 3-body problems by mini-max
variational methods.

In this paper, we study spatial circular restricted 𝑁 + 1-
body problems with a zero mass on the vertical axis of the
plane for 𝑁 equal masses. Suppose point masses 𝑚

1
= ⋅ ⋅ ⋅ =

𝑚
𝑁
= 1move on a circular orbit around the center of masses.

Themotion for the zero mass is governed by the gravitational
forces of𝑚

1
, . . . , 𝑚

𝑁
. Let 𝜌

𝑗
= 𝑒
√−1(2𝜋𝑗/𝑁) and

𝑞
1
(𝑡) = 𝑟𝑒

√−12𝜋𝑡
𝜌
1
, . . . , 𝑞

𝑗
(𝑡)

= 𝜌
𝑗
𝑞
1
(𝑡) , . . . , 𝑞

𝑁
(𝑡) = 𝑟𝑒

√−12𝜋𝑡

(1)

satisfy the Newtonian equations:

𝑚
𝑖
̈𝑞
𝑖
=
𝜕𝑈

𝜕𝑞
𝑖

, 𝑖 = 1, . . . , 𝑁, (2)

where

𝑈 = ∑

1≤𝑖<𝑗≤𝑁

𝑚
𝑖
𝑚
𝑗


𝑞
𝑖
− 𝑞
𝑗



. (3)

The orbit 𝑞(𝑡) = (0, 0, 𝑧(𝑡)) ∈ 𝑅3 for zero mass satisfies the
following equation:

̈𝑞 =

𝑁

∑

𝑖=1

𝑚
𝑖
(𝑞
𝑖
− 𝑞)

𝑞𝑖 − 𝑞


3
. (4)

Obviously, 𝑞(𝑡) = (0, 0, 0) satisfies (4); it seems that 𝑞(𝑡) ≡
0 is a variational minimizer, but we will prove it is not this is
the goal of this paper.

Define

𝑓 (𝑞) = ∫

1

0

[
1

2


̇𝑞


2

+

𝑁

∑

𝑖=1

1

𝑞 − 𝑞𝑖


] 𝑑𝑡, 𝑞 ∈ Λ
𝑖
, (5)

then

𝑓 (𝑞) = ∫

1

0

[
1

2


𝑧


2

+
𝑁

√𝑟2 + 𝑧2
] 𝑑𝑡 ≜ 𝑓 (𝑧) , 𝑞 ∈ Λ

𝑖
, (6)
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where

Λ
1
=
{

{

{

𝑞 (𝑡) = (0, 0, 𝑧 (𝑡)) | 𝑧 (𝑡) ∈ 𝑊
1,2
(
𝑅

𝑍
, 𝑅)

𝑞 (−𝑡) = −𝑞 (𝑡)

}

}

}

,

Λ
2
=

{{

{{

{

𝑞 (𝑡) = (0, 0, 𝑧 (𝑡)) | 𝑧 (𝑡) ∈ 𝑊
1,2
(
𝑅

𝑍
, 𝑅)

𝑧 (𝑡 +
1

2
) = −𝑧 (𝑡)

}}

}}

}

,

𝑊
1,2
(
𝑅

𝑍
, 𝑅) = {𝑥 (𝑡)



𝑥 (𝑡) , �̇� (𝑡) ∈ 𝐿
2
((0, 1) , 𝑅)

𝑥 (𝑡 + 1) = 𝑥 (𝑡)
} .

(7)

Notice that the symmetry in Λ
2
is related to the Italian

symmetry [4].
In this paper, our main result is the following.

Theorem 1. Theminimizer of𝑓(𝑞) on the closureΛ
𝑖
ofΛ
𝑖
(𝑖 =

1, 2) is a nonconstant periodic solution for 2 ≤ 𝑁 ≤ 472; hence
the zero mass must oscillate, so that it can not be always in the
same plane with the other bodies.

2. Proof of Theorem 1

We define the inner product and equivalent norm of
𝑊
1,2
(𝑅/𝑍, 𝑅):

⟨𝑢, V⟩ = ∫
1

0

(𝑢V + 𝑢

⋅ V

) 𝑑𝑡,

‖𝑢‖ = [∫

1

0

|𝑢|
2
𝑑𝑡]

1/2

+ [∫

1

0


𝑢


2

𝑑𝑡]

1/2

,

(8)

which is equivalent to

[∫

1

0


𝑢


2

𝑑𝑡]

1/2

+ |𝑢 (0)| . (9)

Lemma 2 (Palais’ Symmetry Principle [5]). By Palais’ Sym-
metry Principle, we know that the critical point of 𝑓(𝑞) in Λ

𝑖
is

a noncollission periodic solution of Newtonian equation (4).
Let 𝜎 be an orthogonal representation of a finite or compact

group𝐺 in the real Hilbert space𝐻 such that for all 𝜎 ∈ 𝐺, 𝑓(𝜎⋅
𝑥) = 𝑓(𝑥), where 𝑓 : 𝐻 → 𝑅.

Let 𝑆 = {𝑥 ∈ 𝐻 | 𝜎 ⋅ 𝑥 = 𝑥, for all𝜎 ∈ 𝐺}. Then the critical
point of 𝑓 in 𝑆 is also a critical point of 𝑓 in𝐻.

In order to prove Theorem 1, we need the following
lemmas:

Lemma 3 (see [6]). Let 𝑋 be a reflexive Banach space, 𝑆 be a
weakly closed subset of 𝑋, 𝑓 : 𝑆 → 𝑅 ∪ {+∞}, and 𝑓 ̸≡ +∞

is weakly lower semicontinuous and coercive (𝑓(𝑥) → +∞ as
‖𝑥‖ → +∞); then 𝑓 attains its infimum on 𝑆.

Lemma 4 (Poincare-Wirtinger Inequality). Let 𝑞 ∈ 𝑊
1,2

× (𝑅/𝑍, 𝑅
𝑁
) and ∫𝑇

0
𝑞(𝑡)𝑑𝑡 = 0; then

∫

𝑇

0


̇𝑞(𝑡)


2

𝑑𝑡 ≥ (
2𝜋

𝑇
)

2

∫

𝑇

0

𝑞(𝑡)


2

𝑑𝑡. (10)

Lemma 5. 𝑓(𝑞) in (6) attains its infimum onΛ
1
= Λ
1
orΛ
2
=

Λ
2
.

Proof. By Lemmas 3 and 4, it is easy to prove Lemma 5.

Lemma 6 (Jacobi’s Necessary Condition [7]). If the critical
point 𝑢 = �̃�(𝑡) corresponds to a minimum of the functional
∫
𝑏

𝑎
𝐹(𝑡, 𝑢(𝑡), 𝑢


(𝑡))𝑑𝑡 and if 𝐹

𝑢

𝑢
 > 0 along this critical point,

then the open interval (𝑎, 𝑏) contains no points conjugate to 𝑎;
that is, for all 𝑐 ∈ (𝑎, 𝑏), the following boundary value problem

−
𝑑

𝑑𝑡
(𝑃ℎ

) + 𝑄ℎ = 0,

ℎ (𝑎) = 0, ℎ (𝑐) = 0,

(11)

has only the trivial solution ℎ(𝑡) ≡ 0, for all 𝑡 ∈ (𝑎, 𝑐), where

𝑃 =
1

2
𝐹
𝑢

𝑢


𝑢=�̃�

𝑄 =
1

2
(𝐹
𝑢𝑢
−
𝑑

𝑑𝑡
𝐹
𝑢𝑢
)

𝑢=�̃�

.

(12)

Remark 7. It is easy to see that Lemma 6 is suitable for the
fixed end problem. In this paper, we consider the periodic
solutions of (2) on Λ

𝑖
= Λ
𝑖
(𝑖 = 1, 2); hence we need to

establish a similar conclusion as Lemma 6 for the periodic
boundary problem.

Lemma 8. Let 𝐹 ∈ 𝐶3(𝑅 × 𝑅 × 𝑅, 𝑅). Assume that 𝑢 = �̃�(𝑡)
is a critical point of the functional ∫𝑇

0
𝐹(𝑡, 𝑢(𝑡), 𝑢


(𝑡))𝑑𝑡 on

{𝑢 ∈ 𝑊
1,2
(𝑅/𝑇𝑍, 𝑅), 𝑢


(0) = 0} and 𝐹

𝑢

𝑢
 |
𝑢=�̃�

> 0. If the open
interval (0, 𝑇) contains a point 𝑐 conjugate to 0, then 𝑢 = �̃�(𝑡)
is not a minimum of the functional ∫𝑇

0
𝐹(𝑡, 𝑢(𝑡), 𝑢


(𝑡))𝑑𝑡.

Proof. Suppose 𝑢 = �̃�(𝑡) is a minimum of the
functional ∫𝑇

0
𝐹(𝑡, 𝑢(𝑡), 𝑢


(𝑡))𝑑𝑡. The second variation of

∫
𝑇

0
𝐹(𝑡, 𝑢(𝑡), 𝑢


(𝑡))𝑑𝑡 is

∫

𝑇

0

(𝑃ℎ
2
+ 𝑄ℎ
2
) 𝑑𝑡, (13)

where

𝑃 =
1

2
𝐹
𝑢

𝑢


𝑢=�̃�
,

𝑄 =
1

2
(𝐹
𝑢𝑢
−
𝑑

𝑑𝑡
𝐹
𝑢𝑢
)

𝑢=�̃�

.

(14)

Set

𝑄
�̃�
(ℎ) = ∫

𝑇

0

(𝑃ℎ
2
+ 𝑄ℎ
2
) 𝑑𝑡. (15)

For all ℎ ∈ {𝑢 ∈ 𝑊1,2(𝑅/𝑇𝑍, 𝑅), 𝑢(0) = 0}, it is easy to
see that 𝑄

�̃�
(ℎ) ≥ 0. Then by 𝑄

�̃�
(𝜃) = 0, 𝜃 is a minimum of

𝑄
�̃�
(ℎ).TheEuler-Lagrange equationwhich is called the Jacobi

equation of (15) is

−
𝑑

𝑑𝑡
(𝑃ℎ

) + 𝑄ℎ = 0. (16)
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Since the interval (0, 𝑇) contains a point 𝑐 conjugate to 0, there
exists a nonzero Jacobi field ℎ

0
∈ 𝐶
2
([0, 𝑇], 𝑅) satisfying

−
𝑑

𝑑𝑡
(𝑃ℎ


0
) + 𝑄ℎ

0
= 0,

ℎ
0
(0) = 0, ℎ

0
(𝑐) = 0, ℎ



0
(0) = 0.

(17)

Letting

ℎ̂ (𝑡) = {
ℎ
0
(𝑡) 𝑡 ∈ [0, 𝑐] ,

0 𝑡 ∈ (𝑐, 𝑇] ,
(18)

we have ℎ̂ ∈ 𝐶2([0, 𝑇] \ {𝑐}, 𝑅), ℎ̂(0) = ℎ̂(𝑐) = ℎ̂(𝑇) = 0 and

𝑄
�̃�
(ℎ̂) = ∫

𝑇

0

(𝑃ℎ̂
2
+ 𝑄ℎ̂
2
) 𝑑𝑡

= ∫

𝑐

0

(𝑃ℎ
2

0
+ 𝑄ℎ
2

0
) 𝑑𝑡 = 0.

(19)

Notice that we can extend ℎ̂ periodically when we take 𝑇 as
the period, so ℎ̂ ∈ 𝑊1,2

0
(𝑅/𝑇𝑍, 𝑅). For all ℎ ∈ 𝐶1

0
([0, 𝑇], 𝑅),

it is easy to check that 𝑄
�̃�
(ℎ) ≥ 0. Then by (19), one has ℎ̂ ∈

𝐶
2
([0, 𝑇] \ {𝑐}, 𝑅) ∩ 𝑊

1,2

0
(𝑅/𝑇𝑍, 𝑅) is a minimum of 𝑄

�̃�
(ℎ).

Hence we get

−
𝑑

𝑑𝑡
(𝑃ℎ̂

) + 𝑄ℎ̂ = 0. (20)

Combining with ℎ̂(0) = ℎ̂(𝑐) = 0 and ℎ̂(0) = 0,
by the uniqueness of initial value problems for second-
order differential equation, we have ℎ̂(𝑡) ≡ 0 on [0, 𝑐],
which contradicts the definition of ℎ̂. Therefore, Lemma 8
holds.

Lemma 9. The radius 𝑟 for the moving orbit of𝑁 equal masses
is

𝑟 = (
1

4𝜋
)

2/3

[

[

∑

1≤𝑗≤𝑁−1

csc ( 𝜋
𝑁
𝑗)]

]

1/3

. (21)

Proof. By (1)–(3), we have

̈𝑞
𝑁
= ∑

𝑗 ̸=𝑁

𝑞
𝑗
− 𝑞
𝑁


𝑞
𝑗
− 𝑞
𝑁



3
. (22)

Substituting (1) into (22), we have

−4𝜋
2
= ∑

𝑗 ̸=𝑁

𝜌
𝑗
− 𝜌
𝑁

𝑟3

𝜌
𝑗
− 𝜌
𝑁



3
,

4𝜋
2
𝑟
3
= ∑

𝑗 ̸=𝑁

1 − 𝜌
𝑗


1 − 𝜌
𝑗



3
=
1

4
∑

1≤𝑗≤𝑁−1

csc( 𝜋
𝑁
𝑗) .

(23)

Then

𝑟
3
=

1

16𝜋2
∑

1≤𝑗≤𝑁−1

csc( 𝜋
𝑁
𝑗) . (24)

Therefore

𝑟 = (
1

4𝜋
)

2/3

[

[

∑

1≤𝑗≤𝑁−1

csc( 𝜋
𝑁
𝑗)]

]

1/3

. (25)

Proof of Theorem 1. Clearly, 𝑞(𝑡) = (0, 0, 0) is a critical point
of 𝑓(𝑞) on Λ

𝑖
= Λ
𝑖
(𝑖 = 1, 2). For the functional (6), let

𝐹 (𝑧, 𝑧

) =

1

2


𝑧


2

+
𝑁

√𝑟2 + 𝑧2
. (26)

Then the second variation of (6) in the neighborhood of 𝑧 = 0
is given by

∫

1

0

(𝑃ℎ
2
+ 𝑄ℎ
2
) 𝑑𝑡, (27)

where

𝑃 =
1

2
𝐹
𝑧

𝑧


𝑧=0
=
1

2
,

𝑄 =
1

2
(𝐹
𝑧𝑧
−
𝑑

𝑑𝑡
𝐹
𝑧𝑧
)

𝑧=0

= −
𝑁

2𝑟3
.

(28)

The Euler equation of (27) is called the Jacobi equation of the
original functional (6), which is

−
𝑑

𝑑𝑡
(𝑃ℎ

) + 𝑄ℎ = 0, (29)

that is,

ℎ

+
𝑁

𝑟3
ℎ = 0. (30)

Next, we study the solution of (30) with initial values ℎ(0) =
0, ℎ

(0) = 1. It is easy to get

ℎ (𝑡) = √
𝑟
3

𝑁
⋅ sin√𝑁

𝑟3
𝑡, (31)

which is not identically zero on [0, 1], but wewill prove ℎ(𝑐) =
0 for some 𝑐 ∈ (0, 1).

Suppose there exists 𝑐 ∈ (0, 1) such that ℎ(𝑐) = 0.
Hence, for some 𝑘 ∈ 𝑍+

√
𝑁

𝑟3
𝑐 = 𝑘𝜋. (32)

We have

𝑐 = [
𝜋
2
𝑘
2
𝑟
3

𝑁
]

1/2

= [

[

𝑘
2
(∑
𝑁−1

𝑗=1
csc ((𝜋/𝑁) 𝑗))
16𝑁

]

]

1/2
(33)

by using (24).
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Case 1 (Minimizing 𝑓(𝑞) on Λ
1
= Λ
1
). Letting 0 < 𝑐 < 1/2,

ℎ (𝑡) =

{{

{{

{

ℎ (𝑡) 𝑡 ∈ [0, 𝑐] ,

0 𝑡 ∈ (𝑐, 1 − 𝑐] ,

−ℎ (1 − 𝑡) 𝑡 ∈ (1 − 𝑐, 1] .

(34)

It is easy to check that ℎ(𝑡) ∈ 𝐶
2
([0, 1] \ {𝑐, 1 − 𝑐}, 𝑅) ∩

𝑊
1,2
(𝑅, 𝑅), ℎ(−𝑡) = −ℎ(𝑡), ℎ(0) = ℎ(0) = 0, ℎ(𝑐) = ℎ(𝑐) = 0,

and ℎ is a nonzero solution of (30).
If we take 𝑘 = 1,

𝑐 = [

[

∑
𝑁−1

𝑗=1
csc ((𝜋/𝑁) 𝑗)
16𝑁

]

]

1/2

<
1

2
. (35)

It is equivalent to

𝑁−1

∑

𝑗=1

csc( 𝜋
𝑁
𝑗) < 4𝑁. (36)

Let

𝑓 (𝑥) = ∑

𝑗 ̸= 𝑥

csc(𝜋
𝑥
𝑗) . (37)

It is not hard to check that 𝑓(𝑥) is nonmonotone. But for 2 ≤
𝑁 ≤ 472, (36) holds by writing program to calculate it.

Therefore, for 2 ≤ 𝑁 ≤ 472, we have 𝑐 ∈ (0, 1) such that

sin√𝑁
𝑟3
𝑐 = sin𝜋 = 0. (38)

Notice that we can extend ℎ periodically when we take 1 as
the period, so ℎ ∈ Λ

1
. Then by Lemma 8, 𝑞(𝑡) = (0, 0, 0) is

not a local minimum for 𝑓(𝑞) on Λ
1
. Hence the minimizers

of 𝑓(𝑞) on Λ
1
are not always at the center of masses; they

must oscillate periodically on the vertical axis; that is, the
minimizers are not always coplanar with the other bodies;
therefore, we get the nonplanar periodic solutions.

Case 2 (Minimizing 𝑓(𝑞) on Λ
2
= Λ
2
). Let

ℎ̃ (𝑡) =

{{{{{{{{{{{

{{{{{{{{{{{

{

ℎ (𝑡) 𝑡 ∈ [0, 𝑐] ,

0 𝑡 ∈ (𝑐,
1

2
] ,

−ℎ (𝑡 −
1

2
) 𝑡 ∈ (

1

2
,
1

2
+ 𝑐] ,

0 𝑡 ∈ (
1

2
+ 𝑐, 1] .

(39)

It is easy to check that ℎ̃(𝑡) ∈ 𝐶2([0, 1]\{𝑐, 1/2, (1/2)+𝑐}, 𝑅)∩
𝑊
1,2
(𝑅, 𝑅), ℎ̃(𝑡 + (1/2)) = −ℎ̃(𝑡), ℎ̃(0) = ℎ(0) = 0, ℎ̃(𝑐) =

ℎ(𝑐) = 0, and ℎ̃ is a nonzero solution of (30).
We hope 𝑐 ∈ (0, 1/2); that is,

𝑐 = [

[

∑
𝑁−1

𝑗=1
csc ((𝜋/𝑁) 𝑗)
16𝑁

]

]

1/2

<
1

2
. (40)

It implies that
𝑁−1

∑

𝑗=1

csc( 𝜋
𝑁
𝑗) < 4𝑁. (41)

Calculated by program, for 2 ≤ 𝑁 ≤ 𝑁
0
= 472, we have

𝑐 ∈ (0, 1/2) such that ℎ(𝑐) = 0.
Notice that we can extend ℎ̃ periodically when we take 1

as the period, so ℎ̃ ∈ Λ
2
. Then by Lemma 8, 𝑞(𝑡) = (0, 0, 0) is

not a local minimum for 𝑓(𝑞) on Λ
2
. Hence the minimizers

of 𝑓(𝑞) on Λ
2
are not always at the center of masses; they

must oscillate periodically on the vertical axis; that is, the
minimizers are not always coplanar with the other bodies;
therefore, we get the nonplanar periodic solutions.

We can use another argument to get much larger𝑁
0
. We

construct a test function 𝑧(𝑡) such that 𝑓(𝑧) < 𝑓(0) = 𝑁/𝑟
for𝑁 ≤ 𝑁

0
, where𝑁

0
is a very large number. Let

𝑧 (𝑡) =

{{{

{{{

{

𝑡 𝑡 ∈ [0,
1

4
] ,

1

4
𝑡 ∈ [

1

4
,
1

2
] ,

(42)

and we extend 𝑧(𝑡) by 𝑧(𝑡 + (1/2)) = −𝑧(𝑡). We have

𝑓 (𝑧) =
1

4
+ 2∫

1/2

0

𝑁

√𝑟2 + 𝑧2
𝑑𝑡

=
1

4
+ 2∫

1/4

0

𝑁

√𝑟2 + 𝑡2
𝑑𝑡 + 2∫

1/2

1/4

𝑁

√𝑟2 + (1/16)

𝑑𝑡

=
1

4
+ 2𝑁 ln 1 +

√1 + 16𝑟2

4𝑟
+

2𝑁

√1 + 16𝑟2
.

(43)

Writing program to calculate, we find an 𝑁
0
= 9 ∗ 10

10

such that 𝑓(𝑧) < 𝑓(0).
Hence 𝑞(𝑡) = (0, 0, 0) is not a local minimum for 𝑓(𝑞) on

Λ
𝑖
= Λ
𝑖
(𝑖 = 1, 2). So the minimizers of 𝑓(𝑞) on Λ

𝑖
are not

always at the center ofmasses; theymust oscillate periodically
on the vertical axis; that is, the minimizers are not always
coplanar with the other bodies; hence, we get the nonplanar
periodic solutions.
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