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This paper investigates the synchronization and antisynchronization problems of a hyperchaotic complex Chen system with
unknown parameters based on the properties of a passive system. The essential conditions are derived under which the
synchronization or antisynchronization error dynamical system could be equivalent to a passive system and be globally
asymptotically stabilized at a zero equilibrium point via smooth state feedback. Corresponding parameter estimation update laws
are obtained to estimate the unknown parameters as well. Numerical simulations verify the effectiveness of the theoretical analysis.

1. Introduction

Hyperchaos [1] is generally characterized as a chaotic attrac-
tor with more than one positive Lyapunov exponent and
has richer dynamical behaviors than chaos. Over the past
three decades, hyperchaotic systems with real variables have
been investigated extensively [2–5]. Since Fowler et al. [6]
introduced a complex Lorenz model to generalize the real
Lorenz model in 1982, chaotic and hyperchaotic complex
systems have attracted increasing attention to the systems
with complex variables which can be used to describe the
physics of a detuned laser, rotating fluids, disk dynamos,
electronic circuits, and particle beam dynamics in high
energy accelerators [7]. When applying the complex systems
in communications, the complex variables will double the
number of variables and can increase the content and security
of the transmitted information.

In recent years, chaos synchronization has attracted
increasing attention among scientists due to its potential
applications in the fields of secure communications; optical,
chemical, physical, and biological systems; neural networks;
and so forth [8, 9]. Several types of synchronization have been
investigated on complex chaotic and hyperchaotic systems

including complete synchronization [7], antisynchronization
[10, 11], phase and antiphase synchronization [12], lag and
antilag synchronization [13, 14], hybrid projective synchro-
nization [15], and modified function projective synchro-
nization [16]. Among the abovementioned synchronization
phenomena, the most widely investigated one is complete
synchronization (synchronization for short hereafter), which
implies that the differences of state variables of synchronized
systems starting from different initial values converge to
zero eventually. On the other hand, antisynchronization is
an another interesting phenomenon, which is characterized
by the vanishing of the sum of the relevant state variables
of synchronized systems. When applying antisynchroniza-
tion to communication systems, the security and secrecy
of communication can be strengthened while transmitting
digital signals by the transform between synchronization and
antisynchronization continuously.

Recently, many researchers have begun to give their
attention to the concept of passivity of nonlinear systems.
The passivity theory is considered to be an alternative tool for
analyzing the stability of nonlinear systems.Themain idea of
passivity theory is that the passive properties of a system can
keep the system internally stable. In order to make a system
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stable, one can design a controller which renders the closed-
loop system passive with the help of passivity theory. For the
past decade, the passivity theory has played an important
role in designing an asymptotically stabilizing controller for
control and synchronization of chaotic and hyperchaotic
systems with real variables [17–20]. For complex nonlinear
systems, onlyMahmoud et al. [21] applied the passive control
to investigate the control of 𝑛-dimensional chaotic complex
nonlinear systems. In this paper, we apply the passive control
to investigate the synchronization and antisynchronization
problems of the newly reported hyperchaotic complex Chen
system [22].

This paper is organized as follows. Section 2 introduces
the passive control theory and a new hyperchaotic complex
Chen system. Sections 3 and 4 investigate the synchronization
and antisynchronization problems of two identical hyper-
chaotic complex Chen systems with unknown parameters,
respectively. In Section 5, two numerical examples are pro-
vided to illustrate the analytical results. Finally, conclusions
are given in Section 6.

2. The Passive Control Theory and a New
Hyperchaotic Complex Chen System

Consider the following nonlinear affine system:

�̇� = 𝑓 (𝑥) + 𝑔 (𝑥) 𝑢,

𝑤 = ℎ (𝑥) ,

(1)

where 𝑥 ∈ 𝑅𝑛 is the state variable and 𝑢 ∈ 𝑅𝑚 and 𝑤 ∈ 𝑅𝑚
are input and output values, respectively. 𝑓(𝑥) and 𝑔(𝑥) are
smooth vector fields,𝑓(0) = 0, and ℎ(𝑥) is a smoothmapping.

Definition 1 (see [23]). System (1) is aminimumphase system
if 𝐿
𝑔
ℎ(0) is nonsingular and𝑥 = 0 is one of the asymptotically

stabilized equilibrium points of 𝑓(𝑥).

Definition 2 (see [24]). System (1) is passive if there exists a
real constant 𝛽 such that for all 𝑡 ≥ 0, the following inequality
holds:

∫

𝑡

0

𝑢
𝑇

(𝜏) 𝑤 (𝜏) 𝑑𝜏 ≥ 𝛽, (2)

or there exists a 𝜌 ≥ 0 and a real constant 𝛽 such that

∫

𝑡

0

𝑢
𝑇

(𝜏) 𝑤 (𝜏) 𝑑𝜏 + 𝛽 ≥ ∫

𝑡

0

𝜌𝑤
𝑇

(𝜏) 𝑤 (𝜏) 𝑑𝜏. (3)

If system (1) has relative degree [1, . . . , 1] at 𝑥 = 0 (i.e.,
𝐿
𝑔
ℎ(0) is nonsingular) and the distribution spanned by the

vector field 𝑔
1
(𝑥), . . . , 𝑔

𝑚
(𝑥) is innovative, then it can be

represented as the following normal form:

�̇� = 𝑓
0
(𝑧) + 𝑝 (𝑧, 𝑤)𝑤,

�̇� = 𝑏 (𝑧, 𝑤) + 𝑎 (𝑧, 𝑤) 𝑢,

(4)

where 𝑎(𝑧, 𝑤) is nonsingular for any (𝑧, 𝑤).

Theorem 3 (see [24]). Suppose the system (4) is passive with
a storage function 𝑉, which is positive-definite, and the system
(4) is locally zero-state detectable. Let 𝜙 be a smooth function
such that 𝜙(0) = 0 and 𝑤𝑇𝜙(𝑤) > 0 for each nonzero 𝑤.
Then the control law 𝑢 = −𝜙(𝑤) asymptotically stabilizes the
equilibrium of system (4).

Recently, the authors [22] introduced six different ver-
sions of the hyperchaotic complex Chen system by adding a
state feedback controller to the chaotic complex Chen system
[25], and the dynamics of the six hyperchaotic complex Chen
systems were studied in detail in [22]. In this paper, we
apply the passive control to investigate the synchronization
and antisynchronization problems of the following form of
hyperchaotic complex Chen system:

�̇� = 𝛼 (𝑦 − 𝑥) + 𝑤,

�̇� = (𝛾 − 𝛼) 𝑥 − 𝑥𝑧 + 𝛾𝑦,

�̇� =

1

2

(𝑥𝑦 + 𝑥𝑦) − 𝛽𝑧 + 𝑤,

�̇� =

1

2

(𝑥𝑦 + 𝑥𝑦) − 𝑑𝑤,

(5)

where 𝛼, 𝛽, 𝛾, and 𝑑 are positive real parameters, 𝑥 = 𝑢
1
+ 𝑖𝑢
2

and 𝑦 = 𝑢
3
+ 𝑖𝑢
4
are complex functions, 𝑖 = √−1, 𝑧 = 𝑢

5
, and

𝑤 = 𝑢
6
. 𝑢
𝑗
(𝑗 = 1, 2, 3, 4, 5, 6) are real functions. The overbar

represents complex conjugate function.

3. Synchronization of
the Hyperchaotic Complex Chen System
with Unknown Parameters

In this section, we study the synchronization problem of
the hyperchaotic complex Chen system (5) with unknown
parameters using the technique of passive control. We con-
sider system (5) as the drive system, and the response system
is described by

�̇�
1
= 𝛼 (𝑦

1
− 𝑥
1
) + 𝑤
1
,

�̇�
1
= (𝛾 − 𝛼) 𝑥

1
− 𝑥
1
𝑧
1
+ 𝛾𝑦
1
+ 𝜇
1
+ 𝑖𝜇
2
,

�̇�
1
=

1

2

(𝑥
1
𝑦
1
+ 𝑥
1
𝑦
1
) − 𝛽𝑧

1
+ 𝑤
1
+ 𝜇
3
,

�̇�
1
=

1

2

(𝑥
1
𝑦
1
+ 𝑥
1
𝑦
1
) − 𝑑𝑤

1
+ 𝜇
4
,

(6)

where 𝑥
1
= V
1
+ 𝑖V
2
, 𝑦
1
= V
3
+ 𝑖V
4
, and 𝑧

1
= V
5
, 𝑤
1
= V
6
.

V
𝑗
(𝑗 = 1, 2, 3, 4, 5, 6) are real functions, and 𝜇

1
, 𝜇
2
, 𝜇
3
, and

𝜇
4
are real control functions to be determined to achieve

synchronization.
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By subtracting the drive system (5) from the response
system (6), we obtain the following error dynamical system

̇𝑒
1
+ 𝑖 ̇𝑒
2
= 𝛼 (𝑦

1
− 𝑥
1
) + 𝑤
1
− (𝛼 (𝑦 − 𝑥) + 𝑤) ,

̇𝑒
3
+ 𝑖 ̇𝑒
4
= (𝛾 − 𝛼) 𝑥

1
− 𝑥
1
𝑧
1
+ 𝛾𝑦
1

− ((𝛾 − 𝛼) 𝑥 − 𝑥𝑧 + 𝛾𝑦) + 𝜇
1
+ 𝑖𝜇
2
,

̇𝑒
5
=

1

2

(𝑥
1
𝑦
1
+ 𝑥
1
𝑦
1
) − 𝛽𝑧

1
+ 𝑤
1

− (

1

2

(𝑥𝑦 + 𝑥𝑦) − 𝛽𝑧 + 𝑤) + 𝜇
3
,

̇𝑒
6
=

1

2

(𝑥
1
𝑦
1
+ 𝑥
1
𝑦
1
) − 𝑑𝑤

1
− (

1

2

(𝑥𝑦 + 𝑥𝑦) − 𝑑𝑤) + 𝜇
4
,

(7)

where 𝑒
𝑗
= V
𝑗
− 𝑢
𝑗
(𝑗 = 1, 2, 3, 4, 5, 6) are error states and 𝛼,

𝛽, 𝛾, and 𝑑 are unknown parameters.
Separating the real and imaginary parts of error dynami-

cal system (7), we obtain the following real system:

̇𝑒
1
= 𝛼 (𝑒

3
− 𝑒
1
) + 𝑒
6
,

̇𝑒
2
= 𝛼 (𝑒

4
− 𝑒
2
) ,

̇𝑒
3
= (𝛾 − 𝛼) 𝑒

1
+ 𝛾𝑒
3
− 𝑒
1
𝑒
5
− 𝑒
1
𝑢
5
− 𝑢
1
𝑒
5
+ 𝜇
1
,

̇𝑒
4
= (𝛾 − 𝛼) 𝑒

2
+ 𝛾𝑒
4
− 𝑒
2
𝑒
5
− 𝑒
2
𝑢
5
− 𝑢
2
𝑒
5
+ 𝜇
2
,

̇𝑒
5
= 𝑒
1
𝑒
3
+ 𝑒
1
𝑢
3
+ 𝑢
1
𝑒
3
+ 𝑒
2
𝑒
4
+ 𝑒
2
𝑢
4
+ 𝑢
2
𝑒
4
− 𝛽𝑒
5
+ 𝑒
6
+ 𝜇
3
,

̇𝑒
6
= 𝑒
1
𝑒
3
+ 𝑒
1
𝑢
3
+ 𝑢
1
𝑒
3
+ 𝑒
2
𝑒
4
+ 𝑒
2
𝑢
4
+ 𝑢
2
𝑒
4
− 𝑑𝑒
6
+ 𝜇
4
.

(8)

Let 𝑧
1
= 𝑒
1
, 𝑧
2
= 𝑒
2
,𝑦
1
= 𝑒
3
,𝑦
2
= 𝑒
4
,𝑦
3
= 𝑒
5
, and𝑦

4
= 𝑒
6
;

then the error dynamical system (8) can be rewritten as

�̇�
1
= 𝛼 (𝑦

1
− 𝑧
1
) + 𝑦
4
,

�̇�
2
= 𝛼 (𝑦

2
− 𝑧
2
) ,

�̇�
1
= (𝛾 − 𝛼) 𝑧

1
+ 𝛾𝑦
1
− 𝑧
1
𝑦
3
− 𝑧
1
𝑢
5
− 𝑢
1
𝑦
3
+ 𝜇
1
,

�̇�
2
= (𝛾 − 𝛼) 𝑧

2
+ 𝛾𝑦
2
− 𝑧
2
𝑦
3
− 𝑧
2
𝑢
5
− 𝑢
2
𝑦
3
+ 𝜇
2
,

�̇�
3
= 𝑧
1
𝑦
1
+ 𝑧
1
𝑢
3
+ 𝑢
1
𝑦
1
+ 𝑧
2
𝑦
2
+ 𝑧
2
𝑢
4
+ 𝑢
2
𝑦
2
− 𝛽𝑦
3

+ 𝑦
4
+ 𝜇
3
,

�̇�
4
= 𝑧
1
𝑦
1
+ 𝑧
1
𝑢
3
+ 𝑢
1
𝑦
1
+ 𝑧
2
𝑦
2
+ 𝑧
2
𝑢
4
+ 𝑢
2
𝑦
2
− 𝑑𝑦
4
+ 𝜇
4
,

(9)

which is the following normal form:

�̇� = 𝑓
0
(𝑧) + 𝑝 (𝑧, 𝑦) 𝑦,

�̇� = 𝑏 (𝑧, 𝑦) + 𝑎 (𝑧, 𝑦) 𝜇,

(10)

where 𝑧 = [𝑧
1
, 𝑧
2
]
𝑇, 𝑦 = [𝑦

1
, 𝑦
2
, 𝑦
3
, 𝑦
4
]
𝑇, 𝜇 = [𝜇

1
, 𝜇
2
, 𝜇
3
, 𝜇
4
]
𝑇

and

𝑓
0
(𝑧) = [−𝛼𝑧

1
, −𝛼𝑧
2
]
𝑇

, 𝑝 (𝑧, 𝑦) = [

𝛼 0 0 1

0 𝛼 0 0
] ,

𝑎 (𝑧, 𝑦) =

[

[

[

[

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

]

]

]

]

,

𝑏 (𝑧, 𝑦) =

[

[

[

[

[

[

[

(𝛾 − 𝛼) 𝑧
1
+ 𝛾𝑦
1
− 𝑧
1
𝑦
3
− 𝑧
1
𝑢
5
− 𝑢
1
𝑦
3

(𝛾 − 𝛼) 𝑧
2
+ 𝛾𝑦
2
− 𝑧
2
𝑦
3
− 𝑧
2
𝑢
5
− 𝑢
2
𝑦
3

𝑧
1
𝑦
1
+ 𝑧
1
𝑢
3
+ 𝑢
1
𝑦
1
+ 𝑧
2
𝑦
2
+ 𝑧
2
𝑢
4
+ 𝑢
2
𝑦
2
− 𝛽𝑦
3
+ 𝑦
4

𝑧
1
𝑦
1
+ 𝑧
1
𝑢
3
+ 𝑢
1
𝑦
1
+ 𝑧
2
𝑦
2
+ 𝑧
2
𝑢
4
+ 𝑢
2
𝑦
2
− 𝑑𝑦
4

]

]

]

]

]

]

]

.

(11)

Then we can arrive at the following result.

Theorem 4. If the passive controllers are designed as

𝜇
1
= −�̃�𝑧

1
− �̃�𝑦
1
+ 𝑧
1
𝑦
3
+ 𝑧
1
𝑢
5
+ 𝑢
1
𝑦
3
− 𝑘
1
𝑦
1
+ ]
1
,

𝜇
2
= −�̃�𝑧

2
− �̃�𝑦
2
+ 𝑧
2
𝑦
3
+ 𝑧
2
𝑢
5
+ 𝑢
2
𝑦
3
− 𝑘
2
𝑦
2
+ ]
2
,

𝜇
3
= −𝑧
1
𝑦
1
− 𝑧
1
𝑢
3
− 𝑢
1
𝑦
1
− 𝑧
2
𝑦
2
− 𝑧
2
𝑢
4
− 𝑢
2
𝑦
2
+
̃
𝛽𝑦
3

− 𝑦
4
− 𝑘
3
𝑦
3
+ ]
3
,

𝜇
4
= −𝑧
1
𝑦
1
− 𝑧
1
𝑢
3
− 𝑢
1
𝑦
1
− 𝑧
2
𝑦
2
− 𝑧
2
𝑢
4
− 𝑢
2
𝑦
2
+
̃
𝑑𝑦
4
− 𝑧
1

− 𝑘
4
𝑦
4
+ ]
4

(12)

and the parameter estimation update laws as

̃
𝛽 = −𝑦

2

3
,

�̃� = 𝑧
1
𝑦
1
+ 𝑦
2

1
+ 𝑧
2
𝑦
2
+ 𝑦
2

2
,

̃
𝑑 = −𝑦

2

4
,

(13)

where 𝑘 = [𝑘
1
, 𝑘
2
, 𝑘
3
, 𝑘
4
]
𝑇 is a positive constant vector, ] =

[]
1
, ]
2
, ]
3
, ]
4
]
𝑇 is an external signal vector which is connected

with the reference input, and ̃𝛽, �̃�, and ̃𝑑 are estimated values of
the unknown parameters 𝛼, 𝛽, 𝛾, and 𝑑, respectively, then the
error dynamical system (8)will be rendered passive and will be
asymptotically stable at its equilibrium (0, 0, 0, 0) and the two
systems (5) and (6) starting from different initial values will be
synchronized.

Proof. Construct the following storage function:

𝑉 (𝑧, 𝑦) = 𝑊 (𝑧) +

1

2

𝑦
𝑇

𝑦 +

1

2

(�̃� − 𝛼)
2

+

1

2

(
̃
𝛽 − 𝛽)

2

+

1

2

(�̃� − 𝛾)
2

+

1

2

(
̃
𝑑 − 𝑑)

2

,

(14)

where𝑊(𝑧) = (1/2)(𝑧2
1
+𝑧
2

2
) is a Lyapunov function of 𝑓

0
(𝑧).
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Figure 1: The time response of states for the drive system (5) and the response system (6) with controllers (12) and parameter estimation
update laws (13).

The zero dynamics of system (10) describe the internal
dynamics, which are consistent with the external constraint
𝑦 = 0; that is, �̇� = 𝑓

0
(𝑧).

Differentiating𝑊(𝑧) with respect to 𝑡, we have

𝑑

𝑑𝑡

𝑊 (𝑧) =

𝜕𝑊 (𝑧)

𝜕𝑧

𝑓
0
(𝑧) = −𝛼𝑧

2

1
− 𝛼𝑧
2

2
≤ 0. (15)

Then 𝑓
0
(𝑧) is globally asymptotically stable; that is, the

zero dynamics of system (8) is Lyapunov stable. In the light
of Definition 1, system (8) is a minimum phase system.

Furthermore, taking the time derivative of 𝑉(𝑧, 𝑦) along
the trajectory of the error dynamical system (8) yields

𝑑

𝑑𝑡

𝑉 (𝑧, 𝑦) =

𝜕𝑊 (𝑧)

𝜕𝑧

�̇� + 𝑦
𝑇

�̇� + (�̃� − 𝛼)
̇
�̃� + (

̃
𝛽 − 𝛽)

̇
̃
𝛽

+ (�̃� − 𝛾)
̇
�̃� + (

̃
𝑑 − 𝑑)

̇
̃
𝑑

=

𝜕𝑊 (𝑧)

𝜕𝑧

𝑓
0
(𝑧) +

𝜕𝑊 (𝑧)

𝜕𝑧

𝑝 (𝑧, 𝑦) 𝑦

+ 𝑦
𝑇

𝑏 (𝑧, 𝑦) + 𝑦
𝑇

𝑎 (𝑧, 𝑦) 𝜇 + (�̃� − 𝛼)
̇
�̃�

+ (
̃
𝛽 − 𝛽)

̇
̃
𝛽 + (�̃� − 𝛾)

̇
�̃� + (

̃
𝑑 − 𝑑)

̇
̃
𝑑.

(16)
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Since the error dynamical system (8) is a minimum phase
system; that is, ((𝜕𝑊(𝑧))/𝜕𝑧)𝑓

0
(𝑧) ≤ 0, then (15) becomes

𝑑

𝑑𝑡

𝑉 (𝑧, 𝑦) ≤

𝜕𝑊 (𝑧)

𝜕𝑧

𝑝 (𝑧, 𝑦) 𝑦 + 𝑦
𝑇

𝑏 (𝑧, 𝑦) + 𝑦
𝑇

𝑎 (𝑧, 𝑦) 𝜇

+ (�̃� − 𝛼)
̇
�̃� + (

̃
𝛽 − 𝛽)

̇
̃
𝛽 + (�̃� − 𝛾)

̇
�̃�

+ (
̃
𝑑 − 𝑑)

̇
̃
𝑑.

(17)

Substituting (12) and (13) into (17) yields

𝑑

𝑑𝑡

𝑉 (𝑧, 𝑦) ≤ −𝑘𝑦
𝑇

𝑦 + ]
𝑇

𝑦. (18)

Then, taking integration on both sides of (18), we get

𝑉 (𝑧, 𝑦) − 𝑉 (𝑧
0
, 𝑦
0
) ≤ − ∫

𝑡

0

𝑘𝑦
𝑇

(𝜏) 𝑦 (𝜏) 𝑑𝜏

+ ∫

𝑡

0

]
𝑇

(𝜏) 𝑦 (𝜏) 𝑑𝜏.

(19)

For 𝑉(𝑧, 𝑦) ≥ 0, let 𝑉(𝑧
0
, 𝑦
0
) = 𝑢; then the above

inequality can be rewritten as

∫

𝑡

0

V
𝑇

(𝜏) 𝑦 (𝜏) 𝑑𝜏 + 𝑢 ≥ ∫

𝑡

0

𝑘𝑦
𝑇

(𝜏) 𝑦 (𝜏) 𝑑𝜏 + 𝑉 (𝑧, 𝑦)

≥ ∫

𝑡

0

𝑘𝑦
𝑇

(𝜏) 𝑦 (𝜏) 𝑑𝜏.

(20)

Letting ] = []
1
, ]
2
, ]
3
, ]
4
]
𝑇

= [0, 0, 0, 0]
𝑇, in light of

Definition 2 and Theorem 3, system (8) will be stabilized
at its equilibrium (0, 0, 0, 0) with the controllers (12) and
the parameter estimation update laws (13); that is, the drive
system (5) and response system (6) with different initial con-
ditions will be synchronized with each other asymptotically.

This completes the proof.

Remark 5. The controllers (12) are only related to the param-
eters 𝛽, 𝛾, and 𝑑, and so we do not need to estimate the
parameter 𝛼.

4. Antisynchronization of
the Hyperchaotic Complex Chen System
with Unknown Parameters

To investigate the antisynchronization of the hyperchaotic
complex Chen system, we need to add system (6) to sys-
tem (5) and obtain the following antisynchronization error
dynamical system:

̇𝑒
1
+ 𝑖 ̇𝑒
2
= 𝛼 (𝑦

1
− 𝑥
1
) + 𝑤
1
+ (𝛼 (𝑦 − 𝑥) + 𝑤) ,

0 1
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Figure 2: The time response of synchronization error states 𝑒
𝑗
(𝑗 =

1, 2, 3, 4, 5, 6) for the error dynamical system (8).

̇𝑒
3
+ 𝑖 ̇𝑒
4
= (𝛾 − 𝛼) 𝑥

1
− 𝑥
1
𝑧
1
+ 𝛾𝑦
1
+ ((𝛾 − 𝛼) 𝑥 − 𝑥𝑧 + 𝛾𝑦)

+ 𝜇
1
+ 𝑖𝜇
2
,

̇𝑒
5
=

1

2

(𝑥
1
𝑦
1
+ 𝑥
1
𝑦
1
) − 𝛽𝑧

1
+ 𝑤
1

+ (

1

2

(𝑥𝑦 + 𝑥𝑦) − 𝛽𝑧 + 𝑤) + 𝜇
3
,

̇𝑒
6
=

1

2

(𝑥
1
𝑦
1
+ 𝑥
1
𝑦
1
) − 𝑑𝑤

1
+ (

1

2

(𝑥𝑦 + 𝑥𝑦) − 𝑑𝑤) + 𝜇
4
,

(21)

where 𝑒
𝑗
= V
𝑗
+𝑢
𝑗
(𝑗 = 1, 2, 3, 4, 5, 6) are antisynchronization

error states and 𝛼, 𝛽, 𝛾, and 𝑑 are unknown parameters. By
separating the real and imaginary parts of the antisynchro-
nization error dynamical system (21), we get the following real
system:

̇𝑒
1
= 𝛼 (𝑒

3
− 𝑒
1
) + 𝑒
6
,

̇𝑒
2
= 𝛼 (𝑒

4
− 𝑒
2
) ,

̇𝑒
3
= (𝛾 − 𝛼) 𝑒

1
+ 𝛾𝑒
3
− 𝑒
1
𝑒
5
+ 𝑒
1
𝑢
5
+ 𝑢
1
𝑒
5
− 2𝑢
1
𝑢
5
+ 𝜇
1
,

̇𝑒
4
= (𝛾 − 𝛼) 𝑒

2
+ 𝛾𝑒
4
− 𝑒
2
𝑒
5
+ 𝑒
2
𝑢
5
+ 𝑢
2
𝑒
5
− 2𝑢
2
𝑢
5
+ 𝜇
2
,

̇𝑒
5
= 𝑒
1
𝑒
3
− 𝑒
1
𝑢
3
− 𝑢
1
𝑒
3
+ 2𝑢
1
𝑢
3
+ 𝑒
2
𝑒
4
− 𝑒
2
𝑢
4
− 𝑢
2
𝑒
4

+ 2𝑢
2
𝑢
4
− 𝛽𝑒
5
+ 𝑒
6
+ 𝜇
3
,

̇𝑒
6
= 𝑒
1
𝑒
3
− 𝑒
1
𝑢
3
− 𝑢
1
𝑒
3
+ 2𝑢
1
𝑢
3
+ 𝑒
2
𝑒
4
− 𝑒
2
𝑢
4
− 𝑢
2
𝑒
4

+ 2𝑢
2
𝑢
4
− 𝑑𝑒
6
+ 𝜇
4
.

(22)
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Figure 3: The time response of states for the drive system (5) and the response system (6) with controllers (24) and parameter estimation
update laws (25).

Let 𝑧
1
= 𝑒
1
, 𝑧
2
= 𝑒
2
, 𝑦
1
= 𝑒
3
, 𝑦
2
= 𝑒
4
, 𝑦
3
= 𝑒
5
, and 𝑦

4
= 𝑒
6
;

then the error dynamical system (22) can be rewritten as

�̇�
1
= 𝛼 (𝑦

1
− 𝑧
1
) + 𝑦
4
,

�̇�
2
= 𝛼 (𝑦

2
− 𝑧
2
) ,

�̇�
1
= (𝛾 − 𝛼) 𝑧

1
+ 𝛾𝑦
1
− 𝑧
1
𝑦
3
+ 𝑧
1
𝑢
5
+ 𝑢
1
𝑦
3
− 2𝑢
1
𝑢
5
+ 𝜇
1
,

�̇�
2
= (𝛾 − 𝛼) 𝑧

2
+ 𝛾𝑦
2
− 𝑧
2
𝑦
3
+ 𝑧
2
𝑢
5
+ 𝑢
2
𝑦
3
− 2𝑢
2
𝑢
5
+ 𝜇
2
,

�̇�
3
= 𝑧
1
𝑦
1
− 𝑧
1
𝑢
3
− 𝑢
1
𝑦
1
+ 2𝑢
1
𝑢
3
+ 𝑧
2
𝑦
2
− 𝑧
2
𝑢
4
− 𝑢
2
𝑦
2

+ 2𝑢
2
𝑢
4
− 𝛽𝑦
3
+ 𝑦
4
+ 𝜇
3
,

�̇�
4
= 𝑧
1
𝑦
1
− 𝑧
1
𝑢
3
− 𝑢
1
𝑦
1
+ 2𝑢
1
𝑢
3
+ 𝑧
2
𝑦
2
− 𝑧
2
𝑢
4
− 𝑢
2
𝑦
2

+ 2𝑢
2
𝑢
4
− 𝑑𝑦
4
+ 𝜇
4
.

(23)
Thus, we can establish the following theorem.

Theorem 6. If the passive controllers are designed as
𝜇
1
= −�̃�𝑧

1
− �̃�𝑦
1
+ 𝑧
1
𝑦
3
− 𝑧
1
𝑢
5
− 𝑢
1
𝑦
3
+ 2𝑢
1
𝑢
5
− 𝑘
1
𝑦
1
+ ]
1
,

𝜇
2
= −�̃�𝑧

2
− �̃�𝑦
2
+ 𝑧
2
𝑦
3
− 𝑧
2
𝑢
5
− 𝑢
2
𝑦
3
+ 2𝑢
2
𝑢
5
− 𝑘
2
𝑦
2
+ ]
2
,

𝜇
3
= −𝑧
1
𝑦
1
+ 𝑧
1
𝑢
3
+ 𝑢
1
𝑦
1
− 2𝑢
1
𝑢
3
− 𝑧
2
𝑦
2
+ 𝑧
2
𝑢
4
+ 𝑢
2
𝑦
2

− 2𝑢
2
𝑢
4
+
̃
𝛽𝑦
3
− 𝑦
4
− 𝑘
3
𝑦
3
+ ]
3
,
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𝜇
4
= −𝑧
1
𝑦
1
+ 𝑧
1
𝑢
3
+ 𝑢
1
𝑦
1
− 2𝑢
1
𝑢
3
− 𝑧
2
𝑦
2
+ 𝑧
2
𝑢
4
+ 𝑢
2
𝑦
2

− 2𝑢
2
𝑢
4
+
̃
𝑑𝑦
4
− 𝑧
1
− 𝑘
4
𝑦
4
+ ]
4

(24)

and the parameter estimation update laws as

̃
𝛽 = −𝑦

2

3
,

�̃� = 𝑧
1
𝑦
1
+ 𝑦
2

1
+ 𝑧
2
𝑦
2
+ 𝑦
2

2
,

̃
𝑑 = −𝑦

2

4
,

(25)

where 𝑘 = [𝑘
1
, 𝑘
2
, 𝑘
3
, 𝑘
4
]
𝑇 is a positive constant vector, ] =

[]
1
, ]
2
, ]
3
, ]
4
]
𝑇 is an external signal vector which is connected

with the reference input, and ̃
𝛽, �̃�, and ̃

𝑑 are estimated
values of the unknown parameters 𝛽, 𝛾, and 𝑑, respectively,
then the antisynchronization error dynamical system (22) will
be rendered passive and will be asymptotically stable at its
equilibrium (0, 0, 0, 0) and the two systems (5) and (6) starting
from different initial values will be antisynchronized.

Proof. Theproof ofTheorem 6 is similar to that ofTheorem 4,
so it is omitted here.

5. Numerical Simulations

In this section, we perform two numerical simulations to
demonstrate the effectiveness of the above synchronization
and antisynchronization schemes. In the following numerical
simulations, the fourth-order Runge-Kutta method is used
to solve the systems with time step size 0.001. The system
parameters are selected as 𝛼 = 32, 𝛽 = 5, 𝛾 = 25, and 𝑑 = 6
so that the hyperchaotic complex Chen system (5) exhibits
hyperchaos.

Example 7. For the synchronization of the hyperchaotic com-
plex Chen system, we consider the drive system (5) and the
response system (6) with the controllers (12) and update laws
(13). The initial values for the drive system (5) and response
system (6) are given as (𝑥(0), 𝑦(0), 𝑧(0), 𝑤(0)) = (1 + 2𝑖, 3 −
𝑖, −2, −3) and (𝑥

1
(0), 𝑦
1
(0), 𝑧
1
(0), 𝑤

1
(0)) = (1.5 + 3𝑖, 4.5 +

2𝑖, 1, 5); thus (𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
, 𝑢
5
, 𝑢
6
) = (1, 2, 3, −1, −2, −3) and

(V
1
, V
2
, V
3
, V
4
, V
5
, V
6
) = (1.5, 3, 4.5, 2, 1, 5), respectively. The

initial errors are (𝑒
1
, 𝑒
2
, 𝑒
3
, 𝑒
4
, 𝑒
5
, 𝑒
6
) = (0.5, 1, 1.5, 3, 3, 8).

And the initial values of the parameter estimation update laws
are ̃𝛽(0) = �̃�(0) =

̃
𝑑(0) = 0.1. We choose 𝑘

1
= 𝑘
2
=

𝑘
3
= 𝑘
4
= 1 and ]

1
= ]
2
= ]
3
= ]
4
= 0. Figure 1 shows

the time response of states determined by the drive system
(5) and the response system (6) with the controllers (12) and
the parameter estimation update laws (13). Figure 2 shows the
time response of error states for the error dynamical system
(8). From Figures 1 and 2, we can see that the two systems (5)
and (6) starting from different initial conditions synchronize
with each other immediately and the trajectories of the error
dynamical system (8) are asymptotically stabilized at the
equilibrium point 𝑂(0, 0, 0, 0).
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Figure 4: The time response of antisynchronization error states
𝑒
𝑗
(𝑗 = 1, 2, 3, 4, 5, 6) for the error dynamical system (22).

Example 8. For the antisynchronization of the hyperchaotic
complex Chen system, we also consider the drive sys-
tem (5) and the response system (6) but with the con-
trollers (24) and update laws (25). The initial values
for the drive system (5) and response system (6) are
also given as (𝑥(0), 𝑦(0), 𝑧(0), 𝑤(0)) = (1 + 2𝑖, 3 − 𝑖,

−2, −3) and (𝑥
1
(0), 𝑦
1
(0), 𝑧
1
(0), 𝑤

1
(0)) = (1.5 + 3𝑖, 4.5 +

2𝑖, 1, 5); thus (𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
, 𝑢
5
, 𝑢
6
) = (1, 2, 3, −1, −2, −3) and

(V
1
, V
2
, V
3
, V
4
, V
5
, V
6
) = (1.5, 3, 4.5, 2, 1, 5), respectively. But the

initial errors are (𝑒
1
, 𝑒
2
, 𝑒
3
, 𝑒
4
, 𝑒
5
, 𝑒
6
) = (2.5, 5, 7.5, 1, −1, 2).

And the initial values of the parameter estimation update laws
are ̃𝛽(0) = �̃�(0) =

̃
𝑑(0) = 0.1. We choose 𝑘

1
= 𝑘
2
=

𝑘
3
= 𝑘
4
= 1 and ]

1
= ]
2
= ]
3
= ]
4
= 0. Figure 3

shows the time response of states determined by the drive
system (5) and the response system (6) with the controllers
(24) and the parameter estimation update laws (25). The
time response of error states for the antisynchronization error
dynamical system (22) is shown in Figure 4. From Figures
3 and 4, we can see that the two systems starting from
different initial conditions antisynchronize with each other
immediately and the trajectories of the antisynchronization
error dynamical system (22) are asymptotically stabilized at
the zero equilibrium.

6. Conclusions

Hyperchaotic systems with real variables have been inves-
tigated extensively over the past three decades. But hyper-
chaotic complex systems have attracted increasing attention
due to the fact that they have much wider applications. So
we investigate the synchronization and antisynchronization
problems of a hyperchaotic complexChen systemby applying
the passive control technique. Based on the fact that once a
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system is passive, there exists a control law thatmakes the pas-
sive system stable, then the passivity-based controller can be
proposed to asymptotically stabilize the error dynamical sys-
tem.Then corresponding passive controllers and update laws
of the parameters are proposed to achieve synchronization
and antisynchronization between two hyperchaotic complex
Chen systems with different initial conditions, respectively.
Furthermore, this work can be extended to achieve syn-
chronization and antisynchronization of other versions of
the hyperchaotic complex Chen system, even other types of
hyperchaotic complex systems, such as Lorenz system [26]
and Lü system [27].
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