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This paper contributes a new matrix method for the solution of high-order linear complex differential equations with variable
coefficients in rectangular domains under the considered initial conditions.On the basis of the presented approach, thematrix forms
of the Bernoulli polynomials and their derivatives are constructed, and then by substituting the collocation points into the matrix
forms, the fundamental matrix equation is formed. This matrix equation corresponds to a system of linear algebraic equations. By
solving this system, the unknown Bernoulli coefficients are determined and thus the approximate solutions are obtained. Also, an
error analysis based on the use of the Bernoulli polynomials is provided under several mild conditions. To illustrate the efficiency
of our method, some numerical examples are given.

1. Introduction

Complex differential equations have a great popularity in
science and engineering. In real world, physical events can
be modeled by complex differential equations usually. For
instance, the vibrations of a one-mass system with two DOFs
are mostly described using differential equations with a
complex dependent variable [1, 2]. The various applications
of differential equations with complex dependent variables
are introduced in [2]. Since a huge size of such equations
cannot be solved explicitly, it is often necessary to resort to
approximation and numerical techniques.

In recent years, the studies on complex differential equa-
tions, such as a geometric approach based on meromorphic
function in arbitrary domains [3], a topological description
of solutions of some complex differential equations with
multivalued coefficients [4], the zero distribution [5], growth
estimates [6] of linear complex differential equations, and
also the rational together with the polynomial approxima-
tions of analytic functions in the complex plane [7, 8], were
developed very rapidly and intensively.

Since the beginning of 1994, the Laguerre, Chebyshev,
Taylor, Legendre, Hermite, and Bessel (matrix and colloca-
tion) methods have been used in the works in [9–19] to solve
linear differential, integral, and integrodifferential-difference
equations and their systems. Also, the Bernoulli matrix
method has been used to find the approximate solutions of
differential and integrodifferential equations [20–22].

In this paper, in the light of the above-mentioned
methods and by means of the matrix relations between the
Bernoulli polynomials and their derivatives, we develop a
new method called the Bernoulli collocation method (BCM)
for solving high-order linear complex differential equation

𝑓(𝑚) (𝑧) +
𝑚−1

∑
𝑘=0

𝑃𝑘 (𝑧) 𝑓
(𝑘)
(𝑧) = 𝐺 (𝑧) ,

𝑚 ≥ 1, 𝑧 = 𝑥 + 𝑖𝑦, 𝑥 ∈ [𝑎, 𝑏] , 𝑦 ∈ [𝑐, 𝑑] ,

(1)

with the initial conditions

𝑓(𝑟) (0) = 𝛽𝑟, 𝑟 = 0, 1, . . . , 𝑚 − 1. (2)
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Evidently, we will let 𝑧 denote a variable point in the complex
plane. Its real and imaginary parts will be denoted by 𝑥 and
𝑦, respectively.

Here, the coefficients 𝑃𝑘(𝑧) and the known function 𝐺(𝑧)
together with the unknown function 𝑓(𝑧) are holomorphic
(or analytic) functions in the domain 𝐷 = {𝑧 ∈ C : 𝑧 =
𝑥 + 𝑖𝑦, 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑐 ≤ 𝑦 ≤ 𝑑 : 𝑎, 𝑏, 𝑐, 𝑑 ∈ R} where the
coefficients 𝛽𝑟 are appropriate complex constants.

We assume that the solution of (1) under the conditions
(2) is approximated in the form

𝑓 (𝑧) ≈ 𝑓𝑁 (𝑧) =
𝑁

∑
𝑛=0

𝑓𝑛𝐵𝑛 (𝑧) , 𝑧 ∈ 𝐷, (3)

which is the truncated Bernoulli series of the unknown
function 𝑓(𝑧), where all of 𝑓𝑛 (𝑛 = 0, 1, . . . , 𝑁) are the
Bernoulli coefficients to be determined. We also use the
collocation points

𝑧𝑝𝑝 = 𝑥𝑝 + 𝑖𝑦𝑝, 𝑥𝑝 = 𝑎 +
𝑏 − 𝑎

𝑁
𝑝,

𝑦𝑝 = 𝑐 +
𝑑 − 𝑐

𝑁
𝑝, 𝑝 = 0, 1, . . . , 𝑁.

(4)

In this paper, by generalizing the methods [20, 21] from
real calculus to the complex calculus, we propose a new
matrix method which is based on the Bernoulli operational
matrix of differentiation and a uniform collocation scheme.
It should be noted that since an ordinary complex differential
equation equals to a system of partial differential equations
(see Section 4) the methods that based on high-order Gauss
quadrature rules [23, 24] could not be effective. Needing
to more CPU time from one side and ill conditioning of
the associated algebraic problem from another side are two
disadvantages of such methods. Therefore, implementing an
easy to use approach such as the methods that based on
operational matrices is necessary for solving any practical
problem.

The rest of this paper is organized as follows. In Section 2,
we review some notations from complex calculus and also
provide several properties of the Bernoulli polynomials.
Section 3 is devoted to the proposed matrix method. Error
analysis and accuracy of the approximated solution by the
aid of the Bernoulli polynomials is given in Section 4. Several
illustrative examples are provided in Section 5 for confirming
the effectiveness of the presented method. Section 6 contains
some conclusions and notations about the future works.

2. Review on Complex Calculus and
the Bernoulli Polynomials

This Section is divided into two subsections. In the first
subsection we review some notations from complex calculus
specially the concept of differentiability in the complex plane
under some remarks. Then we recall several properties of the
Bernoulli polynomials and introduce the operational matrix
of differentiation of the Bernoulli polynomials in the complex
form.

2.1. Review on Complex Calculus. From the definition of
derivative in the complex form, it is immediate that a constant
function is differentiable everywhere, with derivative 0, and
that the identity function (the function 𝑓(𝑧) = 𝑧) is differ-
entiable everywhere, with derivative 1. Just as in elementary
calculus one can show from the last statement, by repeated
applications of the product rule, that, for any positive integer
𝑛, the function 𝑓(𝑧) = 𝑧𝑛 is differentiable everywhere,
with derivative 𝑛𝑧𝑛−1. This, in conjunction with the sum and
product rules, implies that every polynomial is everywhere
differentiable: if 𝑓(𝑧) = 𝑐𝑛𝑧

𝑛 + 𝑐𝑛−1𝑧
𝑛−1 + ⋅ ⋅ ⋅ + 𝑐1𝑧 + 𝑐0, where

𝑐0, . . . , 𝑐𝑛 are complex constants, then 𝑓󸀠(𝑧) = 𝑛𝑐𝑛𝑧
𝑛−1 + (𝑛 −

1)𝑐𝑛−1𝑧
𝑛−2 + ⋅ ⋅ ⋅ + 𝑐1.

Remark 1. The function 𝑓 = 𝑢 + 𝑖V is differentiable (in the
complex sense) at 𝑧0 if and only if 𝑢 and V are differentiable
(in the real sense) at 𝑧0 and their first partial derivatives
satisfy the relations 𝜕𝑢(𝑧0)/𝜕𝑥 = 𝜕V(𝑧0)/𝜕𝑦, 𝜕𝑢(𝑧0)/𝜕𝑦 =
−𝜕V(𝑧0)/𝜕𝑥. In that case

𝑓󸀠 (𝑧0) =
𝜕𝑢 (𝑧0)

𝜕𝑥
+ 𝑖
𝜕V (𝑧0)

𝜕𝑥

=
𝜕V (𝑧0)

𝜕𝑦
− 𝑖
𝜕𝑢 (𝑧0)

𝜕𝑦
.

(5)

Remark 2. Two partial differential equations

𝜕𝑢

𝜕𝑥
=
𝜕V

𝜕𝑦
,

𝜕𝑢

𝜕𝑦
= −

𝜕V

𝜕𝑥
(6)

are called the Cauchy-Riemann equations for the pair of
functions 𝑢, V. As seen above (i.e., the Remark 1), the
equations are satisfied by the real and imaginary parts of a
complex-valued function at each point where that function is
differentiable.

Remark 3 (sufficient condition for complex differentiability).
Let the complex-valued function 𝑓 = 𝑢 + 𝑖V be defined in the
open subset 𝐺 of the complex plane C and assume that 𝑢 and
V have first partial derivatives in 𝐺. Then 𝑓 is differentiable at
each point where those partial derivatives are continuous and
satisfy the Cauchy-Riemann equations.

Definition 4. A complex-valued function that is defined in
an open subset 𝐺 of the complex plane C and differentiable
at every point of 𝐺 is said to be holomorphic (or analytic)
in 𝐺. The simplest examples are polynomials, which are
holomorphic in C, and rational functions, which are holo-
morphic in the regions where they are defined. Moreover,
the elementary functions such as exponential function, the
logarithm function, trigonometric and inverse trigonometric
functions, and power functions all have complex versions
that are holomorphic functions. It should be noted that if
the real and imaginary parts of a complex-valued function
have continuous first partial derivatives obeying the Cauchy-
Riemann equations, then the function is holomorphic.
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Remark 5 (complex partial differential operators). Thepartial
differential operators 𝜕/𝜕𝑥 and 𝜕/𝜕𝑦 are applied to a complex-
valued function 𝑓 = 𝑢 + 𝑖V in the natural way:

𝜕𝑓

𝜕𝑥
=
𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕V

𝜕𝑥
,

𝜕𝑓

𝜕𝑦
=
𝜕𝑢

𝜕𝑦
+ 𝑖
𝜕V

𝜕𝑦
.

(7)

We define the complex partial differential operators 𝜕/𝜕𝑧 and
𝜕/𝜕𝑧 by

𝜕

𝜕𝑧
=
1

2
(
𝜕

𝜕𝑥
− 𝑖

𝜕

𝜕𝑦
) ,

𝜕

𝜕𝑧
=
1

2
(
𝜕

𝜕𝑥
+ 𝑖

𝜕

𝜕𝑦
) .

(8)

Thus, 𝜕/𝜕𝑥 = 𝜕/𝜕𝑧 + 𝜕/𝜕𝑧 and 𝜕/𝜕𝑦 = 𝑖(𝜕/𝜕𝑧 − 𝜕/𝜕𝑧).
Intuitively one can think of a holomorphic function as a

complex-valued function in an open subset ofC that depends
only on 𝑧, that is, independent of 𝑧. We can make this notion
precisely as follows. Suppose the function𝑓 = 𝑢+𝑖V is defined
and differentiable in an open set. One then has

𝜕𝑓

𝜕𝑧
=
1

2
(
𝜕𝑢

𝜕𝑥
+
𝜕V

𝜕𝑦
) +

𝑖

2
(
𝜕V

𝜕𝑥
−
𝜕𝑢

𝜕𝑦
) ,

𝜕𝑓

𝜕𝑧
=
1

2
(
𝜕𝑢

𝜕𝑥
−
𝜕V

𝜕𝑦
) +

𝑖

2
(
𝜕V

𝜕𝑥
+
𝜕𝑢

𝜕𝑦
) .

(9)

The Cauchy-Riemann equations thus can be written
𝜕𝑓/𝜕𝑧 = 0. As this is the condition for𝑓 to be holomorphic, it
provides a precise meaning for the statement: a holomorphic
function is one that is independent of 𝑧. If 𝑓 is holomorphic,
then (not surprisingly) 𝑓󸀠 = 𝜕𝑓/𝜕𝑧, as the following
calculation shows:

𝑓󸀠 =
𝜕𝑓

𝜕𝑥
=
𝜕𝑓

𝜕𝑧
+
𝜕𝑓

𝜕𝑧
=
𝜕𝑓

𝜕𝑧
. (10)

2.2. The Bernoulli Polynomials and Their Operational Matrix.
TheBernoulli polynomials play an important role in different
areas of mathematics, including number theory and the
theory of finite differences. The classical Bernoulli polyno-
mials 𝐵𝑛(𝑥) are usually defined by means of the exponential
generating functions (see [21])

𝑤𝑒𝑥𝑤

𝑒𝑤 − 1
=
∞

∑
𝑘=0

𝐵𝑘 (𝑥)
𝑤𝑘

𝑘!
, (|𝑤| < 2𝜋) . (11)

The following familiar expansion (see [20]):

𝑛

∑
𝑘=0

(
𝑛 + 1
𝑘

)𝐵𝑘 (𝑥) = (𝑛 + 1) 𝑥
𝑛 (12)

is the most primary property of the Bernoulli polynomials.
The first few Bernoulli polynomials are

𝐵0 (𝑥) = 1,

𝐵1 (𝑥) = 𝑥 −
1

2
,

𝐵2 (𝑥) = 𝑥
2 − 𝑥 +

1

6
,

𝐵3 (𝑥) = 𝑥
3 −

3

2
𝑥2 +

1

2
𝑥,

𝐵4 (𝑥) = 𝑥
4 − 2𝑥3 + 𝑥2 −

1

30
.

(13)

The Bernoulli polynomials satisfy the well-known relations
(see [21])

𝑑𝐵𝑛 (𝑥)

𝑑𝑥
= 𝑛𝐵𝑛−1 (𝑥) , (𝑛 ≥ 1) ,

∫
1

0

𝐵𝑛 (𝑥) 𝑑𝑥 = 0, (𝑛 ≥ 1) .

(14)

TheBernoulli polynomials have another specific property
that is satisfied in the following linear homogeneous recur-
rence relation [20]:

𝐵𝑛 (𝑥) = (𝑥 −
1

2
)𝐵𝑛−1 (𝑥) −

1

𝑛

𝑛−2

∑
𝑘=0

(
𝑛
𝑘
)𝐵𝑛−𝑘 (0) 𝐵𝑘 (𝑥) .

(15)

Also, the Bernoulli polynomials satisfy the following interest-
ing property [25]:

∫
1

0

𝐵𝑚 (𝑥) 𝐵𝑛 (𝑥) 𝑑𝑥

= (−1)
𝑚+𝑛 𝑚!𝑛!

(𝑚 + 𝑛)!
𝐵𝑚+𝑛 (0) .

(16)

Moreover, 𝐵𝑛(𝑥) satisfy the differential equation [20]

𝐵𝑛 (0)

𝑛!
𝑦(𝑛) (𝑥) +

𝐵𝑛−1 (0)

(𝑛 − 1)!
𝑦(𝑛−1) (𝑥)

+ ⋅ ⋅ ⋅ +
𝐵2 (0)

2!
𝑦󸀠󸀠 (𝑥) + (

1

2
− 𝑥)𝑦󸀠 (𝑥) + 𝑛𝑦 (𝑥) = 0.

(17)

According to the discussions in [20], the Bernoulli polyno-
mials form a complete basis over the interval [0, 1].

If we introduce the Bernoulli vector 𝐵(𝑥) in the form
𝐵(𝑥) = [𝐵0(𝑥), 𝐵1(𝑥), . . . , 𝐵𝑁(𝑥)], then the derivative of 𝐵(𝑥),
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with the aid of the first property of (14), can be expressed in
the matrix form by

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝐵󸀠0 (𝑥)

𝐵󸀠1 (𝑥)

𝐵󸀠2 (𝑥)

...

𝐵󸀠𝑁−1 (𝑥)

𝐵󸀠𝑁 (𝑥)

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐵󸀠(𝑥)𝑇

=

[
[
[
[
[
[
[
[
[
[

[

0 0 0 ⋅ ⋅ ⋅ 0 0 0
1 0 0 ⋅ ⋅ ⋅ 0 0 0
0 2 0 ⋅ ⋅ ⋅ 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . 𝑁 − 1 0 0
0 0 0 . . . 0 𝑁 0

]
]
]
]
]
]
]
]
]
]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑀

[
[
[
[
[
[
[
[

[

𝐵0 (𝑥)
𝐵1 (𝑥)
𝐵2 (𝑥)

...
𝐵𝑁−1 (𝑥)
𝐵𝑁 (𝑥)

]
]
]
]
]
]
]
]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐵𝑇 (𝑥) ,

(18)

where 𝑀 is the (𝑁 + 1) × (𝑁 + 1) operational matrix of
differentiation. Note that if we replace the real variable 𝑥 by
the complex variable 𝑧 in the above relation, again we reach
to the same result, since (𝑧𝑛)󸀠 = 𝑛𝑧𝑛−1.

Accordingly, the 𝑘th derivative of 𝐵(𝑥) can be given by

𝐵󸀠(𝑥)
𝑇 = 𝑀𝐵(𝑥)

𝑇

󳨐⇒ 𝐵(1) (𝑥) = 𝐵 (𝑥)𝑀
𝑇,

𝐵(2) (𝑥) = 𝐵
(1)
(𝑥)𝑀

𝑇 = 𝐵 (𝑥) (𝑀
𝑇)
2
,

𝐵(3) (𝑥) = 𝐵
(1)
(𝑥) (𝑀

𝑇)
2
= 𝐵 (𝑥) (𝑀

𝑇)
3
,

...

𝐵(𝑘) (𝑥) = 𝐵 (𝑥) (𝑀
𝑇)
𝑘
,

(19)

where𝑀 is defined in (18).
We recall that the Bernoulli expansions and Taylor series

are not based on orthogonal functions; nevertheless, they
possess the operational matrices of differentiations (and also
integration). However, since the integration of the cross
product of two Taylor series vectors is given in terms of a
Hilbert matrix, which are known to be ill conditioned, the
applications of Taylor series in the integration form of view
are limited. But in differential form of view, (see for instance
[10–12, 16, 17] and the references therein) use the operational
matrix of derivatives such as Taylor in a huge number of
research works. For approximating an arbitrary unknown
function, the advantages of the Bernoulli polynomials over
orthogonal polynomials as shifted Legendre polynomials are
the following.

(i) The operational matrix of differentiation in the Ber-
noulli polynomials has less nonzero elements than for
shifted Legendre polynomials. Because for Bernoulli
polynomials, the nonzero elements of this matrix are
located in below (or above) its diagonal. However for
the shiftedLegendre polynomials is a strictly lower (or
upper) filled triangular matrix.

(ii) The Bernoulli polynomials have less terms than
shifted Legendre polynomials. For example, 𝐵6(𝑥)
(the 6th Bernoulli polynomial) has 5 terms while
𝑃6(𝑥) (the 6th shifted Legendre polynomial) has 7
terms, and this difference will increase by increasing
the index. Hence, for approximating an arbitrary
function we use less CPU time by applying the
Bernoulli polynomials as compared to shifted Legen-
dre polynomials; this issue is claimed in [25] and is
proved in its examples for solving nonlinear optimal
control problems.

(iii) The coefficient of individual terms in the Bernoulli
polynomials is smaller than the coefficient of indi-
vidual terms in the shifted Legendre polynomials.
Since the computational errors in the product are
related to the coefficients of individual terms, the
computational errors are less by using the Bernoulli
polynomials.

3. Basic Idea

In this section by applying the Bernoulli operational matrix
of differentiation and also the collocation scheme, the basic
idea of this paperwould be constructed.We again consider (1)
and its approximated solution𝑓𝑁(𝑧) in the form (3). Trivially,
𝑓𝑁(𝑧) could be rewritten in the vector form

𝑓𝑁 (𝑧) = 𝐵 (𝑧) 𝐹, 𝐵 (𝑧) = [𝐵0 (𝑧) 𝐵1 (𝑧) ⋅ ⋅ ⋅ 𝐵𝑁 (𝑧)] ,

𝐹 = [𝑓0 𝑓1 ⋅ ⋅ ⋅ 𝑓𝑁]
𝑇
.

(20)

By using (19) in the complex form one can conclude that

𝑓(𝑘)𝑁 (𝑧) = 𝐵 (𝑧) (𝑀
𝑇)
𝑘
𝐹, 𝑘 ≤ 𝑁, (21)

where𝑀 is introduced in (19).
For the collocation points 𝑧 = 𝑧𝑝𝑝 (𝑝 = 0, 1, . . . , 𝑁), the

matrix relation (21) becomes

𝑓(𝑘)𝑁 (𝑧𝑝𝑝) = 𝐵 (𝑧𝑝𝑝) (𝑀
𝑇)
𝑘
𝐹, 𝑝 = 0, 1, . . . , 𝑁, (22)

where 𝐵(𝑧𝑝𝑝) = [𝐵0(𝑧𝑝𝑝) 𝐵1(𝑧𝑝𝑝) ⋅ ⋅ ⋅ 𝐵𝑁(𝑧𝑝𝑝)]. For more
details, one can restate (22) as follows:

𝑓(𝑘)𝑁 (𝑧00) = 𝐵 (𝑧00) (𝑀
𝑇)
𝑘
𝐹,

𝑓(𝑘)𝑁 (𝑧11) = 𝐵 (𝑧11) (𝑀
𝑇)
𝑘
𝐹,

...

𝑓(𝑘)𝑁 (𝑧𝑁𝑁) = 𝐵 (𝑧𝑁𝑁) (𝑀
𝑇)
𝑘
𝐹.

(23)

The matrix vector of the above-mentioned equations is

𝐹(𝑘) =

[
[
[
[
[
[

[

𝑓(𝑘)
𝑁
(𝑧00)

𝑓(𝑘)
𝑁
(𝑧11)
...

𝑓(𝑘)
𝑁
(𝑧𝑁𝑁)

]
]
]
]
]
]

]

= 𝐿(𝑀𝑇)
𝑘
𝐹, (24)
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where

𝐿 =
[
[
[
[

[

𝐵 (𝑧00)
𝐵 (𝑧11)

...
𝐵 (𝑧𝑁𝑁)

]
]
]
]

]

=
[
[
[
[

[

𝐵0 (𝑧00) 𝐵1 (𝑧00) 𝐵2 (𝑧00) ⋅ ⋅ ⋅ 𝐵𝑁 (𝑧00)
𝐵0 (𝑧11) 𝐵1 (𝑧11) 𝐵2 (𝑧11) ⋅ ⋅ ⋅ 𝐵𝑁 (𝑧11)

...
...

...
. . .

...
𝐵0 (𝑧𝑁𝑁) 𝐵1 (𝑧𝑁𝑁) 𝐵2 (𝑧𝑁𝑁) ⋅ ⋅ ⋅ 𝐵𝑁 (𝑧𝑁𝑁)

]
]
]
]

]

.

(25)

On the other hand by substituting the collocation points 𝑧 =
𝑧𝑝𝑝 defined by (4) into (1), we have

𝑓(𝑚)𝑁 (𝑧𝑝𝑝) +
𝑚−1

∑
𝑘=0

𝑃𝑘 (𝑧𝑝𝑝) 𝑓
(𝑘)

𝑁 (𝑧𝑝𝑝) = 𝐺 (𝑧𝑝𝑝) ,

𝑝 = 0, 1, . . . , 𝑁.

(26)

The associatedmatrix-vector form of the above equations has
the following form by the aid of (24):

𝐹(𝑚) +
𝑚−1

∑
𝑘=0

𝑃𝑘𝐹
(𝑘) = 𝐿(𝑀𝑇)

𝑚
𝐹

+
𝑚−1

∑
𝑘=0

𝑃𝑘𝐿(𝑀
𝑇)
𝑘
𝐹 = 𝐺,

(27)

where

𝐺 = [𝐺 (𝑧00) 𝐺 (𝑧11) ⋅ ⋅ ⋅ 𝐺 (𝑧𝑁𝑁)]
𝑇
,

𝑃𝑘 =
[
[
[
[

[

𝑃𝑘 (𝑧00) 0 ⋅ ⋅ ⋅ 0
0 𝑃𝑘 (𝑧11) ⋅ ⋅ ⋅ 0
...

...
. . .

...
0 0 ⋅ ⋅ ⋅ 𝑃𝑘 (𝑧𝑁𝑁)

]
]
]
]

]

.
(28)

Since the vector 𝐹 is unknown and should be determined,
therefore, the matrix-vector equation (27) could be rewritten
in the following form:

𝑊𝐹 = 𝐺, or [𝑊;𝐺] = [𝑤𝑝𝑞; 𝑔𝑝] ,

𝑝, 𝑞 = 0, 1, . . . , 𝑁,
(29)

where𝑊 = 𝐿(𝑀𝑇)
𝑚
+ ∑
𝑚−1

𝑘=0 𝑃𝑘𝐿(𝑀
𝑇)
𝑘.

We now write the vector form of the initial conditions (2)
by the aid of (21) as follows:

𝑓(𝑟) (0) = 𝐵 (0) (𝑀
𝑇)
𝑟
𝐹 = 𝛽𝑟, 𝑟 = 0, 1, . . . , 𝑚 − 1. (30)

In other words the vector form of the initial conditions could
be rewritten as 𝑈𝑟𝐹 = 𝛽𝑟 where 𝑈𝑟 = 𝐵(0)(𝑀𝑇)

𝑟
(𝑟 =

0, 1, . . . , 𝑚 − 1). Trivially the augmented form of these
equations is

[𝑈𝑟; 𝛽𝑟] = [𝑢𝑟0 𝑢𝑟1 ⋅ ⋅ ⋅ 𝑢𝑟𝑁; 𝛽𝑟] , 𝑟 = 0, 1, . . . , 𝑚 − 1.
(31)

Consequently, to find the unknown Bernoulli coefficients
𝑓𝑛, 𝑛 = 0, 1, . . . , 𝑁, related with the approximate solution of
the problem (1) under the initial conditions (2), we need to
replace the𝑚 rows of (31) by the last𝑚 rows of the augmented
matrix (29) and hence we have new augmented matrix

[𝑊̂; 𝐺̂] =

[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑤00 𝑤01 ⋅ ⋅ ⋅ 𝑤0𝑁 ; 𝑔0
𝑤10 𝑤11 ⋅ ⋅ ⋅ 𝑤1𝑁 ; 𝑔1
...

...
. . .

...
...

...
𝑤𝑁−𝑚,0 𝑤𝑁−𝑚,1 ⋅ ⋅ ⋅ 𝑤𝑁−𝑚,𝑁 ; 𝑔𝑁−𝑚
𝑢00 𝑢01 ⋅ ⋅ ⋅ 𝑢0𝑁 ; 𝛽0
𝑢10 𝑢11 ⋅ ⋅ ⋅ 𝑢1𝑁 ; 𝛽1
...

...
. . .

...
...

...
𝑢𝑚−1,0 𝑢𝑚−1,1 ⋅ ⋅ ⋅ 𝑢𝑚−1,𝑁 ; 𝛽𝑚−1

]
]
]
]
]
]
]
]
]
]
]
]
]

]

, (32)

or the corresponding matrix-vector equation

𝑊̂𝐹 = 𝐺̂. (33)

If det(𝑊̂) ̸= 0 one can rewrite (32) in the form 𝐹 = (𝑊̂)−1𝐺̂
and the vector 𝐹 is uniquely determined. Thus the𝑚th order
linear complex differential equation with variable coefficients
(1) under the conditions (2) has an approximated solution.
This solution is given by the truncated Bernoulli series
(3). Also we can easily check the accuracy of the obtained
solutions as follows [12, 26]. Since the truncated Bernoulli
series (3) is an approximate solution of (1), when the solutions
𝑓(𝑧) and its derivatives are substituted in (1), the resulting
equation must be satisfied approximately; that is, for 𝑧 = 𝑧𝑖 ∈
𝐷, 𝑖 = 0, 1, 2, . . .

𝐸 (𝑧𝑖) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑓(𝑚) (𝑧𝑖) +

𝑚−1

∑
𝑘=0

𝑃𝑘 (𝑧𝑖) 𝑓
(𝑘) (𝑧𝑖) − 𝐺 (𝑧𝑖)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≅ 0,

or 𝐸 (𝑧𝑖) ≤ 10
−𝑘𝑖 (𝑘𝑖 is any positive integer) .

(34)

If max(10−𝑘𝑖) = 10−𝑘 (𝑘 is any positive integer) is prescribed,
then the truncation limit 𝑁 may be increased until the
values 𝐸(𝑧𝑖) at each of the points 𝑧𝑖 become smaller than the
prescribed 10−𝑘 (for more details see [10–12, 16, 17]).

4. Error Analysis and Accuracy of the Solution

This section is devoted to provide an error bound for
the approximated solution which may be obtained by the
Bernoulli polynomials. We emphasized that this section is
given for showing the efficiency of the Bernoulli polynomial
approximation and is independent of the proposed method
which is provided for showing how a complex ordinary
differential equation (ODE) is equivalent to a system of
partial differential equations (PDEs). After conveying this
subject, we transform the obtained system of PDEs (together
with the initial conditions (2)) to a system of two dimensional
Volterra integral equations in a special case. Before presenting
the main Theorem of this section, we need to recall some
useful corollaries and lemmas. Therefore, the main theorem
could be stated which guarantees the convergence of the
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truncated Bernoulli series to the exact solution under several
mild conditions.

Now suppose that 𝐻 = 𝐿2[0, 1] and {𝐵0(𝑥), 𝐵1(𝑥), . . . ,
𝐵𝑁(𝑥)} ⊂ 𝐻 be the set of the Bernoulli polynomials and

𝑌 = span {𝐵0 (𝑥) , 𝐵1 (𝑥) , . . . , 𝐵𝑁 (𝑥)} (35)

and 𝑔 be an arbitrary element in𝐻. Since 𝑌 is a finite dimen-
sional vector space, 𝑔 has the unique best approximation 𝑔̂ ∈
𝑌, such that

∀𝑦 ∈ 𝑌,
󵄩󵄩󵄩󵄩𝑔 − 𝑔̂

󵄩󵄩󵄩󵄩∞ ≤
󵄩󵄩󵄩󵄩𝑔 − 𝑦

󵄩󵄩󵄩󵄩∞. (36)

Since 𝑔̂ ∈ 𝑌, there exists the unique coefficients 𝑔0, 𝑔1, . . . , 𝑔𝑁
such that

𝑔 ≈ 𝑔̂ =
𝑁

∑
𝑛=0

𝑔𝑛𝐵𝑛 (𝑥) = 𝐵 (𝑥)𝐺
𝑇,

𝐵 (𝑥) = [𝐵0 (𝑥) , 𝐵1 (𝑥) , . . . , 𝐵𝑁 (𝑥)] ,

𝐺 = [𝑔0, 𝑔1, . . . , 𝑔𝑁] .

(37)

Corollary 6. Assume that 𝑔 ∈ 𝐻 = 𝐿2[0, 1] be an enough
smooth function and also is approximated by the Bernoulli serie
∑
∞

𝑛=0 𝑔𝑛𝐵𝑛(𝑥), then the coefficients 𝑔𝑛 for all 𝑛 = 0, 1, . . . ,∞
can be calculated from the following relation:

𝑔𝑛 =
1

𝑛!
∫
1

0

𝑔(𝑛) (𝑥) 𝑑𝑥. (38)

Proof. See [21].

In practice one can use finite terms of the above series.
Under the assumptions of Corollary 6, we will provide the
error of the associated approximation.

Lemma 7 (see [20]). Suppose that 𝑔(𝑥) be an enough smooth
function in the interval and be approximated by the Bernoulli
polynomials as done in Corollary 6. With more details assume
that 𝑃𝑁[𝑔](𝑥) is the approximate polynomial of 𝑔(𝑥) in terms
of the Bernoulli polynomials and 𝑅𝑁[𝑔](𝑥) is the remainder
term. Then, the associated formulas are stated as follows:

𝑔 (𝑥) = 𝑃𝑁 [𝑔] (𝑥) + 𝑅𝑁 [𝑔] (𝑥) , 𝑥 ∈ [0, 1] ,

𝑃𝑁 [𝑔] (𝑥) = ∫
1

0

𝑔 (𝑥) 𝑑𝑥

+
𝑁

∑
𝑗=1

𝐵𝑗 (𝑥)

𝑗!
(𝑔(𝑗−1) (1) − 𝑔

(𝑗−1)
(0))

𝑅𝑁 [𝑔] (𝑥) = −
1

𝑁!
∫
1

0

𝐵∗𝑁 (𝑥 − 𝑡) 𝑔
(𝑁)

(𝑡) 𝑑𝑡,

(39)

where 𝐵∗𝑁(𝑥) = 𝐵𝑁(𝑥−[𝑥]) and [𝑥] denotes the largest integer
not greater than 𝑥.

Proof. See [20].

Lemma 8. Suppose 𝑔(𝑥) ∈ C∞[0, 1] (with bounded deriva-
tives) and 𝑔𝑁(𝑥) is the approximated polynomial using
Bernoulli polynomials.Then the error boundwould be obtained
as follows:

󵄩󵄩󵄩󵄩𝐸 (𝑔𝑁 (𝑥))
󵄩󵄩󵄩󵄩∞ ≤ 𝐶𝐺̂(2𝜋)

−𝑁, 𝑥 ∈ [0, 1] , (40)

where 𝐺̂ denotes a bound for all the derivatives of function 𝑔(𝑥)
(i.e., ‖𝑔(𝑖)(𝑥)‖∞ ≤ 𝐺̂, for 𝑖 = 0, 1, . . .) and 𝐶 is a positive
constant.

Proof. By using Lemma 7, we have

󵄩󵄩󵄩󵄩𝐸 (𝑔𝑁 (𝑥))
󵄩󵄩󵄩󵄩∞ =

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑁!
∫
1

0

𝐵∗𝑁 (𝑥 − 𝑡) 𝑔
(𝑁)

(𝑡) 𝑑𝑡
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞

≤
1

𝑁!
𝐺̂
󵄩󵄩󵄩󵄩𝐵𝑁 (𝑥)

󵄩󵄩󵄩󵄩∞.

(41)

According to [20] one can write

𝐵𝑁 (𝑥) =
𝑁

∑
𝑛=0

(
𝑁
𝑛
)𝐵𝑛 (0) 𝑥

𝑁−𝑛

=
[𝑁/2]

∑
𝑙=0

(
𝑁
2𝑙
)𝐵2𝑙 (0) 𝑥

𝑁−2𝑙

−
1

2
(
𝑛
1
)𝑥𝑁−1, 𝑥 ∈ [0, 1] .

(42)

Nowwe use the formulae (1.1.5) in [27] for the even Bernoulli
numbers as follows:

󵄨󵄨󵄨󵄨𝐵2𝑙 (0)
󵄨󵄨󵄨󵄨 ≤ 2 (2𝑙)!(2𝜋)

−2𝑙. (43)

Therefore,

󵄩󵄩󵄩󵄩𝐵𝑁 (𝑥)
󵄩󵄩󵄩󵄩∞ ≤ 2𝑁!

[𝑁/2]

∑
𝑙=0

(2𝜋)−2𝑙

(𝑁 − 2𝑙)!
+
𝑁

2

= 2𝑁!(2𝜋)
−𝑁
[𝑁/2]

∑
𝑙=0

(2𝜋)𝑁−2𝑙

(𝑁 − 2𝑙)!
+
𝑁

2

≤ 2𝑁!(2𝜋)
−𝑁 exp (2𝜋) + 𝑁

2
.

(44)

In other words ‖𝐵𝑁(𝑥)‖∞ ≤ 𝐶𝑁!(2𝜋)−𝑁, where 𝐶 is a
positive constant independent of𝑁.This completes the proof.

Corollary 9. Assume that 𝑢(𝑥, 𝑦) ∈ 𝐻 × 𝐻 = 𝐿2[0, 1]×

𝐿2[0, 1] be an enough smooth function and also is ap-
proximated by the two variable Bernoulli series ∑∞𝑚=0∑

∞

𝑛=0

𝑢𝑚,𝑛 𝐵𝑚(𝑥)𝐵𝑛(𝑦), then the coefficients 𝑢𝑚,𝑛 for all 𝑚, 𝑛 =
0, 1, . . . ,∞ can be calculated from the following relation:

𝑢𝑚,𝑛 =
1

𝑚!𝑛!
∫
1

0

∫
1

0

𝜕𝑚+𝑛𝑢 (𝑥, 𝑦)

𝜕𝑥𝑚𝜕𝑦𝑛
𝑑𝑥𝑑𝑦. (45)
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Proof. By applying a similar procedure in two variables
(which was provided in Corollary 6) we can conclude the
desired result.

In [28], a generalization of Lemma 7 can be found.There-
fore, we just recall the error of the associated approximation
in two dimensional functions.

Lemma 10. Suppose that 𝑢(𝑥, 𝑦) be an enough smooth func-
tion and 𝑢𝑁(𝑥, 𝑦) be the approximated polynomial of 𝑢(𝑥, 𝑦)
in terms of linear combination of Bernoulli polynomials by the
aid of Corollary 9. Then the error bound would be obtained as
follows:

󵄩󵄩󵄩󵄩𝐸 (𝑢𝑁 (𝑥, 𝑦))
󵄩󵄩󵄩󵄩∞ :=

󵄩󵄩󵄩󵄩𝑢 (𝑥, 𝑦) − 𝑢𝑁 (𝑥, 𝑦)
󵄩󵄩󵄩󵄩∞

≤ 𝐶𝑈̂𝑁(2𝜋)
−𝑁,

(46)

where 𝑈̂ is a positive constant independent of𝑁 and is a bound
for all the partial derivatives of 𝑢(𝑥, 𝑦).

We now consider the basic equation (1) together with the
initial conditions (2). For clarity of presentation we assume
that 𝑚 = 1, 𝑃(𝑧) = 𝑃0(𝑧), and 𝛽 = 𝛽0. A similar procedure
would be applied in the case of larger values of 𝑚. Equation
(1) with the above-mentioned assumptions has the following
form:

𝑓󸀠 (𝑧) + 𝑃 (𝑧) 𝑓 (𝑧) = 𝐺 (𝑧) , (47)

where

𝑓 (𝑧) = 𝑢 (𝑥, 𝑦) + 𝑖V (𝑥, 𝑦) , 𝑃 (𝑧) = 𝑝 (𝑥, 𝑦) + 𝑖𝑞 (𝑥, 𝑦) ,

𝐺 (𝑧) = 𝑔 (𝑥, 𝑦) + 𝑖ℎ (𝑥, 𝑦) .

(48)

Also the initial condition 𝑓(0) = 𝑢(0, 0) + 𝑖V(0, 0) = 𝛽 =
𝛽1+𝑖𝛽2 should be considered.Thus, one canwrite𝑢(0, 0) = 𝛽1
and V(0, 0) = 𝛽2.

According to Remark 5, since 𝑓(𝑧) is a Holomorphic
function, then (47) by using assumptions in (48) could be
rewritten as follows:

𝑢𝑥 (𝑥, 𝑦) + 𝑖V𝑥 (𝑥, 𝑦)

+ (𝑝 (𝑥, 𝑦) + 𝑖𝑞 (𝑥, 𝑦)) (𝑢 (𝑥, 𝑦) + 𝑖V (𝑥, 𝑦))

= 𝑔 (𝑥, 𝑦) + 𝑖ℎ (𝑥, 𝑦) .

(49)

In other words

𝑢𝑥 (𝑥, 𝑦) + (𝑝 (𝑥, 𝑦) 𝑢 (𝑥, 𝑦) − 𝑞 (𝑥, 𝑦) V (𝑥, 𝑦)) = 𝑔 (𝑥, 𝑦) ,

V𝑥 (𝑥, 𝑦) + (𝑞 (𝑥, 𝑦) 𝑢 (𝑥, 𝑦) + 𝑝 (𝑥, 𝑦) V (𝑥, 𝑦)) = ℎ (𝑥, 𝑦) .

(50)

For imposing the initial conditions 𝑢(0, 0) = 𝛽1 and V(0, 0) =
𝛽2, we need to differentiate the above equations with respect
to 𝑦 and then integrate with respect to 𝑥 and 𝑦 in the

rectangular [0, 𝑥] × [0, 𝑦]. Therefore, by differentiating both
of the equations of (50) with respect to 𝑦 we have

𝑢𝑥𝑦 (𝑥,𝑦)+
𝜕

𝜕𝑦
(𝑝 (𝑥,𝑦) 𝑢 (𝑥,𝑦)−𝑞 (𝑥,𝑦) V (𝑥,𝑦))=𝑔𝑦 (𝑥,𝑦) ,

V𝑥𝑦 (𝑥𝑦)+
𝜕

𝜕𝑦
(𝑞 (𝑥,𝑦) 𝑢 (𝑥,𝑦)+𝑝 (𝑥,𝑦) V (𝑥,𝑦))=ℎ𝑦 (𝑥,𝑦) .

(51)

Integrating from the above equations in the rectangular
[0, 𝑥] × [0, 𝑦] yields

∫
𝑥

0

∫
𝑦

0

𝑢𝑥𝑦 (𝑥, 𝑦) 𝑑𝑦𝑑𝑥

+ ∫
𝑥

0

∫
𝑦

0

𝜕

𝜕𝑦
(𝑝 (𝑥, 𝑦) 𝑢 (𝑥, 𝑦) − 𝑞 (𝑥, 𝑦) V (𝑥, 𝑦)) 𝑑𝑦𝑑𝑥

= ∫
𝑥

0

∫
𝑦

0

𝑔𝑦 (𝑥, 𝑦) 𝑑𝑦𝑑𝑥,

∫
𝑥

0

∫
𝑦

0

V𝑥𝑦 (𝑥, 𝑦) 𝑑𝑦𝑑𝑥

+ ∫
𝑥

0

∫
𝑦

0

𝜕

𝜕𝑦
(𝑞 (𝑥, 𝑦) 𝑢 (𝑥, 𝑦) + 𝑝 (𝑥, 𝑦) V (𝑥, 𝑦)) 𝑑𝑦𝑑𝑥

= ∫
𝑥

0

∫
𝑦

0

ℎ𝑦 (𝑥, 𝑦) 𝑑𝑦𝑑𝑥.

(52)

By imposing the the initial conditions 𝑢(0, 0) = 𝛽1 and
V(0, 0) = 𝛽2 to these equations we reach to

𝑢 (𝑥, 𝑦) + ∫
𝑥

0

[(𝑝 (𝑥, 𝑦) 𝑢 (𝑥, 𝑦) − 𝑞 (𝑥, 𝑦) V (𝑥, 𝑦))

− (𝑝 (𝑥, 0) 𝑢 (𝑥, 0) − 𝑞 (𝑥, 0) V (𝑥, 0))] 𝑑𝑥

= 𝑔̂ (𝑥, 𝑦) ,

V (𝑥, 𝑦) + ∫
𝑥

0

[(𝑞 (𝑥, 𝑦) 𝑢 (𝑥, 𝑦) + 𝑝 (𝑥, 𝑦) V (𝑥, 𝑦))

− (𝑞 (𝑥, 0) 𝑢 (𝑥, 0) + 𝑝 (𝑥, 0) V (𝑥, 0))] 𝑑𝑥

= ℎ̂ (𝑥, 𝑦) ,

(53)

where

𝑔̂ (𝑥, 𝑦) = ∫
𝑥

0

∫
𝑦

0

𝑔𝑦 (𝑥, 𝑦) 𝑑𝑦𝑑𝑥 + 𝛽1,

ℎ̂ (𝑥, 𝑦) = ∫
𝑥

0

∫
𝑦

0

ℎ𝑦 (𝑥, 𝑦) 𝑑𝑦𝑑𝑥 + 𝛽2.

(54)
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Considering 𝑈(𝑥, 𝑦) = [
𝑢(𝑥,𝑦)

V(𝑥,𝑦) ] , 𝐺̂(𝑥, 𝑦) = [
𝑔̂(𝑥,𝑦)

ℎ̂(𝑥,𝑦)
] and

𝐻(𝑥, 𝑦) = [
𝑝(𝑥,𝑦) −𝑞(𝑥,𝑦)

𝑞(𝑥,𝑦) 𝑝(𝑥,𝑦)
], (53) could be restated in the fol-

lowing matrix vector form:

𝑈(𝑥, 𝑦) + ∫
𝑥

0

𝐻(𝑥, 𝑦)𝑈 (𝑥, 𝑦) 𝑑𝑥

− ∫
𝑥

0

𝐻(𝑥, 0)𝑈 (𝑥, 0) 𝑑𝑥 = 𝐺̂ (𝑥, 𝑦) .

(55)

Our aim is to show that lim𝑁→∞𝑈𝑁(𝑥, 𝑦) = 𝑈(𝑥, 𝑦) or
lim𝑁→∞ 𝑓𝑁(𝑧) = 𝑓(𝑧), where 𝑈𝑁(𝑥, 𝑦) = [

𝑢𝑁(𝑥,𝑦)

V𝑁(𝑥,𝑦)
], 𝑓𝑁(𝑧) =

𝑢𝑁(𝑥, 𝑦) + 𝑖V𝑁(𝑥, 𝑦) and 𝑓𝑁(𝑧) was introduced in (3).
In the following lines, the main theorem of this section

would be provided. However, some mild conditions should
be assumed. These conditions are as follows:

(i) ‖𝐻(𝑥, 𝑦)‖∞ ≤ 𝐻̂ ≪ 1,where 𝐻̂ is a real constant,
(ii) lim𝑁→∞ ‖𝑈(𝑥, 0) − 𝑈𝑁(𝑥, 0)‖∞ ≤ lim𝑁→∞(1/𝑁)

‖𝑈(𝑥, 𝑦) − 𝑈𝑁(𝑥, 𝑦)‖∞.

It should be noted that the second condition is based upon
Lemmas 8 and 10.

Theorem 11. Assume that 𝑈 and 𝑈0 := 𝑈(𝑥, 0) be approxi-
mated by𝑈𝑁 and 𝑈0,𝑁, respectively, by the aid of the Bernoulli
polynomials in (55) and also we use a collocation scheme for
providing the numerical solution of (55). In other words

𝑈𝑁 (𝑥, 𝑦) + ∫
𝑥

0

𝐻(𝑥, 𝑦)𝑈𝑁 (𝑥, 𝑦) 𝑑𝑥

− ∫
𝑥

0

𝐻(𝑥, 0)𝑈𝑁 (𝑥, 0) 𝑑𝑥

= 𝐺̂ (𝑥, 𝑦) + 𝑅𝑁+1 (𝑥, 𝑦) ,

(56)

where𝑅𝑁+1(𝑥, 𝑦) is the residual function that is zero at the (𝑁+
1) collocation nodes. Also suppose that [𝑎, 𝑏] = [𝑐, 𝑑] = [0, 1].
Then, under the above-mentioned assumptions

󵄩󵄩󵄩󵄩𝑈 − 𝑈𝑁
󵄩󵄩󵄩󵄩∞ ≤

󵄩󵄩󵄩󵄩𝑅𝑁+1 (𝑥, 𝑦)
󵄩󵄩󵄩󵄩∞

1 − 𝐻̂ (1 + 1/𝑁)
, (57)

and lim𝑁→∞𝑈𝑁(𝑥, 𝑦) = 𝑈(𝑥, 𝑦).

Proof. By subtracting (56) from (55) we have

󵄩󵄩󵄩󵄩𝑈 − 𝑈𝑁
󵄩󵄩󵄩󵄩∞ =

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫
𝑥

0

(−𝐻𝑈 + 𝐻0𝑈0 + 𝐻𝑈𝑁 − 𝐻0𝑈0,𝑁) 𝑑𝑥

+𝑅𝑁+1 (𝑥, 𝑦)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞

≤
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫
𝑥

0

(𝐻𝑈 − 𝐻𝑈𝑁) 𝑑𝑥
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞

+
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫
𝑥

0

(𝐻0𝑈0 − 𝐻0𝑈0,𝑁) 𝑑𝑥
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞

+
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑅𝑁+1 (𝑥, 𝑦)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞

≤ ∫
𝑥

0

(𝐻̂
󵄩󵄩󵄩󵄩𝑈 − 𝑈𝑁

󵄩󵄩󵄩󵄩∞ + 𝐻̂
󵄩󵄩󵄩󵄩𝑈0 − 𝑈0,𝑁

󵄩󵄩󵄩󵄩∞) 𝑑𝑥

+
󵄩󵄩󵄩󵄩𝑅𝑁+1 (𝑥, 𝑦)

󵄩󵄩󵄩󵄩∞

≤ 𝐻̂ (
󵄩󵄩󵄩󵄩𝑈 − 𝑈𝑁

󵄩󵄩󵄩󵄩∞ (1 +
1

𝑁
)) +

󵄩󵄩󵄩󵄩𝑅𝑁+1 (𝑥, 𝑦)
󵄩󵄩󵄩󵄩∞.

(58)

Therefore,

󵄩󵄩󵄩󵄩𝑈 − 𝑈𝑁
󵄩󵄩󵄩󵄩∞ ≤

󵄩󵄩󵄩󵄩𝑅𝑁+1 (𝑥, 𝑦)
󵄩󵄩󵄩󵄩∞

1 − 𝐻̂ (1 + 1/𝑁)
. (59)

Since lim𝑁→∞ ‖𝑅𝑁+1(𝑥, 𝑦)‖∞ = 0 and 𝐻 ≪ 1, we have
lim𝑁→∞ ‖𝑈 − 𝑈𝑁‖∞ = 0; in other words, lim𝑁→∞ 𝑓𝑁(𝑧) =
𝑓(𝑧) and this completes the proof.

5. Numerical Examples

In this section, several numerical examples are given to
illustrate the accuracy and effectiveness of the proposed
method and all of them are performed on a computer
using programs written in MATLAB 7.12.0 (v2011a) (The
Mathworks Inc., Natick, MA, USA). In this regard, we have
reported in the tables and figures the values of the exact
solution 𝑓(𝑧), the polynomial approximate solution 𝑓𝑁(𝑧),
and the absolute error function 𝑒𝑁(𝑧) = |𝑓(𝑧) − 𝑓𝑁(𝑧)| at
the selected points of the given domains. It should be noted
that in the first example we consider a complex differential
equation with an exact polynomial solution. Our method
obtains such exact polynomial solutions readily by solving the
associated linear algebraic system.

Example 12 (see [26]). As the first example, we consider
the first-order complex differential equation with variable
coefficients

𝑓󸀠 (𝑧) + 𝑧𝑓 (𝑧) = 2𝑧
2 − 𝑧 + 2, 𝑧 = 𝑥 + 𝑖𝑦,

𝑥 ∈ [0, 1] , 𝑦 ∈ [0, 1] ,
(60)

with the initial condition 𝑓(0) = −1 and the exact solution
2𝑧 − 1. We suppose that 𝑁 = 3. Therefore, the collocation
points are 𝑧00 = 0, 𝑧11 = (1 + 𝑖)/3, 𝑧22 = (2 + 2𝑖)/3, and
𝑧33 = 1 + 𝑖. According to (3), the approximate solution has
the following form:

𝑓3 (𝑧) =
3

∑
𝑛=0

𝑓𝑛𝐵𝑛 (𝑧) , 𝑧 ∈ 𝐷, (61)

where our aim is to find the unknown Bernoulli coefficients
𝑓0, 𝑓1, 𝑓2, and 𝑓3. Since 𝑃0(𝑧) = 𝑧, then

𝑃0

=
[
[
[

[

0 0 0 0
0 0.3333+0.3333𝑖 0 0
0 0 0.6667+0.6667𝑖 0
0 0 0 1.0000+1.0000𝑖

]
]
]

]

.

(62)

Also the matrix 𝐿 (with the assumption 𝑁 = 3) has the
following structure:
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𝐿 =
[
[
[

[

𝐵 (𝑧00)
𝐵 (𝑧11)
𝐵 (𝑧22)
𝐵 (𝑧33)

]
]
]

]

=
[
[
[

[

𝐵0 (𝑧00) 𝐵1 (𝑧00) 𝐵2 (𝑧00) 𝐵3 (𝑧00)
𝐵0 (𝑧11) 𝐵1 (𝑧11) 𝐵2 (𝑧11) 𝐵3 (𝑧11)
𝐵0 (𝑧22) 𝐵1 (𝑧22) 𝐵2 (𝑧22) 𝐵3 (𝑧22)
𝐵0 (𝑧33) 𝐵1 (𝑧33) 𝐵2 (𝑧33) 𝐵3 (𝑧3)

]
]
]

]

=
[
[
[

[

1.0000 −0.5000 0.1667 0
1.0000 −0.1667+0.3333𝑖 −0.1667−0.1111𝑖 0.0926−0.0926𝑖
1.0000 0.1667+0.6667𝑖 −0.5000+0.2222𝑖 −0.2593−0.4074𝑖
1.0000 0.5000+1.0000𝑖 −0.8333+1.0000𝑖 −1.5000−0.5000𝑖

]
]
]

]

,

(63)

where 𝐵0(𝑧) = 1, 𝐵1(𝑧) = 𝑧 − 1/2, 𝐵2(𝑧) = 𝑧2 − 𝑧 +
1/6 and 𝐵3(𝑧) = 𝑧

3 − (3/2)𝑧2 + 𝑧/2.
According to (29), the matrix coefficients 𝑊 are as

follows:

𝑊 = 𝐿 (𝑀𝑇) + 𝑃0𝐿 =
[
[
[

[

0 1.0000 −1.0000 0.5000
0.3333 + 0.3333𝑖 0.8333 + 0.0556𝑖 −0.3519 + 0.5741𝑖 −0.4383 − 0.3333𝑖
0.6667 + 0.6667𝑖 0.6667 + 0.5556𝑖 −0.1481 + 1.1481𝑖 −1.4012 + 0.2222𝑖
1.0000 + 1.0000𝑖 0.5000 + 1.5000𝑖 −0.8333 + 2.1667𝑖 −3.5000 + 1.0000𝑖

]
]
]

]

. (64)

Since𝐺(𝑧) = 2𝑧2 −𝑧+2, the right-hand side vector𝐺 has the
following form:

𝐺 =
[
[
[

[

𝐺 (𝑧00)
𝐺 (𝑧11)
𝐺 (𝑧22)
𝐺 (𝑧33)

]
]
]

]

=
[
[
[

[

2.0000
1.6667 + 0.1111𝑖
1.3333 + 1.1111𝑖
1.0000 + 3.0000𝑖

]
]
]

]

. (65)

The associated form of the initial condition 𝑓(0) = −1
is

[𝑈0; 𝛽0] = [𝐵 (0) ; 𝐺 (0)]

= [1.0000 −0.5000 0.1667 0; −1] .
(66)

Imposing the above initial condition to the matrix 𝑊 and
vector 𝐺 yields

𝑊̂ =
[
[
[

[

0 1.0000 −1.0000 0.5000
0.3333 + 0.3333𝑖 0.8333 + 0.0556𝑖 −0.3519 + 0.5741𝑖 −0.4383 − 0.3333𝑖
0.6667 + 0.6667𝑖 0.6667 + 0.5556𝑖 −0.1481 + 1.1481𝑖 −1.4012 + 0.2222𝑖

1.0000 −0.5000 0.1667 0

]
]
]

]

,

𝐺̂ =
[
[
[

[

2.0000
1.6667 + 0.1111𝑖
1.3333 + 1.1111𝑖

−1

]
]
]

]

.

(67)

Therefore, the solution of the system 𝑊̂𝐹 = 𝐺̂ is as follows:

𝐹 =
[
[
[

[

0.0000 − 0.0000𝑖
2.0000 − 0.0000𝑖
0.0000 − 0.0000𝑖
0.0000 + 0.0000𝑖

]
]
]

]

. (68)

Thus, we obtain the approximate solution 𝑓3(𝑧) = 𝐵(𝑧)𝐹 =
2𝑧 − 1 which is the exact solution. We recall that

𝐵 (𝑧) = ⌊1 𝑧 −
1

2
𝑧2 − 𝑧 +

1

6
𝑧3 −

3

2
𝑧2 +

𝑧

2
⌋ . (69)

Example 13 (see [26]). As the second example, we consider
the following second-order complex differential equation

𝑓󸀠󸀠 (𝑧) + 𝑧𝑓
󸀠
(𝑧) + 𝑧𝑓 (𝑧) = exp (𝑧) + 2𝑧 exp (𝑧) ,

𝑧 = 𝑥 + 𝑖𝑦, 𝑥 ∈ [0, 1] , 𝑦 ∈ [0, 1] ,
(70)

with the initial conditions 𝑓(0) = 𝑓󸀠(0) = 1 and the exact
solution 𝑓(𝑧) = exp(𝑧). In this equation, we have 𝑃0(𝑧) =
𝑃1(𝑧) = 𝑧 and 𝐺(𝑧) = exp(𝑧) + 2𝑧 exp(𝑧). Then, for 𝑁 = 5
the collocation points are 𝑧00 = 0, 𝑧11 = (1 + 𝑖)/5, 𝑧22 =
(2+ 2𝑖)/5, 𝑧33 = (3+ 3𝑖)/5, 𝑧44 = (4+ 4𝑖)/5, and 𝑧55 = 1+ 𝑖.
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According to (29), the fundamental matrix equation is

𝑊 = 𝐿(𝑀𝑇)
2
+ 𝑃1𝐿𝑀

𝑇 + 𝑃0𝐿, (71)

where𝑀𝑇 and 𝐿 are introduced in (18) and (25), respectively.
Also
𝑃0 = 𝑃1

=
[
[

[

0 0 0 0
0 0.3333 + 0.3333𝑖 0 0
0 0 0.6667 + 0.6667𝑖 0
0 0 0 1.0000 + 1.0000𝑖

]
]

]

.
(72)

The right-hand side vector 𝐺 is

𝐺 =

[
[
[
[
[
[
[

[

1.0000
1.5788 + 0.8185𝑖
2.0086 + 2.1449𝑖
2.0739 + 4.0681𝑖
1.4770 + 6.6318𝑖
−0.1686 + 9.7995𝑖

]
]
]
]
]
]
]

]

. (73)

The augmentedmatrix forms of the initial conditions for𝑁 =
5 are
[𝐵 (0) ; 1]=[1.0000 −0.5000 0.1667 0 −0.0333 0; 1] ,

[𝐵 (0)𝑀
𝑇; 1]

= [0 1.0000 −1.0000 0.5000 0 −0.1667; 1] .

(74)

By replacing the above augmented vectors to the last two rows
of [𝑊;𝐺], we reach to [𝑊̂; 𝐺̂]. The solution of the matrix-
vector equation 𝑊̂𝐹 = 𝐺̂ is

𝐹 =

[
[
[
[
[
[
[

[

1.7184 − 0.0000𝑖
1.7189 + 0.0003𝑖
0.8603 + 0.0021𝑖
0.2864 + 0.0046𝑖
0.0693 + 0.0048𝑖
0.0107 + 0.0034𝑖

]
]
]
]
]
]
]

]

. (75)

We also solve this equation by assumptions 𝑁 = 7 and
𝑁 = 9. Since the exact solution of the equation is exp(𝑧) =
exp(𝑥 + 𝑖𝑦) = exp(𝑥)(cos(𝑦) + 𝑖 sin(𝑦)). Therefore, the real
and imaginary parts of the exact solution are Re(exp(𝑧)) =
exp(𝑥) cos(𝑦) and Im(exp(𝑧)) = exp(𝑥) sin(𝑦), respectively.
The values of the approximate solution in the case of 𝑁 =
5, 7, and 9 for both parts of real and imaginary together
with the exact solution are provided in Tables 1 and 2. Also
an interesting comparison between the presented method
(PM) and the Taylor method [26] (TM) has been provided
in Figure 1 for𝑁 = 7 and 9. From this figure, one can see the
efficiency of our methods with respect to the method of [26].

Example 14 (see [26]). As the final example, we consider the
following second-order complex differential equation

𝑓󸀠󸀠 (𝑧) + 𝑧𝑓
󸀠
(𝑧) + 2𝑧𝑓 (𝑧)

= 2𝑧 sin (𝑧) + 𝑧 cos (𝑧) − sin (𝑧) , 𝑧 = 𝑥 + 𝑖𝑦,

𝑥 ∈ [0, 1] , 𝑦 ∈ [0, 1] ,

(76)
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Figure 1: Comparisons of the presented method (PM) and the
Taylor method (TM) of Example 13.
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Figure 2: Comparisons of the presented method (PM) and the
Taylor method (TM) of Example 14.

with the initial conditions 𝑓(0) = 0 and 𝑓󸀠(0) = 1 and also
the exact solution 𝑓(𝑧) = sin(𝑧). In this equation, we have
𝑃0(𝑧) = 2𝑧, 𝑃1(𝑧) = 𝑧, and 𝐺(𝑧) = 2𝑧 sin(𝑧) + 𝑧 cos(𝑧) −
sin(𝑧). Similar to the previous two examples, we solve this
equation in the case of𝑁 = 9 and 11. In Figure 2, we provide
a comparison between our method and the Taylor method
(TM) [26]. According to this figure, one can see that not only
our method is superior in results but also the behaviour of
the error of the presented method has a stable manner with
respect to the Taylor method [26] during the computational
interval.Moreover, since theBesselmethod and the presented
method can be considered as an preconditioned solution
of any linear algebraic system which is originated from the
above differential equation, they have the same accuracy. But
the condition number of the matrix coefficients 𝑊̂ of the
Bessel method is very larger than the matrix coefficient 𝑊̂ of
our method. This subject is illustrated in Figure 3. It should
be noted that this figure is depicted according to the diagonal
collocation methods and the square collocation method was
not used.
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Table 1: Numerical results of Example 13, for Re(exp(𝑧)) = exp(𝑥) cos(𝑦).

𝑧 = 𝑥 + 𝑖𝑦 Exact solution (real) PM for𝑁 = 5 PM for𝑁 = 7 PM for𝑁 = 9

0.0 + 0.0𝑖 1.000000000000000 1.000000000000002 0.999999999999999 1.000000000000002
0.1 + 0.1𝑖 1.099649666829409 1.099650127059032 1.099649681790901 1.099649666809790
0.2 + 0.2𝑖 1.197056021355891 1.197058065414137 1.197056071303251 1.197056021305326
0.3 + 0.3𝑖 1.289569374044936 1.289572683703872 1.289569451705194 1.289569373971185
0.4 + 0.4𝑖 1.374061538887522 1.374064757066184 1.374061646628469 1.374061538795035
0.5 + 0.5𝑖 1.446889036584169 1.446891795476775 1.446889179088898 1.446889036484456
0.6 + 0.6𝑖 1.503859540558786 1.503862872087464 1.503859710928599 1.503859540462517
0.7 + 0.7𝑖 1.540203025431780 1.540203451564549 1.540203240474244 1.540203025363573
0.8 + 0.8𝑖 1.550549296807422 1.550520218427163 1.550549536105736 1.550549296761452
0.9 + 0.9𝑖 1.528913811884699 1.528765905385641 1.528913283429636 1.528913812578978
1.0 + 1.0𝑖 1.468693939915885 1.468204121679876 1.468688423751699 1.468693951050675

Table 2: Numerical results of Example 13, for Im(exp(𝑧) = exp(𝑧) sin(𝑦).

𝑧 = 𝑥 + 𝑖𝑦 Exact solution (Im) PM for𝑁 = 5 PM for𝑁 = 7 PM for𝑁 = 9

0.0 + 𝑖0.0 0 0.000000000000000 −0.000000000000001 0.000000000000000
0.1 + 𝑖0.1 0.110332988730204 0.110330942667805 0.110332993217700 0.110332988786893
0.2 + 𝑖0.2 0.242655268594923 0.242645839814175 0.242655282953655 0.242655268747208
0.3 + 𝑖0.3 0.398910553778490 0.398893389645474 0.398910574081883 0.398910554017485
0.4 + 𝑖0.4 0.580943900770567 0.580922057122650 0.580943925558894 0.580943901105221
0.5 + 𝑖0.5 0.790439083213615 0.790412124917929 0.790439110267023 0.790439083643388
0.6 + 𝑖0.6 1.028845666272092 1.028807744371502 1.028845687924972 1.028845666809275
0.7 + 𝑖0.7 1.297295111875269 1.297248986448220 1.297295129424920 1.297295112510736
0.8 + 𝑖0.8 1.596505340600251 1.596503892694281 1.596505330955563 1.596505341401562
0.9 + 𝑖0.9 1.926673303972717 1.926900526193919 1.926672856270450 1.926673303646987
1.0 + 𝑖1.0 2.287355287178843 2.288259022526098 2.287352245460983 2.287355267120311
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Figure 3: Condition number comparisons between ourmethod and
the Bessel method of Example 14.

6. Conclusions

High-order linear complex differential equations are usually
difficult to solve analytically. Then, it is required to obtain
the approximate solutions. For this reason, a new technique
using the Bernoulli polynomials to numerically solve such

equations is proposed. This method is based on computing
the coefficients in the Bernoulli series expansion of the
solution of a linear complex differential equation and is
valid when the functions 𝑃𝑘(𝑧) and 𝐺(𝑧) are defined in the
rectangular domain. An interesting feature of this method
is to find the analytical solutions if the equation has an
exact solution that is a polynomial of degree 𝑁 or less than
𝑁. Shorter computation time and lower operation count
results in reduction of cumulative truncation errors and
improvement of overall accuracy are some of the advantages
of our method. In addition, the method can also be extended
to the system of linear complex equations with variable
coefficients, but some modifications are required.
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