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This paper is concerned with a Gause-type predator-prey system with two delays. Firstly, we study the stability and the existence of
Hopf bifurcation at the coexistence equilibrium by analyzing the distribution of the roots of the associated characteristic equation.
A group of sufficient conditions for the existence of Hopf bifurcation is obtained. Secondly, an explicit formula for determining the
stability and the direction of periodic solutions that bifurcate from Hopf bifurcation is derived by using the normal form theory
and center manifold argument. Finally, some numerical simulations are carried out to illustrate the main theoretical results.

1. Introduction

Multispecies predator-prey models have been studied by
many scholars [1–7]. Guo and Jiang [7] studied the following
three-species food-chain system:

𝑑𝑥 (𝑡)

𝑑𝑡
= 𝛼𝑥 (𝑡) (1 −

𝑥 (𝑡)

𝑘
) −

𝛽𝑥 (𝑡 − 𝜏) 𝑦 (𝑡)

1 + 𝑝𝑥 (𝑡 − 𝜏)
,

𝑑𝑦 (𝑡)

𝑑𝑡
= 𝑦 (𝑡) (−ℎ +

𝑒𝛽𝑥 (𝑡)

1 + 𝑝𝑥 (𝑡)
) − 𝑟𝑦 (𝑡) 𝑧 (𝑡) ,

𝑑𝑧 (𝑡)

𝑑𝑡
= 𝑧 (𝑡) (−𝑠 + 𝑚𝑟𝑦 (𝑡)) ,

(1)

where 𝑥(𝑡), 𝑦(𝑡), and 𝑧(𝑡) are the population densities of the
prey, the predator and the top predator at time 𝑡. The prey
grows with intrinsic growth rate 𝛼 and carrying capacity 𝑘 in
the absence of predation.The predator captures the prey with
capture rate 𝛽 and Holling type II functional response 𝑥/(1 +
𝑝𝑥). The top predator captures its prey (the predator) with
capture rate 𝑟 and Holling type I functional response 𝑟𝑦. The
predator and the top predator contribute to their growth with
the conversion rates 𝑒 and 𝑚, respectively. The parameters ℎ
and 𝑠 are the death rates of the predator and the top predator,
respectively. All the parameters 𝛼, 𝛽, 𝑒, ℎ, 𝑘, 𝑚, 𝑝, 𝑟, 𝑠 and

in system (1) are assumed to be positive. The constant 𝜏 ≥ 0

represents the time delay due to the gestation of the prey. Guo
and Jiang [7] investigated the bifurcation phenomenon and
the properties of periodic solutions of system (1).

Predator-prey systems with single delay as system (1)
have been investigated extensively [8–12]. However, there are
some papers on the bifurcations of a population dynamics
with multiple delays [13–16]. Gakkhar and Singh [15] studied
the effects of two delays on a delayed predator-prey system
with modified Leslie-Gower and Holling type II functional
response and established the existence of periodic solutions
viaHopf bifurcationwith respect to both delays.Motivated by
thework ofGuo and Jiang [7] andGakkhar and Singh [15], we
consider the following predator-prey system with two delays:

𝑑𝑥 (𝑡)

𝑑𝑡
= 𝛼𝑥 (𝑡) (1 −

𝑥 (𝑡)

𝑘
) −

𝛽𝑥 (𝑡) 𝑦 (𝑡)

1 + 𝑝𝑥 (𝑡)
,

𝑑𝑦 (𝑡)

𝑑𝑡
= 𝑦 (𝑡) (−ℎ +

𝑒𝛽𝑥 (𝑡 − 𝜏
1
)

1 + 𝑝𝑥 (𝑡 − 𝜏
1
)
) − 𝑟𝑦 (𝑡) 𝑧 (𝑡) ,

𝑑𝑧 (𝑡)

𝑑𝑡
= 𝑧 (𝑡) (−𝑠 + 𝑚𝑟𝑦 (𝑡 − 𝜏

2
)) ,

(2)
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where 𝜏
1
denotes the time delay due to the gestation of the

predator and 𝜏
2
denotes the time delay due to the gestation of

the top predator.
This paper is organized as follows. In the next section,

we will consider the stability of the positive equilibrium of
system (2) and the existence of local Hopf bifurcation at
the positive equilibrium. In Section 3, we can determine the
direction of the Hopf bifurcation and the stability of the
bifurcating periodic solutions from the Hopf bifurcation.
Some numerical simulations are also given to illustrate the
theoretical prediction in Section 4.

2. Local Stability and Hopf Bifurcation

Becausewe are only interested in the case inwhich the species
can coexist, then we only consider the positive equilibrium of
system (2). It is not difficult to know that if conditions (𝐻

1
) :

𝛽𝑠 < 𝛼𝑚𝑟 and (𝐻
2
) : 𝑒𝛽𝑥

∗
> ℎ(1 + 𝑝𝑥

∗
) hold, then system

(2) has a unique positive equilibrium 𝐸
∗
(𝑥
∗
, 𝑦
∗
, 𝑧
∗
), where

𝑥
∗
=
−𝐵 + √𝐵2 − 4𝐴𝐶

2
,

𝑦
∗
=

𝑠

𝑚𝑟
, 𝑧

∗
=
1

𝑟
(

𝑒𝛽𝑥
∗

1 + 𝑝𝑥
∗

− ℎ) ,

(3)

where

𝐴 = 𝛼𝑚𝑝𝑟, 𝐵 = 𝛼𝑚𝑟 (1 − 𝑝𝑘) , 𝐶 = 𝑘 (𝛽𝑠 − 𝛼𝑚𝑟) .

(4)

Let 𝑥(𝑡) = 𝑧
1
(𝑡) + 𝑥

∗
, 𝑦(𝑡) = 𝑧

2
(𝑡) + 𝑦

∗
, and 𝑧(𝑡) = 𝑧

3
(𝑡) +

𝑧
∗
and still denote 𝑧

1
(𝑡), 𝑧
2
(𝑡), and 𝑧

3
(𝑡) by 𝑥(𝑡), 𝑦(𝑡), and

𝑧(𝑡) respectively. Then system (2) can be transformed to the
following form:

𝑑𝑥 (𝑡)

𝑑𝑡
= 𝑎
11
𝑥 (𝑡) + 𝑎

12
𝑦 (𝑡) + 𝑓

1
,

𝑑𝑦 (𝑡)

𝑑𝑡
= 𝑎
23
𝑧 (𝑡) + 𝑏

11
𝑥 (𝑡 − 𝜏

1
) + 𝑓
2
,

𝑑𝑧 (𝑡)

𝑑𝑡
= 𝑐
32
𝑦 (𝑡 − 𝜏

2
) + 𝑓
3
,

(5)

where

𝑎
11
= 𝛼 −

2𝛼

𝑘
𝑥
∗
−

𝛽𝑦
∗

(1 + 𝑝𝑥
∗
)
2
, 𝑎

12
= −

𝛽𝑥
∗

1 + 𝑝𝑥
∗

,

𝑎
23
= −𝑟𝑦

∗
, 𝑏

11
=

𝛽𝑒𝑦
∗

(1 + 𝑝𝑥
∗
)
2
, 𝑐

32
= 𝑚𝑟𝑧

∗
,

𝑓
1
= 𝑎
13
𝑥
2
(𝑡) + 𝑎

14
𝑥 (𝑡) 𝑦 (𝑡)

+ 𝑎
15
𝑥
3
(𝑡) + 𝑎

16
𝑥
2
(𝑡) 𝑦 (𝑡) + ⋅ ⋅ ⋅ ,

𝑓
2
= 𝑎
24
𝑦 (𝑡) 𝑧 (𝑡) + 𝑎

25
𝑥 (𝑡 − 𝜏

1
) 𝑦 (𝑡) + 𝑎

26
𝑥
2
(𝑡 − 𝜏
1
)

+ 𝑎
27
𝑥
2
(𝑡 − 𝜏
1
) 𝑦 (𝑡) + 𝑎

28
𝑥
3
(𝑡 − 𝜏
1
) + ⋅ ⋅ ⋅ ,

𝑓
3
= 𝑐
33
𝑦 (𝑡 − 𝜏

2
) 𝑧 (𝑡) ,

𝑎
13
= −

𝛼

𝑘
+

𝛽𝑝𝑦
∗

(1 + 𝑝𝑥
∗
)
3
, 𝑎

14
= −

𝛽

(1 + 𝑝𝑥
∗
)
2
,

𝑎
15
= −

𝛽𝑝
2
𝑦
∗

(1 + 𝑝𝑥
∗
)
4
, 𝑎

16
=

𝛽𝑝

(1 + 𝑝𝑥
∗
)
3
,

𝑎
24
= −𝑟, 𝑎

25
=

𝛽𝑒

(1 + 𝑝𝑥
∗
)
2
, 𝑎

26
= −

𝛽𝑒𝑝𝑦
∗

(1 + 𝑝𝑥
∗
)
3
,

𝑎
27
= −

𝛽𝑒𝑝

(1 + 𝑝𝑥
∗
)
3
, 𝑎

28
=

𝛽𝑒𝑝
2
𝑦
∗

(1 + 𝑝𝑥
∗
)
4
, 𝑐

33
= 𝑚𝑟.

(6)

The linearized system of system (5) is

𝑑𝑥 (𝑡)

𝑑𝑡
= 𝑎
11
𝑥 (𝑡) + 𝑎

12
𝑦 (𝑡) ,

𝑑𝑦 (𝑡)

𝑑𝑡
= 𝑎
23
𝑧 (𝑡) + 𝑏

11
𝑥 (𝑡 − 𝜏

1
) ,

𝑑𝑧 (𝑡)

𝑑𝑡
= 𝑐
32
𝑦 (𝑡 − 𝜏

2
) .

(7)

Then the associated characteristic equation of system (7) at
the origin is of the form

𝜆
3
+ 𝑝
2
𝜆
2
+ 𝑚
1
𝜆𝑒
−𝜆𝜏
1 + (𝑛

𝜆
+ 𝑛
0
) 𝑒
−𝜆𝜏
2 = 0, (8)

where

𝑝
2
= −𝑎
11
, 𝑚

1
= −𝑎
12
𝑏
11
,

𝑛
1
= −𝑎
23
𝑐
32
, 𝑛

0
= 𝑎
11
𝑎
23
𝑐
32
.

(9)

Case 1. One has 𝜏
1
= 𝜏
2
= 𝜏 = 0.

Equation (8) becomes

𝜆
3
+ 𝑝
2
𝜆
2
+ (𝑚
1
+ 𝑚
1
) 𝜆 + 𝑛

0
= 0. (10)

Obviously, if conditions (𝐻
11
) : 𝑝
2
> 0 and (𝐻

12
) : 𝑝
2
(𝑚
1
+

𝑛
1
) > 𝑛
0
hold, then all the roots of (10)must have negative real

parts. Then, we can conclude that the positive equilibrium
𝐸
∗
(𝑥
∗
, 𝑦
∗
, 𝑧
∗
) is locally asymptotically stable in the absence

of delay.

Case 2. One has 𝜏
1
> 0, 𝜏
2
= 0.

Equation (8) becomes

𝜆
3
+ 𝑝
2
𝜆
2
+ 𝑛
1
𝜆 + 𝑛
0
+ 𝑚
1
𝜆𝑒
−𝜆𝜏
1 = 0. (11)
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Letting 𝜆 = 𝑖𝜔
1
(𝜔
1
> 0) be a root of (11), then we have

𝑚
1
𝜔
1
sin 𝜏
1
𝜔
1
= 𝑝
2
𝜔
2

1
− 𝑛
0
,

𝑚
1
𝜔
1
cos 𝜏
1
𝜔
1
= 𝜔
3

1
− 𝑛
1
𝜔
1
.

(12)

It follows that

𝜔
6

1
+ 𝑐
22
𝜔
4

1
+ 𝑐
21
𝜔
2

1
+ 𝑐
20
= 0, (13)

where

𝑐
22
= 𝑝
2

2
− 2𝑛
1
, 𝑐

21
= 𝑛
2

1
− 𝑚
2

1
− 2𝑛
0
𝑝
2
, 𝑐

20
= 𝑛
2

0
.

(14)

Letting 𝜔2
1
= V
1
, then (13) becomes

V
3

1
+ 𝑐
22
V
2

1
+ 𝑐
21
V
1
+ 𝑐
20
= 0. (15)

Obviously, 𝑐
20

≥ 0. Thus, we assume that (15) has at least one
positive solution. Without loss of generality, we assume that
it has three positive roots, which are denoted as V

11
, V
12
, and

V
13
. Then (13) has three positive roots 𝜔

1𝑘
= √V
1𝑘
, 𝑘 = 1, 2, 3.

From (12), we can get

𝜏
(𝑗)

1𝑘
=

1

𝜔
1𝑘

arccos
𝜔
2

1𝑘
− 𝑛
1

𝑚
1

+
2𝑗𝜋

𝜔
1𝑘

, 𝑗 = 0, 1, . . . , 𝑘 = 1, 2, 3.

(16)

Then, we denote

𝜏
10
= min {𝜏(0)

1𝑘
} , 𝑘 = 1, 2, 3, 𝜔

10
= 𝜔
1𝑘
0

. (17)

Next, we verify the transversality condition. Differentiating
the two sides of (11) with respect to 𝜏

1
and noticing that 𝜆 is

a function of 𝜏
1
, we can get

[
𝑑𝜆

𝑑𝜏
1

]

−1

= −
3𝜆
2
+ 2𝑝
2
𝜆 + 𝑛
1

𝜆 (𝜆3 + 𝑝
2
𝜆2 + 𝑛

1
𝜆 + 𝑛
0
)
+

1

𝜆2
−
𝜏
1

𝜆
. (18)

Therefore

Re [ 𝑑𝜆

𝑑𝜏
1

]

−1

𝜆=𝑖𝜔
10

=
3𝜔
4

10
+ 2 (𝑝

2

2
− 2𝑛
1
) 𝜔
2

10
+ 𝑛
2

1
− 2𝑛
0
𝑝
2

(𝜔3
10
− 𝑛
1
𝜔
10
)
2

+ (𝑛
0
− 𝑝
2
𝜔2
10
)
2

−
𝑚
2

1

𝑚2
1
𝜔2
10

.

(19)

From (13), we have

(𝜔
3

10
− 𝑛
1
𝜔
10
)
2

+ (𝑛
0
− 𝑝
2
𝜔
2

10
)
2

= 𝑚
2

1
𝜔
2

10
. (20)

Therefore

Re [ 𝑑𝜆

𝑑𝜏
1

]

−1

𝜆=𝑖𝜔
10

=
𝑓


1
(V
1∗
)

(𝜔3
10
− 𝑛
1
𝜔
10
)
2

+ (𝑛
0
− 𝑝
2
𝜔2
10
)
2
, (21)

with

𝑓
1
(V
1
) = V
3

1
+ 𝑐
22
V
2

1
+ 𝑐
21
V
1
+ 𝑐
20
, V
1∗

= 𝜔
2

10
. (22)

Obviously, if (𝐻
22
) : 𝑓


1
(V
1∗
) ̸= 0, then Re[𝑑𝜆/𝑑𝜏

1
]
−1

𝜆=𝑖𝜔
10

̸= 0.
Thus, if condition (𝐻

22
) holds, the transversality condition is

satisfied. In conclusion, we have the following results.

Theorem 1. Suppose that conditions (𝐻
21
)-(𝐻
22
) hold. The

positive equilibrium 𝐸
∗
(𝑥
∗
, 𝑦
∗
, 𝑧
∗
) of system (2) is asymptot-

ically stable for 𝜏
1
∈ [0, 𝜏

10
) and unstable when 𝜏

1
> 𝜏
10
. And

system (2) undergoes aHopf bifurcation at𝐸
∗
(𝑥
∗
, 𝑦
∗
, 𝑧
∗
)when

𝜏
1
= 𝜏
10
.

Case 3. One has 𝜏
1
= 0, 𝜏
2
> 0.

Equation (8) becomes

𝜆
3
+ 𝑝
2
𝜆
2
+ 𝑚
1
𝜆 + (𝑛

1
𝜆 + 𝑛
0
) 𝑒
−𝜆𝜏
2 = 0. (23)

Let 𝜆 = 𝑖𝜔
2
(𝜔
2
> 0) be a root of (23), then we have

𝑛
1
𝜔
2
sin 𝜏
2
𝜔
2
+ 𝑛
0
cos 𝜏
2
𝜔
2
= 𝑝
2
𝜔
2

2
,

𝑛
1
𝜔
2
cos 𝜏
2
𝜔
2
− 𝑛
0
sin 𝜏
2
𝜔
2
= 𝜔
3

2
− 𝑚
1
𝜔
2
,

(24)

which follows that

𝜔
6

2
+ 𝑐
32
𝜔
4

2
+ 𝑐
31
𝜔
2

2
+ 𝑐
30
= 0, (25)

with

𝑐
32
= 𝑝
2

2
− 2𝑚
1
, 𝑐

31
= 𝑚
2

1
− 𝑛
2

1
, 𝑐

30
= −𝑛
2

0
. (26)

Let omega2
2
= V
2
, then (24) becomes

V
3

2
+ 𝑐
32
V
2

2
+ 𝑐
31
V
2
+ 𝑐
30
= 0. (27)

Similar as in Case 2, we assume that (𝐻
31
) : (27) has at least

one positive solution. Without loss of generality, we assume
that it has three positive roots, which are denoted by V

21
, V
22

and V
23
. Then (25) has three positive roots 𝜔

2𝑘
= √V
2𝑘
, 𝑘 =

1, 2, 3.
From (24), we get

𝜏
(𝑗)

2𝑘
=

1

𝜔
2𝑘

arccos
𝑛
1
𝜔
4

2𝑘
+ (𝑛
0
𝑝
2
− 𝑚
1
𝑛
1
) 𝜔
2

2𝑘

𝑛2
1
𝜔2
2𝑘
+ 𝑛2
0

+
2𝑗𝜋

𝜔
2𝑘

,

𝑗 = 0, 1, 2, . . . , 𝑘 = 1, 2, 3.

(28)

Then, we denote

𝜏
20
= min {𝜏(0)

2𝑘
} , 𝑘 = 1, 2, 3, 𝜔

20
= 𝜔
2𝑘
0

. (29)

Similar as in Case 2, we know that if condition (𝐻
32
) :

𝑓


2
(V
2∗
) ̸= 0 holds, where

𝑓
2
(V
2
) = V
3

2
+ 𝑐
32
V
2

2
+ 𝑐
31
V
2
+ 𝑐
30
, V
2∗

= 𝜔
2

20
, (30)

then, Re[𝑑𝜆/𝑑𝜏
2
]
−1

𝜆=𝑖𝜔
20

̸= 0. Namely, if condition (𝐻
32
) holds,

the transversality condition is satisfied.Therefore, we have the
following results. Therefore, we have the following theorem.

Theorem 2. Suppose that conditions (𝐻
31
)-(𝐻
32
) hold. The

positive equilibrium 𝐸
∗
(𝑥
∗
, 𝑦
∗
, 𝑧
∗
) of system (2) is asymptot-

ically stable for 𝜏
2
∈ [0, 𝜏

20
) and unstable when 𝜏

2
> 𝜏
20
. And

system (2) undergoes aHopf bifurcation at𝐸
∗
(𝑥
∗
, 𝑦
∗
, 𝑧
∗
)when

𝜏
2
= 𝜏
20
.
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Case 4. One has 𝜏
1
> 0, 𝜏
2
∈ [0, 𝜏

20
).

It is considered that with (8), 𝜏
2
in its stable interval and

𝜏
1
is considered as a parameter.
Let 𝜆 = 𝑖𝜔 (𝜔 > 0) be the root of (8). Separating real and

imaginary parts leads to

𝑚
1
𝜔 sin 𝜏

1
𝜔 = 𝑝

2
𝜔
2
− 𝑛
0
cos 𝜏
2
𝜔 − 𝑛
1
𝜔 sin 𝜏

2
𝜔,

𝑚
1
𝜔 cos 𝜏

1
𝜔 = 𝜔

3
+ 𝑛
0
sin 𝜏
2
𝜔 − 𝑛
1
𝜔 cos 𝜏

2
𝜔.

(31)

Eliminating 𝜏
1
leads to

𝑐
40
(𝜔) + 𝑐

41
cos 𝜏
2
𝜔 + 𝑐
42
sin 𝜏
2
𝜔 = 0, (32)

where

𝑐
40
(𝜔) = 𝜔

6
+ 𝑝
2

2
𝜔
4
+ (𝑛
2

1
+ 𝑚
2

1
) 𝜔
2
+ 𝑛
2

0
,

𝑐
41
(𝜔) = −2 (𝑛

1
𝜔
4
+ 𝑛
0
𝑝
2
𝜔
2
) ,

𝑐
42
(𝜔) = 2 (𝑛

0
− 𝑛
1
𝑝
2
) 𝜔
3
.

(33)

Suppose that (𝐻
41
) : (32) has finite positive roots. If condition

(𝐻
41
) holds, we denote the roots of (32) by 𝜔

1
, 𝜔
2
, . . . , 𝜔

𝑛
. For

every fixed 𝜔
𝑖
(𝑖 = 1, 2, . . . , 𝑛), there exists a sequence {𝜏(𝑗)

1𝑘
|

𝑘 = 1, 2, . . . , 𝑛, 𝑗 = 0, 1, 2, . . .} satisfying (32).

From (31), we can get

𝜏
(𝑗)

1𝑘
=

1

𝜔
𝑘

arccos
𝜔
3

𝑘
+ 𝑛
0
sin 𝜏
2
𝜔
𝑘
− 𝑛
1
𝜔
𝑘
cos 𝜏
2
𝜔
𝑘

𝑚
1
𝜔
𝑘

+
2𝑗𝜋

𝜔
𝑘

,

𝑘 = 1, 2, . . . , 𝑛, 𝑗 = 0, 1, 2, . . . .

(34)

Let

𝜏
∗

1
= 𝜏
(0)

1𝑘
= min {𝜏(0)

1𝑘
, 𝑘 = 1, 2, . . . , 𝑛} , (35)

when 𝜏
1
= 𝜏
∗

1
(8) has a pair of purely imaginary roots ±𝑖𝜔∗

1

for 𝜏
2
∈ [0, 𝜏

20
).

To verify the transversality condition of Hopf bifurcation,
differentiating (8) with respect to 𝜏

1
and substituting 𝜏

1
= 𝜏
∗

1
,

we can get

[Re( 𝑑𝜆

𝑑𝜏
1

)]

−1

𝜆=𝑖𝜔
∗

1

=
𝑃
𝑅
𝑄
𝑅
+ 𝑃
𝐼
𝑄
𝐼

𝑄2
𝑅
+ 𝑄2
𝐼

, (36)

where

𝑃
𝑅
= (𝑛
1
− 𝑛
0
𝜏
2
) cos 𝜏

2
𝜔
∗

1
− 𝑛
1
𝜔
∗

1
𝜏
2
sin 𝜏
2
𝜔
∗

1

− 3(𝜔
∗

1
)
2

+ 𝑚
1
cos 𝜏∗
1
𝜔
∗

1
,

𝑃
𝐼
= (𝑛
1
− 𝑛
0
𝜏
2
) sin 𝜏

2
𝜔
∗

1
− 𝑛
1
𝜔
∗

1
𝜏
2
cos 𝜏
2
𝜔
∗

1

+ 2𝑝
2
𝜔
∗

1
− 𝑚
1
sin 𝜏∗
1
𝜔
∗

1
,

𝑄
𝑅
= −𝑚
1
(𝜔
∗

1
)
2 cos 𝜏∗

1
𝜔
∗

1
, 𝑄

𝐼
= 𝑚
1
(𝜔
∗

1
)
2 sin 𝜏∗

1
𝜔
∗

1
.

(37)

Clearly, if condition (𝐻
42
) : 𝑃

𝑅
𝑄
𝑅
+ 𝑃
𝐼
𝑄
𝐼

̸= 0 holds, then
[Re(𝑑𝜆/𝑑𝜏)]−1

𝜆=𝑖𝜔
∗

1

̸= 0. Namely, if condition (𝐻
42
) holds, the

transversality condition is satisfied. Therefore, we have the
following results. Thus, we have the following theorem.

Theorem 3. Suppose that conditions (𝐻
41
)-(𝐻
42
) hold and

𝜏
2
∈ [0, 𝜏

20
). The positive equilibrium 𝐸

∗
(𝑥
∗
, 𝑦
∗
, 𝑧
∗
) of system

(2) is asymptotically stable for 𝜏
1
∈ [0, 𝜏

1∗
) and unstable when

𝜏
1

> 𝜏
1∗
. And system (2) undergoes a Hopf bifurcation at

𝐸
∗
(𝑥
∗
, 𝑦
∗
, 𝑧
∗
) when 𝜏

1
= 𝜏
1∗
.

Case 5. One has 𝜏
2
> 0, 𝜏
1
∈ [0, 𝜏

10
).

We consider (8) with 𝜏
1
in its stable interval, regarding 𝜏

2

as a parameter.
Let 𝜆 = 𝑖𝜔(𝜔 > 0) be a root of (8). Then we get

𝑛
1
𝜔 sin 𝜏

2
𝜔 + 𝑛
0
cos 𝜏
2
𝜔 = 𝑝

2
𝜔
2
− 𝑚
1
𝜔 sin 𝜏

1
𝜔,

𝑛
1
𝜔 cos 𝜏

2
𝜔 − 𝑛
0
sin 𝜏
2
𝜔 = 𝜔

3
− 𝑚
1
𝜔 cos 𝜏

1
𝜔.

(38)

It follows that

𝑐
50
(𝜔) + 𝑐

51
(𝜔) cos 𝜏

1
𝜔 + 𝑐
52
(𝜔) sin 𝜏

1
𝜔 = 0, (39)

where

𝑐
50
(𝜔) = 𝜔

6
+ 𝑝
2

2
𝜔
4
+ (𝑚
2

1
− 𝑛
2

1
) 𝜔
2
− 𝑛
2

0
,

𝑐
51
(𝜔) = −2𝑚

1
𝜔
4
, 𝑐

52
(𝜔) = −2𝑚

1
𝑝
2
𝜔
3
.

(40)

Similar as in Case 4, we suppose that (𝐻
51
) : (39) has

finite positive roots. And we denote the roots of (39) by
𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
. The corresponding critical value of 𝜏

2
is

𝜏
(𝑗)

2𝑘
=
𝑛
1
𝜔
2

𝑘
+ 𝑛
0
𝑝
2
𝜔
2

𝑘
− 𝑚
1
𝑛
1
𝜔
2

𝑘
cos 𝜏
1
𝜔
𝑘
− 𝑚
1
𝑛
0
𝜔
𝑘
sin 𝜏
1
𝜔
𝑘

𝑛
2
𝜔2
𝑘
+ 𝑛2
0

,

𝑘 =1, 2, . . . , 𝑛, 𝑗 = 0, 1, 2, . . . .

(41)

Let

𝜏
∗

2
= 𝜏
(0)

2𝑘
= min {𝜏(0)

2𝑘
, 𝑘 = 1, 2, . . . , 𝑛} , (42)

when 𝜏
2
= 𝜏
∗

2
(8) has a pair of purely imaginary roots ±𝑖𝜔∗

2

for 𝜏
1
∈ [0, 𝜏

10
).

Similar as in Case 4, we give the following assumption
(𝐻
52
) : 𝑃


𝑅
𝑄


𝑅
+ 𝑃


𝐼
𝑄


𝐼
̸= 0, where

𝑃


𝑅
= 𝑚
1
cos 𝜏
1
𝜔
∗

2
−𝜏
1
𝑚
1
𝜔
∗

2
sin 𝜏
1
𝜔
∗

2
− 3(𝜔

∗

2
)
2

+ 𝑛
1
cos 𝜏∗
2
𝜔
∗

2
,

𝑃


𝐼
= −𝑚
1
sin 𝜏
1
𝜔
∗

2
−𝜏
1
𝑚
1
𝜔
∗

2
cos 𝜏
1
𝜔
∗

2
+ 2𝑝
2
𝜔
∗

2
− 𝑛
1
sin 𝜏∗
2
𝜔
∗

2
,

𝑄


𝑅
= 𝑛
0
𝜔
∗

2
sin 𝜏∗
2
𝜔
∗

2
− 𝑛
1
(𝜔
∗

2
)
2 cos 𝜏∗

2
𝜔
∗

2
,

𝑄


𝐼
= 𝑛
0
𝜔
∗

2
cos 𝜏∗
2
𝜔
∗

2
+ 𝑛
1
(𝜔
∗

2
)
2 sin 𝜏∗

2
𝜔
∗

2
.

(43)

Therefore, if condition (𝐻
52
) : 𝑃



𝑅
𝑄


𝑅
+ 𝑃


𝐼
𝑄


𝐼
̸= 0 holds,

then we can get Re[𝑑𝜆/𝑑𝜏
2
]
−1

𝜆=𝑖𝜔
∗

2

. That is, the transversality
condition is satisfied. Hence, we have the following theorem.
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Theorem 4. Suppose that conditions (𝐻
51
)-(𝐻
52
) hold and

𝜏
1
∈ [0, 𝜏

10
). The positive equilibrium 𝐸

∗
(𝑥
∗
, 𝑦
∗
, 𝑧
∗
) of system

(2) is asymptotically stable for 𝜏
2
∈ [0, 𝜏

∗

2
) and unstable when

𝜏
2

> 𝜏
∗

2
. And system (2) undergoes a Hopf bifurcation at

𝐸
∗
(𝑥
∗
, 𝑦
∗
, 𝑧
∗
) when 𝜏

2
= 𝜏
∗

2
.

3. Direction and Stability of
the Hopf Bifurcation

In this section, we will employ the normal form method and
center manifold theorem introduced by Hassard et al. [17] to
determine the direction of Hopf bifurcation and stability of
the bifurcated periodic solutions of system (2) with respect
to 𝜏
1
for 𝜏
2
∈ (0, 𝜏

20
). Without loss of generality, we assume

that 𝜏
2
< 𝜏
∗

1
, where 𝜏

2
∈ (0, 𝜏

20
).

Let 𝜏
1
= 𝜏
∗

1
+𝜇, 𝜇 ∈ 𝑅. Then 𝜇 = 0 is the Hopf bifurcation

value of system (2). Rescaling the time delay 𝑡 → (𝑡/𝜏
1
), then

system (2) can be rewritten as

�̇� (𝑡) = 𝐿
𝜇
𝑢
𝑡
+ 𝐹 (𝜇, 𝑢

𝑡
) , (44)

where

𝐿
𝜇
𝜙 = (𝜏

1∗
+ 𝜇)(𝐴𝜙 (0) + 𝐶𝜙(−

𝜏


2

𝜏∗
1

) + 𝐵𝜙 (−1)) ,

𝐹 (𝜇, 𝜙) = (𝜏
∗

1
+ 𝜇) (𝐹

1
, 𝐹
2
, 𝐹
3
)
𝑇

(45)

With

𝐴 = (

𝑎
11

𝑎
12

0

0 0 𝑎
23

0 0 0

) , 𝐵 = (

0 0 0

𝑏
11

0 0

0 0 0

) ,

𝐶 = (

0 0 0

0 0 0

0 𝑐
32

0

) ,

𝐹
1
= 𝑎
13
𝜙
2

1
(0) + 𝑎

14
𝜙
1
(0) 𝜙
2
(0) + 𝑎

15
𝜙
3

1
(0) 𝜙
1
(0)

+ 𝑎
18
𝜙
2

1
(0) 𝜙
2
(0) + ⋅ ⋅ ⋅ ,

𝐹
2
= 𝑎
24
𝜙
2
(0) 𝜙
3
(0) + 𝑎

25
𝜙
1
(−1) 𝜙

2
(0) + 𝑎

26
𝜙
2

1
(−1)

+ 𝑎
27
𝜙
2

1
(−1) 𝜙

2
(0) + 𝑎

28
𝜙
3

1
(−1) ⋅ ⋅ ⋅ ,

𝐹
3
= 𝑐
33
𝜙
2
(−

𝜏


1

𝜏∗
1

)𝜙
3
(0) .

(46)

By Riesz representation theorem, there exists a 3 × 3matrix
function 𝜂(𝜃, 𝜇) : [−1, 0] → 𝑅

3 whose elements are of boun-
ded variation, such that

𝐿
𝜇
𝜙 = ∫

0

−1

𝑑𝜂 (𝜃, 𝜇) 𝜙 (𝜃) , 𝜙 ∈ 𝐶 ([−1, 0] , 𝑅
3
) . (47)

In fact, we can choose

𝜂 (𝜃, 𝜇) =

{{{{{{{{{{{

{{{{{{{{{{{

{

(𝜏
∗

1
+ 𝜇) (𝐴 + 𝐵 + 𝐶) , 𝜃 = 0,

(𝜏
∗

1
+ 𝜇) (𝐵 + 𝐶) , 𝜃 ∈ [−

𝜏


2

𝜏∗
1

, 0) ,

(𝜏
∗

1
+ 𝜇)𝐶, 𝜃 ∈ (−1, −

𝜏


2

𝜏∗
1

) ,

0, 𝜃 = −1.

(48)

For 𝜙 ∈ 𝐶([−1, 0], 𝑅
3
), we define

𝐴 (𝜇) 𝜙 =

{{{{

{{{{

{

𝑑𝜙 (𝜃)

𝑑𝜃
, −1 ≤ 𝜃 < 0,

∫

0

−1

𝑑𝜂 (𝜃, 𝜇) 𝜙 (𝜃) , 𝜃 = 0,

𝑅 (𝜇) 𝜙 = {
0, −1 ≤ 𝜃 < 0,

𝐹 (𝜇, 𝜙) , 𝜃 = 0.

(49)

Then system (44) can be transformed into the following
operator equation:

�̇� (𝑡) = 𝐴 (𝜇) 𝑢
𝑡
+ 𝑅 (𝜇) 𝑢

𝑡
. (50)

The adjoint operator 𝐴∗ of 𝐴 is defined by

𝐴
∗
(𝜇) 𝜑 =

{{{{

{{{{

{

−
𝑑𝜑 (𝑠)

𝑑𝑠
, 0 < 𝑠 ≤ 1,

∫

0

−1

𝑑𝜂
𝑇
(𝑠, 𝜇) 𝜑 (−𝑠) , 𝑠 = 0,

(51)

associated with a bilinear form

⟨𝜑, 𝜙⟩ = 𝜑 (0) 𝜙 (0) − ∫

0

𝜃=−1

∫

𝜃

𝜉=0

𝜑 (𝜉 − 𝜃) 𝑑𝜂 (𝜃) 𝜙 (𝜉) 𝑑𝜉,

(52)

where 𝜂(𝜃) = 𝜂(𝜃, 0).
From the above discussion, we know that ±𝑖𝜏∗

1
𝜔
∗

1
are

the eigenvalues of 𝐴(0) and they are also eigenvalues of
𝐴
∗
(0). We assume that 𝜌(𝜃) = (1, 𝜌

2
, 𝜌
3
)
𝑇
𝑒
𝑖𝜏
∗

1
𝜔
∗

1
𝜃 is the eigen-

vector belonging to the eigenvalue +𝑖𝜏
∗

1
𝜔
∗

1
and 𝜌

∗
(𝜃) =

𝐷(1, 𝜌
∗

2
, 𝜌
∗

3
)𝑒
𝑖𝜏
∗

1
𝜔
∗

1
𝑠 is the eigenvector belonging to the eigen-

value −𝑖𝜏∗
1
𝜔
∗

1
. Then, by a simple computation, we can obtain

𝜌
2
=
𝑖𝜔
∗

1
− 𝑎
11

𝑎
12

, 𝜌
3
=
𝑖𝜔
∗

1
(𝑖𝜔
∗

1
− 𝑎
11
) − 𝑏
11
𝑒
−𝑖𝜔
∗

1
𝜔
∗

1

𝑎
12
𝑎
23

,

𝜌
∗

2
= −

𝑖𝜔
∗

1
+ 𝑎
11

𝑏
11
𝑒𝑖𝜏
∗

1
𝜔
∗

1

, 𝜌
∗

3
=
𝑖𝜔
∗

1
(𝑖𝜔
∗

1
+ 𝑎
11
) 𝑒
−𝑖𝜏
∗

1
𝜔
∗

1 − 𝑎
12
𝑏
11

𝑏
11
𝑐
32
𝑒𝑖𝜏


2
𝜔
∗

1

,

𝐷 = [1 + 𝜌
2
𝜌
∗

2
+ 𝜌
3
𝜌
∗

3

+𝑏
11
𝜌
∗

2
𝜏
∗

1
𝑒
−𝑖𝜏
∗

1
𝜔
∗

1 + 𝑐
32
𝜌
2
𝜌
∗

3
𝜏


2
𝑒
−𝑖𝜏


2
𝜔
∗

1 ]
−1

.

(53)

Then we have ⟨𝜌∗, 𝜌⟩ = 1.
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Next, we get the coefficients used to determine the
important quantities of the periodic solution by using a
computation process similar to that in [18]:

𝑔
20
=

2𝜏
∗

1

𝐷
[𝑎
13
+ 𝑎
14
𝜌
(2)

(0)

+ 𝜌
∗

2
(𝑎
24
𝜌
(2)

(0) 𝜌
(3)

(0) + 𝑎
25
𝜌
(1)

(−1) 𝜌
(2)

(0)

+𝑎
26
(𝜌
(1)

(−1))
2

)

+𝜌
∗

3
𝑐
33
𝜌
(2)

(−
𝜏


2

𝜏∗
1

)𝜌
(3)

(0)] ,

𝑔
11
=

𝜏
∗

1

𝐷
[2𝑎
13
+ 𝑎
14
(𝜌
(2)

(0) + 𝜌
(2)

(0))

+ 𝜌
∗

2
(𝑎
24
(𝜌
(2)

(0) 𝜌
(3)

(0) + 𝜌
(2)

(0) 𝜌
(3)

(0))

+ 𝑎
25
(𝜌
(1)

(−1) 𝜌
(2)

(0)

+𝜌
(1)

(−1) 𝜌
(2)

(0))

+2𝑎
26
𝜌
(1)

(−1) 𝜌
(1)

(−1))

+ 𝑐
33
𝜌
∗

3
(𝜌
(2)

(−
𝜏


2

𝜏∗
1

)𝜌
(3)

(0)

+𝜌
(2)

(−
𝜏


2

𝜏∗
1

)𝜌
(3)

(0))] ,

𝑔
02
=

2𝜏
∗

1

𝐷
[𝑎
13
+ 𝑎
14
𝜌
(2)

(0)

+ 𝜌
∗

2
(𝑎
24
𝜌
(2)

(0) 𝜌
(3)

(0) + 𝑎
25
𝜌
(1)

(−1) 𝜌
(2)

(0)

+𝑎
26
(𝜌
(1)

(−1))
2

)

+𝜌
∗

3
𝑐
33
𝜌
(2)

(−
𝜏


2

𝜏∗
1

)𝜌
(3)

(0)] ,

𝑔
21
=

2𝜏
∗

1

𝐷
[𝑎
13
(2𝑊
(1)

11
(0) + 𝑊

(1)

20
(0))

+ 𝑎
14
(𝑊
(1)

11
(0) 𝜌
(2)

(0) +
1

2
𝑊
(1)

20
(0) 𝜌
(2)

(0)

+𝑊
(2)

11
(0) +

1

2
𝑊
(2)

20
(0)) + 3𝑎

15

+ 𝑎
16
(𝜌
(2)

(0) + 2𝜌
(2)

(0))

+ 𝜌
∗

2
(𝑎
24
(𝑊
(2)

11
(0) 𝜌
(3)

(0)

+
1

2
𝑊
(2)

20
(0) 𝜌
(3)

(0)

+ 𝑊
(3)

11
(0) 𝜌
(2)

(0)

+
1

2
𝑊
(3)

20
(0) 𝜌
(2)

(0))

+ 𝑎
25
(𝑊
(1)

11
(−1) 𝜌

(2)
(0)

+
1

2
𝑊
(1)

20
(−1) 𝜌

(2)
(0)

+ 𝑊
(2)

11
(0) 𝜌
(2)

(−1)

+
1

2
𝑊
(2)

20
(0) 𝜌
(1)

(−1))

+ 𝑎
26
(2𝑊
(1)

11
(−1) 𝜌

(1)
(−1)

+𝑊
(1)

20
(−1) 𝜌

(1)
(−1))

+ 𝑎
27
((𝜌
(1)

(−1))
2

+ 2𝜌
(1)

× (−1) 𝜌
(2)

(0) 𝜌
(1)

(−1) )

+3𝑎
28
(𝜌
(1)

(−1))
2

𝜌
(1)

(−1) )

+ 𝑐
33
𝜌
∗

3
(𝑊
(2)

11
(−

𝜏


2

𝜏∗
1

)𝜌
(3)

(0)

+
1

2
𝑊
(2)

20
(−

𝜏


2

𝜏∗
1

)𝜌
(3)

(0)

+ 𝑊
(3)

11
(0) 𝜌
(2)

(−
𝜏


2

𝜏∗
1

)

+
1

2
𝑊
(3)

20
(0) 𝜌
(2)

(−
𝜏


2

𝜏∗
1

))] ,

(54)

with

𝑊
20
(𝜃) =

𝑖𝑔
20
𝑞 (0)

𝜏∗
1
𝜔∗
1

𝑒
𝑖𝜏
∗

1
𝜔
∗

1
𝜃
+
𝑖𝑔
02
𝑞 (0)

3𝜏∗
1
𝜔∗
1

𝑒
−𝑖𝜏
∗

1
𝜔
∗

1
𝜃
+ 𝐸
1
𝑒
2𝑖𝜏
∗

1
𝜔
∗

1
𝜃
,

𝑊
11
(𝜃) = −

𝑖𝑔
11
𝑞 (0)

𝜏∗
1
𝜔∗
1

𝑒
𝑖𝜏
∗

1
𝜔
∗

1
𝜃
+
𝑖𝑔
11
𝑞 (0)

𝜏∗
1
𝜔∗
1

𝑒
−𝑖𝜏
∗

1
𝜔
∗

1
𝜃
+ 𝐸
2
,

(55)

where 𝐸
1
and 𝐸

2
can be computed as the following equations,

respectively

(

2𝑖𝜔
∗

1
− 𝑎
11

−𝑎
12

0

−𝑏
11
𝑒
−2𝑖𝜏
∗

1
𝜔
∗

1 2𝑖𝜔
∗

1
−𝑎
23

0 −𝑐
32
𝑒
−2𝑖𝜏
∗

1
𝜔
∗

1 2𝑖𝜔
∗

1

)𝐸
1
= 2(

𝐸
(1)

1

𝐸
(2)

1

𝐸
(3)

1

),

(

𝑎
11

𝑎
12

0

𝑏
11

𝑎
22

0

0 𝑐
32

0

)𝐸
2
= −(

𝐸
(1)

2

𝐸
(2)

2

𝐸
(3)

2

),

(56)
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with

𝐸
(1)

1
= 𝑎
13
+ 𝑎
14
𝜌
(2)

(0) ,

𝐸
(2)

1
= 𝑎
24
𝜌
(2)

(0) 𝜌
(3)

(0) + 𝑎
25
𝜌
(1)

(−1) 𝜌
(2)

(0)

+ 𝑎
26
(𝜌
(1)

(−1) )
2
) ,

𝐸
(3)

1
= 𝑐
33
𝜌
(2)

(−
𝜏


2

𝜏∗
1

)𝜌
(3)

(0) ,

𝐸
(1)

2
= 2𝑎
13
+ 𝑎
14
(𝜌
(2)

(0) + 𝜌
(2)

(0)) ,

𝐸
(2)

2
= 𝑎
24
(𝜌
(2)

(0) 𝜌
(3)

(0) + 𝜌
(2)

(0) 𝜌
(3)

(0))

+ 𝑎
25
(𝜌
(1)

(−1) 𝜌
(2)

(0) + 𝜌
(1)

(−1) 𝜌
(2)

(0))

+ 2𝑎
26
𝜌
(1)

(−1) 𝜌
(1)

(−1) ,

𝐸
(3)

2
= 𝑐
33
(𝜌
(2)

(−
𝜏


2

𝜏∗
1

)𝜌
(3)

(0) + 𝜌
(2)

(−
𝜏


2

𝜏∗
1

)𝜌
(3)

(0)) .

(57)

Thus, we can calculate the following values:

𝐶
1
(0) =

𝑖

2𝜏∗
1
𝜔∗
1

(𝑔
11
𝑔
20
− 2

𝑔11

2

−

𝑔02

2

3
) +

𝑔
21

2
,

𝜇
2
= −

Re {𝐶
1
(0)}

Re {𝜆 (𝜏∗
1
)}
,

𝛽
2
= 2Re {𝐶

1
(0)} ,

𝑇
2
= −

Im {𝐶
1
(0)} + 𝜇

2
Im {𝜆


(𝜏
∗

1
)}

𝜏∗
1
𝜔∗
1

.

(58)

Based on the discussion above, we can obtain the following
results.

Theorem 5. If 𝜇
2
> 0(𝜇

2
< 0), then the Hopf bifurcation is

supercritical (subcritical); if 𝛽
2
< 0 (𝛽

2
> 0), the bifurcating

periodic solutions are stable (unstable); if 𝑇
2

> 0 (𝑇
2

<

0), the period of the bifurcating periodic solutions increases
(decreases).

4. Numerical Simulation and Discussion

In this section, we present some numerical simulations
to illustrate the analytical results obtained in the previous
sections. Let 𝛼 = 3, 𝑘 = 2, 𝛽 = 2, 𝑝 = 0.3, ℎ = 0.2, 𝑒 = 0.4,

𝑟 = 1, 𝑠 = 0.5, and 𝑚 = 0.6. Then we have the following
particular case of system (2):

𝑑𝑥 (𝑡)

𝑑𝑡
= 3𝑥 (𝑡) (1 −

𝑥 (𝑡)

2
) −

2𝑥 (𝑡) 𝑦 (𝑡)

1 + 0.3𝑥 (𝑡)
,

𝑑𝑦 (𝑡)

𝑑𝑡
= 𝑦 (𝑡) (−0.2 +

0.8𝑥 (𝑡 − 𝜏
1
)

1 + 0.3𝑥 (𝑡 − 𝜏
1
)
)

− 𝑦 (𝑡) 𝑧 (𝑡) ,

𝑑𝑧 (𝑡)

𝑑𝑡
= 𝑧 (𝑡) (−0.5 + 0.6𝑦 (𝑡 − 𝜏

2
)) ,

(59)

which has a positive equilibrium 𝐸
∗
(1.1809, 0.8333, 0.4976).

For 𝜏
1

> 0, 𝜏
2

= 0, we have 𝜔
10

= 0.7318, 𝜏
10

=

1.4887. From Theorem 1, we know that the positive equilib-
rium 𝐸

∗
(1.1809, 0.8333, 0.4976) is asymptotically stable for

𝜏
1

∈ [0, 1.4887). As can be seen from Figure 1, if 𝜏
1

=

1.38 ∈ [0, 1.4887), 𝐸
∗
(1.1809, 0.8333, 0.4976) is asympto-

tically stable. However, if 𝜏
1

= 1.498 > 𝜏
10

= 1.4887,
then 𝐸

∗
(1.1809, 0.8333, 0.4976) is unstable and system (59)

undergoes a Hopf bifurcation at 𝐸
∗
(1.1809, 0.8333, 0.4976),

and a family of periodic solutions bifurcate from the positive
equilibrium 𝐸

∗
(1.1809, 0.8333, 0.4976). This property can be

illustrated by Figure 2. For 𝜏
2

> 0, 𝜏
1

= 0, by a simple
computation, we can easily get 𝜔

20
= 0.4737, 𝜏

20
= 1.7990.

The corresponding waveform and the phase plots are shown
in Figures 3 and 4.

For 𝜏
1
> 0 and 𝜏

2
= 0.8 ∈ [0, 𝜏

20
), we get 𝜔∗

1
= 0.6698,

𝜏
∗

1
= 0.8095. That is, when 𝜏

1
increases from zero to the

critical value 𝜏∗
1
, the positive equilibrium 𝐸

∗
(1.1809, 0.8333,

0.4976) is asymptotically stable; then it will lose stability, and
a Hopf bifurcation occurs once 𝜏

1
> 𝜏
∗

1
= 0.8095. This

property can be illustrated by Figures 5 and 6. Further, we
get 𝐶
1
(0) = −11.2213 + 16.3520𝑖, [𝑑𝜆/𝑑𝜏

1
]
𝜆=𝑖𝜔
∗

1

= 4.1212 −

2.5252𝑖. Then we have 𝜇
2
= 2.7228, 𝛽

2
= −22.4426, 𝑇

2
=

−17.4776. Therefore, from Theorem 5, we can know that the
Hopf bifurcation is supercritical and the bifurcating periodic
solutions are stable.

At last, for 𝜏
2
> 0 and 𝜏

1
= 0.5 ∈ (0, 𝜏

10
), we obtain 𝜔

∗

2
=

0.5525, 𝜏∗
2

= 1.4818. The corresponding waveform and the
phase plots are shown in Figures 7 and 8.

Guo and Jiang [7] have obtained that the three species
in system (2) with only one time delay can coexist, however,
we get that the species could also coexist with some available
time delays of the predator and the top predator. This is
valuable from the view of ecology. As the futurework, we shall
consider the following more general and more complicated
system with multiple delays:

𝑑𝑥 (𝑡)

𝑑𝑡
= 𝛼𝑥 (𝑡) (1 −

𝑥 (𝑡 − 𝜏
1
)

𝑘
) −

𝛽𝑥 (𝑡) 𝑦 (𝑡)

1 + 𝑝𝑥 (𝑡)
,

𝑑𝑦 (𝑡)

𝑑𝑡
= 𝑦 (𝑡) (−ℎ +

𝑒𝛽𝑥 (𝑡 − 𝜏
2
)

1 + 𝑝𝑥 (𝑡 − 1𝜏
2
)
) − 𝑟𝑦 (𝑡) 𝑧 (𝑡) ,

𝑑𝑧 (𝑡)

𝑑𝑡
= 𝑧 (𝑡) (−𝑠 + 𝑚𝑟𝑦 (𝑡 − 𝜏

3
)) ,

(60)
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Figure 1: 𝐸
∗
is asymptotically stable for 𝜏

1
= 1.38 < 𝜏

10
= 1.4887 with initial values 0.975, 1.025, and 0.625.

0 100 200 300 400
0.8

1

1.2

1.4

1.6

0 100 200 300 400
0

0.5

1

1.5

0 100 200 300 400

0.4

0.5

0.6

0.7

0.5
1

1.5

0.5

1

1.5
0

0.5

1

Time t Time t

Time t

y(t)
x(t)

z
(
t
)

x
(
t
)

y
(
t
)

z
(
t
)

Figure 2: 𝐸
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is unstable for 𝜏

1
= 1.498 > 𝜏

10
= 1.4887 with initial values 0.975, 1.025, and 0.625.
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Figure 3: 𝐸
∗
is asymptotically stable for 𝜏

2
= 1.60 < 𝜏

20
= 1.7990 with initial values 0.975, 1.025, and 0.625.
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is unstable for 𝜏
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is asymptotically stable for 𝜏
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= 0.8095 and 𝜏

2
= 0.8 with initial values 0.975, 1.025, and 0.625.
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is unstable for 𝜏
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2
= 0.8 with initial values 0.975, 1.025, and 0.625.



Abstract and Applied Analysis 11

0 100 200 300 400

0.8

1

1.2

1.4

1.6

0 100 200 300 400
0.4

0.6

0.8

1

1.2

0 100 200 300 400

0.4

0.5

0.6

0.7

0.8

0.8 1 1.2 1.4

0
0.5

1
1.5

0.5

1

Time t

x
(
t
)

y
(
t
)

z
(
t
)

Time t

x(t)

y(t)

z
(
t
)

Time t

Figure 7: 𝐸
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is asymptotically stable for 𝜏

2
= 1.25 < 𝜏

∗

2
= 1.4818 and 𝜏

1
= 0.5 with initial values 0.975, 1.025, and 0.625.
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∗
is unstable for 𝜏

2
= 1.50 > 𝜏
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= 1.4818 and 𝜏

1
= 0.5 with initial values 0.975, 1.025, and 0.625.
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where 𝜏
1
is feedback delay of the prey and 𝜏

2
, 𝜏
3
are the

time delays due to the gestation of the predator and the top
predator, respectively.
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