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Continuous glucose monitoring (CGM) by suitable portable sensors plays a central role in the treatment of diabetes, a disease
currently affecting more than 350 million people worldwide. Noninvasive CGM (NI-CGM), in particular, is appealing for reasons
related to patient comfort (no needles are used) but challenging. NI-CGM prototypes exploiting multisensor approaches have been
recently proposed to deal with physiological and environmental disturbances. In these prototypes, signals measured noninvasively
(e.g., skin impedance, temperature, optical skin properties, etc.) are combined through a static multivariate linear model for
estimating glucose levels. In this work, by exploiting a dataset of 45 experimental sessions acquired in diabetic subjects, we show
that regularisation-based techniques for the identification of the model, such as the least absolute shrinkage and selection operator
(better known as LASSO), Ridge regression, and Elastic-Net regression, improve the accuracy of glucose estimates with respect to
techniques, such as partial least squares regression, previously used in the literature. More specifically, the Elastic-Net model (i.e.,
the model identified using a combination of 𝑙

1
and 𝑙
2
norms) has the best results, according to the metrics widely accepted in the

diabetes community.This model represents an important incremental step toward the development of NI-CGM devices effectively
usable by patients.

1. Introduction

Diabetes consists of a malfunction of the glucose-insulin
regulatory system leading to the onset of long and short term
complications, like retinopathy, neuropathy, and cardiovas-
cular and hearth diseases, due to sustained blood glycaemic
levels exceeding the normal range of 70–180mg/dL [1].
According to the International Diabetes Federation, diabetes
is estimated to currently affect more than 350 million people
worldwide, and this number is rapidly growing [2]. Not
surprisingly, in the last few decades, diabetes has received an
increasing attention both for its social and economic impli-
cations [3].

Standard therapy of type 1 diabetes is based on a com-
bination of diet, physical activity, and exogenous insulin
injections, modulated on the basis of individual patient levels

of glucose concentration in the blood. Accurate and frequent
monitoring of glucose concentrations by portable sensor
devices plays a crucial role in the diabetes therapy [4].
Self-monitoring blood glucose (SMBG) sensors require the
collection of a blood sample by pricking the skin with a lancet
device. An external pocket device is then used to analyze the
blood and determine glucose concentration for instance by
the glucose oxidase principle [5]. These sensors are uncom-
fortable for the patient and are typically used no more than
3-4 times per day. Such sparseness of sampling does not allow
the observation of glucose dynamics and glucose excursions
outside the safety range, and dangerous nocturnal hypogly-
caemic swings are often not detected. To overcome these
problems, portable continuous glucose monitoring (CGM)
sensors, measuring blood glucose values every 1 to 5 minutes
for up to 7 consecutive days, have been proposed in the
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early 2000s and are now of great interest for the tuning and
optimization of diabetes therapy [6, 7]. In particular, online
applications of CGM sensors include prevention of hyper-
/hypoglycaemic events; see for example [8, 9], and closed-
loop glucose control aimed at determining optimal automatic
insulin infusion in the so-called artificial pancreas systems;
see [10–14]. Notably, dealing with these online applications
requires facing nontrivial signal processing issues connected
to denoising [15], calibration [16], and prediction [17–21] (see
[22, 23] for reviews) calling for the development of the so-
called “smart” CGM sensor architecture [24].

Most of the CGM sensors requiring the placement of a
small needle in the subcutaneous tissue use an enzyme-based
glucose-oxidase electrode and thus are invasive, albeit mini-
mally. To limit patients’ discomfort, in the last decade, several
noninvasive continuous glucose monitoring (NI-CGM) sen-
sors have been prototyped.Many different physical principles
have been considered to pursue NI-CGM, but none of them
has clearly outperformed the others so far; see for example
[25–27]. One major difficulty with NI-CGM is the fact that
environmental (e.g., temperature) and physiological (e.g.,
sweat, blood oxygenation, etc.) processes act as perturbing
factors and often allow blood glucose changes to be tracked
only in highly controlled conditions (e.g., during in-hospital
studies) [28–30]. To tackle this issue, an approach gaining
increasing attention in the last years is the multisensor ap-
proach to NI-CGM; that is, instead of focusing on a single
physical principle, these devices resort to a combination of
technologies. For instance, the GlucoTrack [31] exploits amix
of thermal, acoustic, and electromagnetic technologies and
compares the three measurements, assuming they all reflect a
glucose-related measurement. A different, yet recent, multi-
sensor prototype [32] employs a combination of dielectric
spectroscopy (DS) and mid-infrared-based sensors. A fur-
ther example of multi-sensor device, proposed by Solianis
Monitoring AG (Zürich, Switzerland, technology taken over
by Biovotion AG, Zurich, Switzerland), embeds sensors of
different nature for the biophysical characterisation of skin
and underlying tissue in order to track glucose-related and
perturbing factors separately [30, 33].

Multisensor approaches to NI-CGM require a model to
connect the physical quantities measured by the sensors
with blood glucose concentrations. For instance, in the
Solianis Monitoring AG prototype (from now on named
Solianis for the sake of readability) considered in this work,
a multivariate linear regression model is used to combine
∼150 signals recorded noninvasively for estimating a glucose
concentration profile (see Section 3.1 for more details). As
described in [33, 34], the linear regression model is identified
on a dataset collected in a population of subjects and
comprising multi-sensor channels measurements and refer-
ence blood glucose (RBG) values collected in parallel by a
gold standard technique. Previous work [35] has shown that a
regularised identification method, based on 𝑙

1
norm (least

absolute shrinkage and selection operator—LASSO), pro-
vided a glucose profile more accurate than that of other mod-
els identified with approaches controlling complexity such
as subset selection method or partial least squares (PLS).
In the present work, by using the same dataset of 45

experimental sessions used in [35], we demonstrate that the
accuracy of glucose estimates can be further improved by
considering 𝑙

2
norm regularization (Ridge regression) and a

combination of 𝑙
1
and 𝑙
2
norms (Elastic-Net—EN regression),

providing a further incremental step toward the development
of an NI-CGM effectively usable by diabetic patients.

2. Database

The database consists of 45 experimental sessions recorded
from 6 type 1 diabetic subjects, during which plasma glucose
was induced to vary according to different predetermined
profiles to cause different hypo- and hyperglycaemic excur-
sions. During each session, multi-sensor data and RBG were
acquired in parallel, with a time sampling of 20 seconds and
10–15 minutes, respectively. The RBG samples were acquired
by means of a SMBG device. The study was performed at
the University Hospital Zurich according to the requirements
of good clinical practice and was approved by the local
ethical commission. More clinically related information can
be found in [33].

For the analysis, the database was split into two data
subsets of 22 and 23 experimental sessions, respectively. If
the first data subset is used for identifying the models with
the different techniques, the second is used to test the models
over “unseen”multi-sensor data (1–>2) and vice versa (2–>1).
For the sake of space, we will not discuss results of the
application of the model on the same dataset used for their
identification, and only model test results will be considered.

Multi-sensor data in the identification data subset under-
goes a preprocessing step described in detail in [35]. Briefly,
each multi-sensor channel is normalized to have zero mean
and unitary standard deviation. These values are then used
to standardize the same channels in the test data subset to
permit simulation of real-time glucose monitoring. More-
over, the first RBG value available at the beginning of each
recording session is used to calibrate the estimated glucose
profiles by the model setting a baseline adjustment, to allow
for a real-time consideration/implementation.

3. Methods

3.1. Glucose Determination by a Multisensor System. In stat-
ing the problem,we deliberatelymake only a brief description
of the framework we are working on and we refer the reader
to the quoted bibliography for details.

Rather than focusing on a single physical principle, the
Solianis multi-sensor device resorts to a combination of
technologies, embedded into the substrate in contact with
the skin for the biophysical characterisation of the skin and
underlying tissue in order to account for confounding factors,
which can significantly deteriorate the accuracy of glucose
measurements [30, 36–38]. In particular, glucose-related sig-
nals are obtained fromDS fringing field capacitive electrodes,
with different geometrical properties, providing a spectrum
of the frequency-dependent complex dielectric properties
of skin and underlying tissue including blood, which can
be easily parameterised by its magnitude and phase [39].
Environmental and physiological processes that can interfere
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Figure 1: A model (center) is needed to properly combine the 150 multisensor channels (left, depicted with lines of different colours) for
estimating blood glucose concentration profile (right, magenta stars).

with the measurements of the main glucose-related signals
aremeasuredwith temperature, optical, humidity, accelerom-
eter, and additional DS sensors incorporated into the same
device substrate [30]. About 150 channels are thus provided
by the multi-sensor device (Figure 1, left), which have to be
properly combined through a mathematical model (Figure 1,
middle) for estimating glucose concentrations in the blood
(Figure 1, right). Since a mechanistic description comprising
the physical principles, linking measured channels with
physical/physiological processes, in particular, related to
glucose changes, has not yet been fully developed, a “black-
box” multivariate linear regression model is used.

Formally, if𝑁 is the number of data points available and
𝑝 is the number of measured channels, the model to identify
from the identification dataset is described as

y = Χ𝛽 + ^, (1)

where y represents the (𝑁 × 1) target vector containing RBG
values, X is the (𝑁 × 𝑝) matrix collecting the multi-sensor
channels, 𝛽 is the (𝑝× 1) vector containing the coefficients of
the linear model, and ^ is the (𝑁 × 1) term representing the
error.

The vector 𝛽 in (1) can be identified by minimizing the
cost function𝐹(𝛽) given by the residual sumof squares (RSS):

𝐹 (𝛽) = RSS (𝛽) = 󵄩󵄩󵄩󵄩y − X𝛽
󵄩󵄩󵄩󵄩
2

2
=

𝑁

∑

𝑖=1

(y
𝑖
− X
𝑖
𝛽)
2
, (2)

measuring the distance between data and model predictions.
Since this cost function has a quadratic form, a closed-
form solution, the so-called ordinary least squares (OLS)
estimate, can be obtained. In the case under consideration,
OLS suffers from overfitting due to the high dimensionality
of the measurement space and to the correlation between
subsets of input channels (well visible in the channels showed
in Figure 1, left). Recent work [34] showed that further
improved results can be obtained by exploiting subset selec-
tion techniques. Then, further work [35] investigated the use

of other methods controlling “model complexity,” including
PLS (widely used in chemometrics and related fields deal-
ing with spectroscopy data) and the LASSO regularization
technique. It has been shown that regularization techniques,
in particular, the LASSO, outperform PLS since it sets many
coefficients to zero being less sensitive to occasional noise in
the multi-sensor channels.

Formally speaking, regularizedmodel identification tech-
niques add a term 𝐿(𝛽) to the cost function of (2), leading to

𝐹 (𝛽) = RSS (𝛽) + 𝐿 (𝛽) , (3)

where 𝐿(𝛽) is a function of 𝛽 reflecting complexity. Depend-
ing on the form and on the parameters of 𝐿(𝛽) in (2), the
resulting model will present different well-known features, as
will be briefly reviewed in the following section.

Thus, the 𝛽 minimizing (3) is identified establishing a
trade off between adherence to the data and model complex-
ity, usually by a cross-validation procedure as better discussed
next.

3.2. Model Identification by Regularisation Techniques

3.2.1. 𝑙
1
Norm: LASSO. In the 𝐿(𝛽) term of (3), the 𝑙

1
norm

can be used. In the literature, this 𝑙
1
norm has been proposed

in signal processing (under the name of basis pursuit) [40]
and in statistics [41] for its main feature of inducing sparse
solutions. Formally, in (3), the 𝑙

1
norm leads to define 𝐿(𝛽) as

the sum of the absolute values of the coefficients of the model

𝐿 (𝛽) = 𝜆
󵄩󵄩󵄩󵄩𝛽
󵄩󵄩󵄩󵄩1 = 𝜆

𝑝

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗

󵄨󵄨󵄨󵄨󵄨
(4)

multiplied by the scalar nonnegative parameter, hereafter
referred to as regularization parameter for the sake of reason-
ing. Thus, the solution is found by minimizing

𝛽̂
LASSO

= argmin
𝛽

{

{

{

𝑁

∑

𝑖=1

(y
𝑖
− X
𝑖
𝛽)
2
+ 𝜆

𝑝

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗

󵄨󵄨󵄨󵄨󵄨

}

}

}

(5)
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and is known as the least absolute shrinkage and selection
operator (LASSO), for its properties of shrinking many
coefficients to zero selecting only few input variables. In
particular, in our application documented in [35], the LASSO
was shown to outperform PLS since it sets many coefficients
to zero being less sensitive to occasional noise inmulti-sensor
channels. Equation (5) does not have a closed-form solution
because the cost function is not differentiable when some
coefficients 𝛽

𝑗
are zero, and a plethora of methods have been

developed to calculate approximate solutions numerically;
see [42, 43] for reviews. In particular, an efficient technique
for computing the LASSO solution is obtained by modifying
the least angle regression algorithm [44].With this technique,
the parameter that has to be fixed represents the number of
input variables allowed to enter the model, indicated with 𝑗
in Section 3.

Remark 1. The regularization parameter weighting the 𝐿(𝛽)
term in (5) is obtained by means of a standard procedure
known as 𝐾-fold cross-validation [45]. Briefly, the identi-
fication dataset is split into 𝐾 approximately equal parts.
Then, the model is identified on 𝐾 − 1 parts and tested over
the portion of data not considered for deriving the model,
calculating the mean squared error (MSE):

MSE = 1
𝑁

𝑁𝐾−1

∑

𝑖=1

(y
𝑖
− ŷ
𝚤
)
2
, (6)

where y and ŷ represent the true and estimated output,
respectively, and 𝑁

𝐾−1
represents the number of data points

in the 𝐾 − 1 portion of data. This procedure is repeated 𝐾
times and for a range of values of the parameter that has to
be determined. Then, the cross-validation curve is plotted,
presenting theMSE as a function of the regularization param-
eter. Empirical evidence suggests choosing its value in corre-
spondence with a clear drop of the cross-validation curve.

3.2.2. 𝑙
2
Norm: Ridge Regression. The 𝑙

2
norm involves the

penalization of the sum of squares of the coefficients of the
model multiplied by a scalar nonnegative parameter:

𝐿 (𝛽) = 𝜆
󵄩󵄩󵄩󵄩𝛽
󵄩󵄩󵄩󵄩
2

2
= 𝜆

𝑝

∑

𝑗=1

𝛽
2

𝑗
. (7)

The so-called Ridge regression solution, from now on ridge,
is thus given by

𝛽̂
ridge

= argmin
𝛽

{

{

{

𝑁

∑

𝑖=1

(y
𝑖
− X
𝑖
𝛽)
2
+ 𝜆

𝑝

∑

𝑗=1

𝛽
2

𝑗

}

}

}

. (8)

The quadratic nature of the cost function in (7) entails a
closed-form solution for 𝛽 dependent on the parameter 𝜆:

𝛽̂
ridge

= (X𝑇X + 𝜆Ipxp)
−1

X𝑇y. (9)

Also, in this case, the regularization parameter 𝜆 can be
fixed by means of cross-validation. According to [45], as an

indication of the model complexity, the degrees of freedom
(df) can be used:

df (𝜆) = tr [X(X𝑇X + 𝜆I)
−1

X𝑇] =
𝑝

∑

𝑗=1

𝑑
2

𝑗

𝑑2
𝑗
+ 𝜆
, (10)

where the 𝑑
𝑗
𝑠 are the singular values ofX.Thus, to determine

the regularization parameter by cross-validation, the MSE is
plotted against df in (10).

3.2.3. 𝑙
1
+ 𝑙
2
Norms: Elastic Net-Regression. The so-called

Elastic-Net regression, fromnowonEN, resorts to aweighted
sum of the two previously described norms, defining 𝐿(𝛽) as

𝐿 (𝛽) = 𝜆 (𝛼
󵄩󵄩󵄩󵄩𝛽
󵄩󵄩󵄩󵄩1 + (1 − 𝛼)

󵄩󵄩󵄩󵄩𝛽
󵄩󵄩󵄩󵄩
2

2
)

= 𝜆(𝛼

𝑝

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗

󵄨󵄨󵄨󵄨󵄨
+ (1 − 𝛼)

𝑝

∑

𝑗=1

𝛽
2

𝑗
) ,

(11)

where 𝛼 weighs the contribution of the two norms while 𝜆
sets the amount of regularization [46]. Hence, the EN model
parameters are obtained solving the following:

𝛽̂
EN

= argmin
𝛽

{

{

{

𝑁

∑

𝑖=1

(y
𝑖
−X
𝑖
𝛽)
2

+𝜆(𝛼

𝑝

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗

󵄨󵄨󵄨󵄨󵄨
+(1−𝛼)

𝑝

∑

𝑗=1

𝛽
2

𝑗
)
}

}

}

.

(12)

Problem (12) does not have a closed-form solution, and sev-
eral numerical algorithms have been proposed to compute an
approximate solution (someof themare simple adaptations of
those developed for the LASSO [46]). The algorithm that has
been used in this work is the one based on cyclical coordinate
descent originally developed for the LASSO [47] and adapted
to problem (12) following [48–50]. The parameters 𝜆 and 𝛼
are determined by cross-validation, following a procedure
similar to that of Remark 1.

3.3. Criteria forModel Assessment. The accuracy of estimated
glucose profiles in themodel test is measured through a set of
indexes widely used in the diabetes research community. In
particular, we consider the root mean squared error (RMSE)

RMSE = √ 1
𝑁

𝑁

∑

𝑖=1

((y
𝑖
− ŷ
𝑖
)
2

), (13)

the mean absolute difference (MAD), indicating how much
estimated glucose values are lower or higher than the refer-
ence,

MAD = 1
𝑁

𝑁

∑

𝑖=1

󵄨󵄨󵄨󵄨y𝑖 − ŷ𝑖
󵄨󵄨󵄨󵄨 , (14)
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Figure 2: 10-fold cross-validation curves for the choice of the “optimal” complexity parameters for LASSO (a), Ridge (b), and EN for 𝛼 = 0.4
(c). TheMSE (mean value and one standard deviation) is represented as a function of the model complexity parameter for each method.The
red crosses represent the values of the complexity parameter chosen according to the drop in the error curve. The vertical red dashed line is
for a better visual identification of the complexity parameters.

and the mean absolute relative difference (MARD), which
characterizes the relative errors (in %) of the estimated
glucose:

MARD = 1
𝑁

𝑁

∑

𝑖=1

󵄨󵄨󵄨󵄨y𝑖 − ŷ𝑖
󵄨󵄨󵄨󵄨

y
𝑖

, (15)

where y
𝑖
and ŷ

𝑖
, for 𝑖 = 1, . . . , 𝑁, are, respectively, the 𝑁

reference RBG samples and the glucose estimates provided by
the models (all the experimental sessions are simultaneously
considered). Finally, a popular method used in the diabetes
community to judge on the point accuracy of glucose sensors
is the error grid analysis (EGA) proposed by Clarke and
coworkers [51]. The area where estimated glucose by the
model and RBG values are displayed as a scatterplot is
broken down into five regions (labeled from A to E). Zone A
represents those glucose values within 20% of the RBG values
and so on. The most dangerous situations are those where
estimated glucose values fall into zones C/D/E because, from
a clinical point of view, they will lead to unnecessary or even
wrong and potentially dangerous treatments. An evolution
of EGA developed for CGM sensors is the continuous EGA
(CEGA) that alsomeasures the accuracy of estimated glucose
trends by creating a grid which is broken down into regions
labeled from AR to ER; see [52] for details.

To give an idea of the values of these indexes for the
current state-of the-art, minimally invasive (needle-based)
commercial CGM sensors, a recent study [11] reported mean
MARD levels ranging from 11.8 to 20.2% and a percentage of
data points in theA+B region ranging from98.9 to 96.9 under
controlled conditions, comparing CGM measurements to
gold standard blood glucose sampling.

4. Results

4.1. Regularization Parameter Determination by Cross-Valida-
tion. The first step in the analysis is setting the values for 𝜆
in (5), (8), and (12) and for 𝛼 in (12). These were determined
by finding where the cross-validation curve presents a clear

drop in slope, as explained in Remark 1. Figure 2 shows the
values obtained when identification data subset “part 1” is
considered, and the red cross, together with a vertical red
dashed line for visualization purpose, highlights the selected
“optimal” value (cross-validation plots for identification data
subset “part 2” are not showed for the sake of space). Specifi-
cally, a𝐾-fold cross-validation strategy has been applied, with
𝐾 = 10, for having a good compromise between bias and vari-
ance of the estimated error [45]. The left subplot shows the
error curve as a function of the number of latent variables for
the LASSO model, indicating a drop of the cross-validation
curve around 15. The choice of the regularization param-
eter for ridge followed a similar approach, with the cross-
validation curve (middle panel) presenting a drop when the
degree of freedom, defined in (10), approximately equals 50,
corresponding to 𝜆 = 5. Similarly for EN, the ending part
of the drop in the error curve can be noticed for log(𝜆) ≅
−4.5 (Figure 2(c)), corresponding to 𝜆 = 0.01. For EN,
different cross-validation curves for different values of 𝛼were
examined. The most reasonable choice seemed to be that
obtained with 𝛼 = 0.4. Indeed, this combination of para-
meters is the one providing a good trade off between the 𝑙

1

and 𝑙
2
norms allowing a reasonable compromise for the EN

model to be achieved. A value of 𝛼 = 0.4 can suggest that,
although it is important to shrink channel weights to zero in
order to lower the probability of occasional jumps or spikes
entering themodel, allowing a grouping effect over correlated
predictors is also important for a more robust estimation of
glucose profiles.

4.2. Model Test. Figure 3 shows examples of estimated blood
glucose concentration profiles (continuous line) versus ref-
erence RBG samples (open bullets) for two representative
experimental sessions. Visual inspection suggests that the
profiles provided by the EN model (bottom panels) out-
perform, in terms of accuracy, those provided by LASSO
(top) and Ridge (middle). The same observation applies
for the examples depicted in Figure 4, which represents a
more challenging situation because of the presence of wider
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Figure 3: Representative recording sessions of Subjects AA02 (a) and AA04 (b). LASSO, Ridge, and EN models test over independent test
data subset (continuous lines) versus RBG levels (open bullets). MARD values for the experimental session on the right are of 16.7% (LASSO),
16.9% (Ridge), and 16.5% (EN), while for the experimental session on the left of 12.7% (LASSO), 11.2% (Ridge), and 9.1% (EN).

disturbances, as witnessed by the spikes and jumps affecting
the representative multi-sensor raw channels displayed in an
additional fourth row of panels. This qualitative observation
is supported from the analysis of the MARD values obtained
for the representative sessions in Figure 3, that is, 16.7%,
16.9%, and 16.5% (experimental session depicted in the left
panels) and 12.7%, 11.2%, and 9.1% for the LASSO, Ridge, and
EN models, respectively. When occasional noise is affecting
some of the multi-sensor channels, theMARD values slightly
worsen, as can be seen for the experiment depicted in
Figure 4(a) presenting MARD of 53% for the LASSO, 24.5%
for Ridge, and 20.6 for EN. However, the EN model still
provides blood glucose estimation profiles more accurately
than Ridge and LASSO. This is confirmed, in general, by
Table 1, which shows the aggregate results over the test data
subset.

By analysing the results in more detail, the LASSO
model seems to have a slight advantage in estimating glucose
trends (last column of Table 1). The reason is twofold: first,

the regularization performed by the 𝑙
1
norm prevents the

model coefficients fromassuming large values thus predicting
glucose profiles that are more flat than the other models,
as it happens for example in Figures 3(b) and 4(b); second,
channels more sensitive to noise that contain also glucose-
related information are considered by Ridge and EN exploit-
ing the effect of the 𝑙

2
normbut are less probable to be selected

by LASSO, thus yielding smoother estimates. This fact can
clearly be seen fromFigure 4, where artifacts are present (e.g.,
in channel no.2) for the session of left data and in channel no.3
for the session of the right data.

Interestingly, the LASSO model seems more robust than
the other models to these jumps in the data, preserving
the glucose profile with elevated smoothness and reasonably
accurate trend. Indeed the 𝑙

1
norm shrinks many coefficients

to zero allowing an easier interpretation of the results with
a reduced number of original variables, representing the
strongest effects, considered important for estimating glucose
profiles. This is a typical feature of the LASSO to act as
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Figure 4: Representative recording sessions of Subjects AA03 (a) and AA05 (b). LASSO, Ridge, and EN models test over independent test
data subset (continuous lines) versus RBG levels (open bullets). Bottom panels display two representative channels (no.2 and no.3 for subject
on the left and on the right, resp.) entering the models, where occasional spikes and jumps are evident. MARD values for the experimental
session on the right are of 53% (LASSO), 24.5% (Ridge), and 20.6% (EN), while for the experimental session on the left of 55.7% (LASSO),
34.8% (Ridge), and 34.7% (EN).

a variable selection method. If, from one side, smoother
estimates of glucose profiles are obtained with the shrinking
properties of the LASSO, sometimes this can lead to biased
estimates (see Figure 4(a)).

The Ridge model is identified minimizing the RSS cost
function subject to a bound on the 𝑙

2
norm of the coefficients.

This norm does not have the ability of inducing sparseness on
the coefficients of the multivariate linear regression model;
thus a parsimonious model is not identified and all the
predictors are kept in the model. This might cause the

estimated glucose profiles by the Ridge model to be sensitive
to occasional spikes or jumps in the multi-sensor channels,
as can be seen in Figure 4(b), where the Ridge model is
the one more sensitive among the three. However, estimated
glucose profiles by the Ridge model show accuracy indicators
slightly better than those of LASSO. This might indicate that
(a) channels discharged by the 𝑙

1
norm because sensitive to

occasional spikes or jumps actually contain useful glucose-
related information and (b) that retaining information from
all the input channels may help in compensating noisy
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Table 1: Model test performance when “part 1” of the data set
is used for model identification and “part 2” for model test. In
brackets is the complexity model parameter chosen by means of
cross-validation. Mean and standard deviation (in brackets) over
the experimental sessions for root mean squared error (RMSE),
mean absolute difference (MAD), mean absolute relative difference
(MARD), error grid analysis (EGA (Clarke)) (A + B (A) C/D/E
regions whose sum accounts for 100% of data points), continuous
error grid analysis (CEGA) (AR + BR (AR) CR/DR/ER regions whose
sum accounts for 100% of data points).

RMSE
(mg/dL)

MAD
(mg/dL)

MARD
(%)

EGA
A + B (A)
C/D/E

CEGA
AR+ BR (AR)
CR/DR/ER

LASSO 57.9 48.6 37.8 89.4 (42.2) 89.2 (62.1)
(𝑗 = 15) (27.1) (23.7) (20) 0.9/9.6/0.1 6.3/2.5/2
Ridge 52.3 44.1 35 91 (58.7) 88 (63)
(𝜆 = 5) (22.8) (19.2) (17.7) 0.1/8.9/0 4.9/4.8/2.3
EN 51.8 43.9 34.1 92.3 (59.9) 88.6 (65)
(𝜆 = 0.01;
𝛼 = 0.4) (24.3) (20.5) (17.2) 0.1/7.6/0 4.9/4.4/2.1

channels thanks to the grouping effect induced by the 𝑙
2

norm. Thus, it is reasonable to expect that a combination
of the 𝑙

1
and 𝑙
2
norms could identify a model sharing both

properties of sparseness and grouping effect.
Indeed, as mentioned before, the EN model results

outperform those of Ridge and LASSO allowing a reasonably
accurate estimation of the glucose profile concentrations
also when occasional noise is affecting some multi-sensor
channels (see Figure 4), presenting lower MARD values than
LASSO and Ridge. Thus, EN is the model presenting the best
indicators and is only slightly worse than LASSO in accuracy
for glucose trends (see CEGA results). Moreover, its clinical
accuracy in terms of Clarke error grid, with a percentage of
points within the A + B of 92.3 (see Table 1), is substantially
close to that of minimally invasive devices, spanning from
98.9 to 96.9 [53].

The good results obtained by the ENmodel are likely due
to the combination of the 𝑙

1
and 𝑙
2
norms, giving to thismodel

both the advantages of LASSO andRidge. Indeed, a limitation
of the LASSO is that, if there is a group of correlated variables,
then it tends to select only one variable from the group and
does not care which one is selected, thus lacking the ability of
revealing grouping information. On the opposite, the 𝑙

2
norm

allows all coefficients to enter the model, resulting in more
sensitive to noisy channels.Thus, the 𝑙

1
norm shrinks channel

weights to zero (eliminatingmulti-sensor channels not useful
for predicting glucose), while the 𝑙

2
norm encourages a

grouping effect (automatically including whole groups into
the model once one channel among them is selected). This
combination results in indicators outperforming those of the
other models and in estimated glucose profiles with a good
trade off between sparseness of the model coefficients and
robustness due to the grouping effect (see, e.g., Figure 4(a)).

Model test results when data subset “part 2” is used for
model identification and data subset “part 1” for model test

are comparable with those in Table 1 (not shown here for the
sake of space).

5. Conclusions

In diabetes management, tight monitoring of glycaemic
levels by CGM sensors is important for avoiding both long
and short term complications related to hyper-and hypo-
glycaemic excursions. NI-CGM devices are potentially more
appealing than the minimally invasive sensors based on
needle electrodes, but their development is challenging for
several technological and methodological reasons. In the
last years, the idea of embedding sensors of different nature
within the same device in order to obtain a better biophysical
characterisation of the skin and underlying tissues has gained
particular attention to develop NI-CGM. In these multi-
sensor approaches, a model linking the measured multi-
sensor channels to glucose is needed, together with a set of
techniques that can be used to identify its parameters. In this
work, we investigated the use of regularisation-based meth-
ods to identify the linear regression model employed in
the multi-sensor device for NI-CGM proposed in [30].
Results on 45 experimental sessions indicate that the EN
model generally outperforms the other models: thanks to the
combination of the 𝑙

1
and 𝑙
2
norms, it allows to take the

advantage of the LASSO—shrinking many model weights
to zero being more robust to possible occasional jumps or
spikes occurring on the multi-sensor data—and of the Ridge
model—averaging the contribution of correlated channels
allowing a more robust estimation of glucose profiles. With
respect to the previous sensor literature, where PLS represents
the current state of the art (see [34, 54, 55] to mention just
a few), we showed that EN can become very useful with
multi-sensor data. While retaining information from a group
of variables (as PLS does), EN also automatically selects
those channels representing the strongest effects, givingmore
insight into the specific problem at hand.

To conclude, in this work, we showed that further
increased point accuracy can be obtained through suitable
techniques for the identification of the multivariate model,
representing an important incremental step towards the
development ofNI-CGMdevices.Whilemost of the accuracy
indices of Table 1 have not yet reached a fully comparable
level with those of current enzyme-based needle sensors [53],
glucose trends estimated by the considered NI-CGM device
exhibit an acceptable accuracy (last column of Table 1). This
result could be potentially important in the treatment of
diabetes since the glucose trend can be valid adjunctive
information to complement standard SMBG devices that
measure glucose by fingerstick, for example, helping the
diabetic patient in preventing the occurrence of critical
events, such as hypoglycaemia, by exploiting the dynamic risk
concept recently developed in [56].
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