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The optimization problem for the performance of opportunistic spectrum access is considered in this study. A user, with the limited
sensing capacity, has opportunistic access to a communication system with multiple channels. The user can only choose several
channels to sense and decides whether to access these channels based on the sensing information in each time slot. Meanwhile, the
presence of sensing error is considered. A reward is obtained when the user accesses a channel. The objective is to maximize the
expected (discounted or average) reward accrued over an infinite horizon.This problem can be formulated as a partially observable
Markov decision process. This study shows the optimality of the simple and robust myopic policy which focuses on maximizing
the immediate reward. The results show that the myopic policy is optimal in the case of practical interest.

1. Introduction

There is a significant increase in the demand for radio
spectrum with the emergence of new applications and the
compelling need for mobile services in recent years. This
is partly due to the increasing interest of consumers in
convenient and ubiquitous wireless services, and the interest
has been driving the evolution of wireless networks to high
speed data networks. However, ever since the 1920s, in order
to avoid the serious interference in wireless services, the
wireless providers have been required to apply an exclusive
license from the government. Today, it is becoming very
difficult to find vacant bands to either deploy new services or
to enhance the existing ones withmost of the spectrum being
already allocated [1]. On the other hand, not every channel in
every band is in use all the time; a large number of vacant
spectrum holes can be discovered in the spectrum [2]. A
technique for opportunistic spectrum access can effectively
utilize these spectrum holes.

The spectrum sensing for detecting spectrum holes is the
precondition for opportunistic spectrum access. However,
the existing spectrum sensing techniques has to face onemain
challenge: wideband sensingwhich is hard to be implemented
for the main reason of hardware limitations [3]. The user
usually uses a tunable narrowband bandpass filter at the radio

frequency (RF) front-end to sense one channel at a time due
to the costliness of a wideband RF front-end. Consequently, it
is a lot of time delay for detecting all channels. Meng et al. [4]
study this problem with the method of compressive sensing
based on the sparse observations of sensing information.
Equipped with frequency selective filters, the sparse sensing
information vectors of multiple channels are linearly com-
bined and compressed. Multiple channels thus can be sensed
simultaneously. However, it is used in the case of less practical
interest due to the requirements of sparse observations and
frequency selective filters. The basic theory of compressive
sensing is given in the work of [5–8]. Some other studies
focus on the reliability of sensing information. Different SNR
estimations and channel fading environments are considered
in [9, 10] to improve the reliability of sensing information.
Chen [11] studies the optimum number of collaborative users
to get the tradeoff of the reliability and the complexity. The
Byzantine attackswhich come frommalicious users and carry
false sensing data are taken into account in [12].

The studies of [13–16] also exploit a method to solve the
problem of wideband sensing by estimating the information
of all channels with only a small amount of sensing results.
The sensing procedure is modeled as a partially observed
Markov decision process (POMDP). Zhao et al. [13] propose
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this idea and a myopic sensing method. Wang et al. [14]
exploit the impact of the rateless code. Lingcen et al. [15]
modify the cost function of POMDPwith the switching time.

We consider the communication system where a user
has opportunistic access to multiple channels like the model
of [13] but is limited to sensing and transmitting only on
several channels at a given time due to its hardware limitation.
Meanwhile, the presence of sensing error is also considered.
We explore the problem to maximize the performance of
opportunistic access when the past observations and the
knowledge of the stochastic properties of these channels are
given.This problem can be described as a partially observable
Markov decision process since the user does not have full
knowledge of the availabilities of all channels. We examine
the optimality of the myopic policy for this problem in this
study for the reason that the myopic policy is very simple
and robust. Specially, we show that the myopic policy is
optimal in the case of practical interest. Ahmad et al. [16]
also study the optimality of the myopic sensing. However, we
have discovered that the study of [16] is only suitable for the
special case where the one-channel myopic sensing and the
absence of sensing error are considered. If we consider the
multichannelmyopic sensing or the presence of sensing error,
the study of [16] cannot hold its conclusion.The reason is that
the mathematic method of the proof of [16] is very special for
the case of one-channel myopic sensing, and Lemmas 2, 3,
4, and 5 of [16] cannot be improved to prove the optimality
under the other conditions. We propose the proof of the
optimality of multichannel myopic sensing in the presence of
sensing error. Our mathematic method is rigorous and quite
different from the method of [16]; we use two functions to
give the proof, and the method is generally effective for such
issues.

The rest of this paper is organized as follows. We formu-
late the problem in Section 2 and give the definition of the
myopic policy in Section 3. We prove the optimality of the
myopic policy in Section 4 and extend the results from the
finite horizon to the infinite horizon. The numerical results
of the performance comparison of the myopic policy and the
optimal policy are given in Section 5, and the conclusion is
drawn in Section 6.

2. System Model

Consider a spectrum consisting of 𝑁 independent and
statistically identical wireless channels; each channel has two
states {0(𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑), 1(𝑖𝑑𝑙𝑒)}, and the state transition is given
by a two-state discrete time Markov chain shown in Figure 1.
It is supposed that these channels evolve according to a
synchronous time slot structure indexed by 𝑡, where 𝑡 =
1, 2, . . . , 𝑇. Specially, the states of all channels at time 𝑡 are
denoted by 𝑆(𝑡) = [𝑆

1
(𝑡), . . . , 𝑆

𝑁
(𝑡)], where 𝑆

𝑛
(𝑡) ∈ {0, 1}.

We consider a user seeking the spectrum holes in these
channels for opportunistic access. At the beginning of the
time slot 𝑡, the user selects a set 𝐴

1
(𝑡) of channels to sense

and a set 𝐴
2
(𝑡) of channels to access, where 𝐴

2
(𝑡) ⊆ 𝐴

1
(𝑡).

However, due to hardware limitation, |𝐴
1
(𝑡)| and |𝐴

2
(𝑡)| are

usually much smaller than 𝑁. The user can only sense the
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Figure 1: State transition of channels.

channels in 𝐴
1
(𝑡) and does not have the states of all channels

𝑆(𝑡), when a decision is made at time 𝑡. Consequently, the
spectrum is not fully observable to the users. For clarity,
we use 𝑎(𝑡) = {𝐴

1
(𝑡), 𝐴
2
(𝑡)} to denote the action of the

user at time 𝑡 and use ℎ
𝐴
1
(𝑡)
(𝑡) = [ℎ

𝑖
1

(𝑡), . . . , ℎ
𝑖
|𝐴1(𝑡)|

(𝑡)] to
denote the sensing information of channels, where ℎ

𝐴
1
(𝑡)
(𝑡) ∈

{0, 1}
|𝐴
1
(𝑡)| and 𝑖

𝑘
is the index of the channel in 𝐴

1
(𝑡).

Specially, we cannot guarantee the absolute reliability of the
sensing information in the presence of sensing error; the
detection and false alarm probabilities should be taken into
account. Here, the detection probability denoted by 𝑝𝑖𝑘

𝑑
(𝑡)

and the false alarm probability denoted by 𝑝𝑖𝑘
𝑓
(𝑡) [17] are the

conditional probabilities that the state of the channel 𝑖
𝑘
is

actually 0(𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑) when the observations are 0(𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑)
and 1(𝑖𝑑𝑙𝑒), respectively.

For making the optimal decision, a sufficient statistic of
this system denoted by Λ(𝑡) = [𝜆

1
(𝑡), . . . , 𝜆

𝑁
(𝑡)] is given,

where 𝜆
𝑛
(𝑡) is the conditional probability that the channel 𝑛 is

idle at the beginning of the time slot 𝑡 given all past observa-
tions and actions, and this conditional probability is called the
idle conditional probability. Due to the Markovian property
of the channels, the future idle conditional probability is only
a function of the current idle conditional probability and the
action.

Proposition 1. The relationship betweenΛ(𝑡) andΛ(𝑡+1) can
be given by (3).

Proof. We first consider case 1 that 𝑛 ∈ 𝐴
1
(𝑡) and ℎ

𝑛
(𝑡) = 1

to simplify the proof; the events 𝑆
𝑛
(𝑡 + 1) = 1, 𝑆

𝑛
(𝑡) = 1,

𝑆
𝑛
(𝑡) = 0, and ℎ

𝑛
(𝑡) = 1 are denoted by 𝐴, 𝐵

1
, 𝐵
2
, and 𝐶,

respectively. The value of 𝜆
𝑛
(𝑡 + 1) in case 1 can be replaced

by 𝑃{𝐴 | 𝐶}; then we can get

𝑃 {𝐴 | 𝐶} = ∑

𝑖={1,2}

𝑃 {𝐴, 𝐵
𝑖
| 𝐶}

= ∑

𝑖={1,2}

𝑃 {𝐵
𝑖
, 𝐶}

𝑃 {𝐶}

𝑃 {𝐴, 𝐵
𝑖
, 𝐶}

𝑃 {𝐵
𝑖
, 𝐶}

= ∑

𝑖={1,2}

𝑃 {𝐵
𝑖
| 𝐶} 𝑃 {𝐴 | 𝐵

𝑖
, 𝐶} .

(1)

Since 𝐴 is independent of 𝐶 when 𝐵
𝑖
has been deter-

mined, we can get

𝑃 {𝐴 | 𝐶} = ∑

𝑖={1,2}

𝑃 {𝐵
𝑖
| 𝐶} 𝑃 {𝐴 | 𝐵

𝑖
}

= 𝑝
11
(1 − 𝑝

𝑛

𝑓
(𝑡)) + 𝑝

01
𝑝
𝑛

𝑓
(𝑡)

(2)
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𝜆
𝑛
(𝑡 + 1) =

{{{{{{{{{

{{{{{{{{{

{

𝑃 {𝑆
𝑛
(𝑡 + 1) = 1 | ℎ

𝑛
(𝑡) = 1}

if 𝑛 ∈ 𝐴
1
(𝑡) , ℎ

𝑛
(𝑡) = 1

𝑃 {𝑆
𝑛
(𝑡 + 1) = 1 | ℎ

𝑛
(𝑡) = 0}

if 𝑛 ∈ 𝐴
1
(𝑡) , ℎ

𝑛
(𝑡) = 0

𝑃 {𝑆
𝑛
(𝑡 + 1) = 1 | 𝜆

𝑛
(𝑡)}

if 𝑛 ∉ 𝐴
1
(𝑡)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

𝑃 {𝑆
𝑛
(𝑡 + 1) = 1 | 𝑆

𝑛
(𝑡) = 1}

×𝑃 {𝑆
𝑛
(𝑡) = 1 | ℎ

𝑛
(𝑡) = 1}

+𝑃 {𝑆
𝑛
(𝑡 + 1) = 1 | 𝑆

𝑛
(𝑡) = 0}

×𝑃 {𝑆
𝑛
(𝑡) = 0 | ℎ

𝑛
(𝑡) = 1}

if 𝑛 ∈ 𝐴
1
(𝑡) , ℎ

𝑛
(𝑡) = 1

𝑃 {𝑆
𝑛
(𝑡 + 1) = 1 | 𝑆

𝑛
(𝑡) = 1}

×𝑃 {𝑆
𝑛
(𝑡) = 1 | ℎ

𝑛
(𝑡) = 0}

+𝑃 {𝑆
𝑛
(𝑡 + 1) = 1 | 𝑆

𝑛
(𝑡) = 0}

×𝑃 {𝑆
𝑛
(𝑡) = 0 | ℎ

𝑛
(𝑡) = 0}

if 𝑛 ∈ 𝐴
1
(𝑡) , ℎ

𝑛
(𝑡) = 0

𝑃 {𝑆
𝑛
(𝑡 + 1) = 1 | 𝑆

𝑛
(𝑡) = 1}

×𝑃 {𝑆
𝑛
(𝑡) = 1 | 𝜆

𝑛
(𝑡)}

+𝑃 {𝑆
𝑛
(𝑡 + 1) = 1 | 𝑆

𝑛
(𝑡) = 0}

×𝑃 {𝑆
𝑛
(𝑡) = 0 | 𝜆

𝑛
(𝑡)}

if 𝑛 ∉ 𝐴
1
(𝑡)

=

{{{{{{{{{

{{{{{{{{{

{

𝑝
11
(1 − 𝑝

𝑛

𝑓
(𝑡)) + 𝑝

01
𝑝
𝑛

𝑓
(𝑡)

if 𝑛 ∈ 𝐴
1
(𝑡) , ℎ

𝑛
(𝑡) = 1

𝑝
11
(1 − 𝑝

𝑛

𝑑
(𝑡)) + 𝑝

01
𝑝
𝑛

𝑑
(𝑡)

if 𝑛 ∈ 𝐴
1
(𝑡) , ℎ

𝑛
(𝑡) = 0

𝑝
11
𝜆
𝑛
(𝑡) + 𝑝

01
(1 − 𝜆

𝑛
(𝑡))

if 𝑛 ∉ 𝐴
1
(𝑡) .

(3)

The proofs of the other cases are similar.

The objective of the user is to maximize its total (dis-
counted or average) expected reward; let 𝐽𝜋

𝛼
(Λ(1)) and

𝐽
𝜋
(Λ(1)) [18] denote the rewards, respectively. Here, 𝜋

denotes the policy of the user,𝛼denotes the discounted factor,
Λ(1) is the initial probability distribution of all channels,
and 𝐸𝜋

Λ(1)
represents the mathematical expectation which is

determined by the initial probability distribution Λ(1) and
the policy 𝜋. Consequently, 𝐽𝜋

𝛼
(Λ(1)) and 𝐽𝜋(Λ(1)) denote the

discounted and average reward with the initial probability
distribution Λ(1) and the policy 𝜋, respectively.

An optimal policy should maximize the reward of the
user, and this optimization problem can be formally defined
as follows:

max
𝜋
𝐽
𝜋

𝛼
(Λ (1)) = max

𝜋
𝐸
𝜋

Λ(1)
[ lim
𝑇→+∞

𝑇

∑

𝑡=1

𝛼
𝑡−1
𝑟 (Λ (𝑡) , 𝑎 (𝑡))] ,

max
𝜋
𝐽
𝜋
(Λ (1)) = max

𝜋
lim sup
𝑇→+∞

1

𝑇
𝐸
𝜋

Λ(1)
[

𝑇

∑

𝑡=1

𝑟 (Λ (𝑡) , 𝑎 (𝑡))] ,

(4)

where 𝑟(Λ(𝑡), 𝑎(𝑡)) denotes the immediate reward when
the user implements the action 𝑎(𝑡), and we think that
each channel to be accessed brings 1 unit of reward; thus

𝑟(Λ(𝑡), 𝑎(𝑡)) = |𝐴
2
(𝑡)|. However, there is a selection problem

of 𝐴
2
(𝑡). Without loss of generality and for the greedy

approach, all the channels whose states are sensed as 1 in
𝐴
1
(𝑡) are selected into 𝐴

2
(𝑡).

Then, we can give a recursive expression of the reward
function:

𝑅
𝑇
(Λ (𝑇)) = max

𝑎(𝑇)

𝐸 [𝑟 (Λ (𝑇) , 𝑎 (𝑇))]

𝑅
𝑡
(Λ (𝑡))

= max
𝑎(𝑡)

𝐸 [𝑟 (Λ (𝑡) , 𝑎 (𝑡)) + 𝛼𝑅
𝑡+1
(Λ (𝑡 + 1))]

= max
𝑎(𝑡)

{

{

{

∑

𝑖∈𝐴
1
(𝑡)

𝜆
𝑖
(𝑡) + 𝛼

× ∑

𝐴
2
(𝑡)⊆𝐴

1
(𝑡)

[

[

( ∏

𝑗∈𝐴
2(𝑡)

𝜆
𝑗
(𝑡))

× ( ∏

𝑘∉𝐴
2(𝑡),𝑘∈𝐴1(𝑡)

(1 − 𝜆
𝑘
(𝑡)))

×𝑅
𝑡+1
(Λ (𝑡 + 1) | 𝑎 (𝑡)) ]

]

}

}

}

,

(5)
where 𝐸[𝑟(Λ(𝑡), 𝑎(𝑡))] denotes the mathematical expectation
of the immediate reward in the time slot 𝑡, 𝑅

𝑡
(Λ(𝑡)) denotes

the maximum expected reward that is accrued from time 𝑡 to
𝑇. Specially, 𝑅

1
(Λ(1)) = max

𝜋
𝐽
𝜋

𝛼
(Λ(1))when 𝑇 → +∞.This

proposition is proved in Section 4.3.

3. Myopic Policy

The myopic policy is essentially a greedy policy which
maximizes the immediate expected reward in each time slot
and ignores the future reward; this greedy policy has the
minimal time complexity and computational complexity.The
expression of the myopic policy can be given by
𝑎 (𝑡) = argmax

𝑎(𝑡)

𝐸 [𝑟 (Λ (𝑡) , 𝑎 (𝑡))] = argmax
𝑎(𝑡)

∑

𝑖∈𝐴
1
(𝑡)

𝜆
𝑖
(𝑡) .

(6)
We can discover that the channels which have the |𝐴

1
(𝑡)|

largest conditional probabilities inΛ(𝑡) are selected into𝐴
1
(𝑡)

by the myopic policy. Consequently, the successive update of
the idle conditional probability vectorΛ(𝑡) can determine the
action of the myopic policy at time 𝑡.

In particular, if 1 − 𝑝𝑛
𝑓
(𝑡) is larger than all the idle

conditional probabilities and 1 − 𝑝𝑛
𝑑
(𝑡) is smaller than all the

idle conditional probabilities for any 𝑛, the myopic policy
requires only the initial condition Λ(1) but not the precise
values of {Λ(2), Λ(3), . . .}. To give an explanation, we first
simplify the expression of (3) by defining a function 𝑓(𝑥) =
𝑝
11
𝑥 + 𝑝
01
(1 − 𝑥):

𝜆
𝑛
(𝑡 + 1) =

{{

{{

{

𝑓(1 − 𝑝
𝑛

𝑓
(𝑡)) if 𝑛 ∈ 𝐴

1
(𝑡) , ℎ

𝑛
(𝑡) = 1

𝑓 (1 − 𝑝
𝑛

𝑑
(𝑡)) if 𝑛 ∈ 𝐴

1
(𝑡) , ℎ

𝑛
(𝑡) = 0

𝑓 (𝜆
𝑛
(𝑡)) if 𝑛 ∉ 𝐴

1
(𝑡) .

(7)



4 Journal of Applied Mathematics

Due to the monotonicity of 𝑓(𝑥), 𝑓(𝑥) is a monotonically
increasing function when 𝑝

11
≥ 𝑝
01
. The ordering of the

idle conditional probabilities can be preserved when they are
updated for the reason that 𝑓(𝜆

𝑖
(𝑡)) ≥ 𝑓(𝜆

𝑗
(𝑡)) if 𝜆

𝑖
(𝑡) ≥

𝜆
𝑗
(𝑡). If a channel is selected into 𝐴

1
(𝑡), its idle conditional

probability will become 1 − 𝑝𝑛
𝑓
(𝑡) when it is observed as 1, or

1 − 𝑝
𝑛

𝑑
(𝑡) when the observation is 0. That is, the channel has

the largest idle conditional probability if it is observed as 1,
or the smallest idle conditional probability if it is observed
as 0. The myopic policy can create a list which preserves
the ordering of the idle conditional probabilities according
to the initial condition Λ(1). After each update in each time
slot, the channels which are not observed do not change the
list, the channels which are observed as 1 are selected into
𝐴
2
(𝑡) and moved to the top of the list, and the channels

which are observed as 0 are moved to the bottom of the list.
Consequently, the myopic policy does not require the precise
values of the updated idle conditional probabilities in this
case.

We have an opposite situation when 𝑝
11
< 𝑝
01
, 𝑓(𝑥) is a

monotonically decreasing function. The ordering of the idle
conditional probabilities should be reversed when they are
updated for the reason that 𝑓(𝜆

𝑖
(𝑡)) ≥ 𝑓(𝜆

𝑗
(𝑡)) if 𝜆

𝑖
(𝑡) ≤

𝜆
𝑗
(𝑡). The myopic policy also creates a list which preserve

the ordering of the idle conditional probabilities. After each
update in each time slot, the channels which are not observed
reverse their locations, the channels which are observed as
1 are moved to the bottom of the list, and the channels
which are observed as 0 are moved to the top of the list.
Consequently, the myopic policy also does not require the
precise values of the updated idle conditional probabilities in
this case.

4. Optimality of Myopic Policy

In order to show the optimality of the myopic policy, we first
define two functions which can denote the expected rewards
obtained by the myopic policy and the arbitrary policy:

𝑈
𝑡
(Λ) = 𝑈

𝑡
({𝜆
1
, . . . , 𝜆

𝑁
})

= (𝜆
𝑁−|𝐴

𝑈

1
|+1
+ ⋅ ⋅ ⋅ + 𝜆

𝑁
) + 𝛼

× ∑

𝐴
𝑈

2
⊆𝐴
𝑈

1

[

[

(∏

𝑗∈𝐴
𝑈

2

𝜆
𝑗
)( ∏

𝑘∉𝐴
𝑈

2
,𝑘∈𝐴
𝑈

1

(1 − 𝜆
𝑘
))

× 𝑈
𝑡+1
( {𝑓 (1 − 𝑝

𝑘

𝑑
) | 𝑘 ∉ 𝐴

𝑈

2
, 𝑘 ∈ 𝐴

𝑈

1
}

⋃{𝑓 (𝜆
𝑖
) | 𝑖 ∉ 𝐴

𝑈

1
}

⋃{𝑓(1 − 𝑝
𝑗

𝑓
) | 𝑗 ∈ 𝐴

𝑈

2
})]

]

𝑈
𝑇
({𝜆
1
, . . . , 𝜆

𝑁
}) = 𝜆

𝑁−|𝐴
𝑈

1
|+1
+ ⋅ ⋅ ⋅ + 𝜆

𝑁
,

(8)

where 𝑈
𝑡
denotes the expected total reward obtained by the

myopic policy from time 𝑡 on. Λ denotes the sequence of the
idle conditional probabilities of all channels; it is reordered
to {𝜆
1
, . . . , 𝜆

𝑁
} by 𝑈

𝑡
and 𝜆

1
≤ ⋅ ⋅ ⋅ ≤ 𝜆

𝑁
. 𝐴𝑈
1
denotes the set

{𝑁 − |𝐴
𝑈

1
| + 1, . . . , 𝑁} of channels which have been chosen

to sense by the myopic policy. 𝐴𝑈
2
denotes the set of channels

which have been chosen to access:

𝑊
𝑡
(Λ) = 𝑊

𝑡
({𝜆
𝑗
1

, . . . , 𝜆
𝑗
𝑁−|𝐴
𝑊

1
|

, 𝜆
𝑖
1

, . . . , 𝜆
𝑖
|𝐴
𝑊

1
|

})

= (𝜆
𝑖
1

+ ⋅ ⋅ ⋅ + 𝜆
𝑖
|𝐴
𝑊

1
|

) + 𝛼

× ∑

𝐴
𝑊

2
⊆𝐴
𝑊

1

[

[

(∏

𝑗∈𝐴
𝑊

2

𝜆
𝑗
)( ∏

𝑘∉𝐴
𝑊

2
,𝑘∈𝐴
𝑊

1

(1 − 𝜆
𝑘
))

× 𝑈
𝑡+1
( {𝑓 (1 − 𝑝

𝑘

𝑑
) | 𝑘 ∉ 𝐴

𝑊

2
, 𝑘 ∈ 𝐴

𝑊

1
}

⋃{𝑓 (𝜆
𝑖
) | 𝑖 ∉ 𝐴

𝑊

1
}

⋃{𝑓(1 − 𝑝
𝑗

𝑓
) | 𝑗 ∈ 𝐴

𝑊

2
})]

]

𝑊
𝑇
({𝜆
𝑗
1

, . . . , 𝜆
𝑗
𝑁−|𝐴
𝑊

1
|

, 𝜆
𝑖
1

, . . . , 𝜆
𝑖
|𝐴
𝑊

1
|

})

= 𝜆
𝑖
1

+ ⋅ ⋅ ⋅ + 𝜆
𝑖
|𝐴
𝑊

1
|

,

(9)

where𝑊
𝑡
denotes the expected total reward obtained by the

arbitrary policy at time 𝑡 and the myopic policy from time
𝑡 + 1 on. Λ denotes the sequence of the idle conditional
probabilities of all channels. The channels corresponding
to its last entries {𝜆

𝑖
1

, . . . , 𝜆
𝑖
|𝐴
𝑊

1
|

} are selected into 𝐴𝑊
1
. The

arbitrary set 𝐴𝑊
1
is corresponding to the arbitrary policy. 𝐴𝑊

1

denotes the set {𝑖
1
, . . . , 𝑖

|𝐴
𝑊

1
|
} of channels which have been

chosen to sense by the arbitrary policy. 𝐴𝑊
2
denotes the set

of channels which have been chosen to access.
In particular,

𝑊
𝑡
({𝜆
1
, . . . , 𝜆

𝑁
}) = 𝑈

𝑡
(Λ) . (10)

Theorem 2. When 𝑇 is finite, the optimality of the myopic
policy at times 1, 2, . . . , 𝑇 is equivalent to

𝑊
𝑡
(Λ) ≤ 𝑈

𝑡
(Λ) (11)

for any 𝐴𝑊
1
and 𝑡 = 1, 2, . . . , 𝑇.

Proof. We first prove the sufficiency inductively. The myopic
policy is optimal at time 𝑇 for the reasons that 𝑈

𝑇
is larger

than any𝑊
𝑇
and𝑊

𝑇
obtained by the arbitrary policy.

Then, we suppose that the myopic policy is optimal at
time 𝑡 + 1. We have that 𝑊

𝑡
is larger than the reward

obtained by the same policy at time 𝑡 and the arbitrary
policy from time 𝑡 + 1 due to the induction hypothesis, and
the immediate reward obtained by the myopic policy is the
largest. Consequently, 𝑈

𝑡
is larger than any 𝑊

𝑡
. 𝑈
𝑡
is thus

larger than the reward obtained by the arbitrary policy. The
myopic policy is optimal at time 𝑡.The proof of the sufficiency
is complete.

The proof of the necessity can also be obtained due to the
optimality of the myopic policy.

Lemma 3. 𝑈
𝑡
and 𝑊

𝑡
are 𝑁 variable functions which are

polynomial of order 1 for 𝑡 = 1, . . . , 𝑇.
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Proof. We prove this by induction over time 𝑡.𝑈
𝑇
and𝑊

𝑇
are

polynomial of order 1 due to their definitions.
We suppose that𝑈

𝑡+1
and𝑊

𝑡+1
are polynomial of order 1.

We have that 𝑈
𝑡+1
({𝑓(1 − 𝑝

𝑘

𝑑
) | 𝑘 ∉ 𝐴

𝑈

2
, 𝑘 ∈ 𝐴

𝑈

1
}⋃{𝑓(𝜆

𝑖
) |

𝑖 ∉ 𝐴
𝑈

1
}⋃{𝑓(1 − 𝑝

𝑗

𝑓
) | 𝑗 ∈ 𝐴

𝑈

2
}) and 𝑈

𝑡+1
({𝑓(1 − 𝑝

𝑘

𝑑
) | 𝑘 ∉

𝐴
𝑊

2
, 𝑘 ∈ 𝐴

𝑊

1
}⋃{𝑓(𝜆

𝑖
) | 𝑖 ∉ 𝐴

𝑊

1
}⋃{𝑓(1 − 𝑝

𝑗

𝑓
) | 𝑗 ∈ 𝐴

𝑊

2
}) are

polynomial of order 1 for the reason that𝑓 is a linear function.
Consequently,𝑈

𝑡
and𝑊

𝑡
are polynomial of order 1.The proof

is complete.

4.1. The Case of 𝑝
11
≥ 𝑝
01

Assumption 4. The transition probabilities 𝑝
11

and 𝑝
01

are
such that 𝑝

11
≥ 𝑝
01
.

The function 𝑓 is monotonically increasing under
Assumption 4. For any 𝑥, 𝑦 ∈ [0, 1] and 𝑥 ≤ 𝑦, we have
𝑓(0) ≤ 𝑓(𝑥) ≤ 𝑓(𝑦) ≤ 𝑓(1).

Assumption 5. We assume that for any discounted factor 𝛼 ∈
[0, 1] and all the idle conditional probabilities, the detection
probability𝑝

𝑑
and the false alarm probability𝑝

𝑓
are such that

1 + 𝛼 ∑

𝐴
2
⊆𝐴
1

[

[

(∏

𝑗∈𝐴
2

𝜆
𝑗
)

×( ∏

𝑘∉𝐴
2
,𝑘∈𝐴
1

(1 − 𝜆
𝑘
)) (𝑝

𝑑
− 𝑝
𝑓
− 1)]

]

≥ 0.

(12)
For

∑

𝐴
2
⊆𝐴
1

[

[

(∏

𝑗∈𝐴
2

𝜆
𝑗
)( ∏

𝑘∉𝐴
2
,𝑘∈𝐴
1

(1 − 𝜆
𝑘
))]

]

= 1, (13)

we can rewrite Assumption 5 as follows

1 + 𝛼 (𝑝
𝑑
− 𝑝
𝑓
− 1) ≥ 0

󳨐⇒ 𝑝
𝑑
− 𝑝
𝑓
≥ 1 −

1

𝛼
.

(14)

Assumption 5 is used to limit the reliability of the sensing
information; we cannot make the optimal decision if the
information is very unreliable. 𝑝

𝑑
equals 1 and 𝑝

𝑓
equals 0

in the absence of sensing error; Assumption 5 is always true.

Theorem 6. The myopic policy is optimal under Assumptions
4 and 5 when 𝑇 is finite.

To prove this theorem, one should show that 𝑈
𝑡
is larger

than any 𝑊
𝑡
for 𝑡 = 1, . . . , 𝑇 according to Theorem 2. One

proves this inductively. Given that 𝑈
𝑖
is larger than any𝑊

𝑖
for

𝑖 = 𝑡 + 1, . . . , 𝑇, one wants to show that 𝑈
𝑡
is larger than any

𝑊
𝑡
. This relies on a number of lemmas introduced below.

Lemma 7. For all 𝜆
𝑥
≥ 𝜆
𝑦
, 𝑥, 𝑦 ∈ 𝐴𝑊

1
, one has

𝑊
𝑡
({𝜆
𝑗
1

, . . . , 𝜆
𝑗
𝑁−|𝐴
𝑊

1
|

, . . . , 𝜆
𝑥
, 𝜆
𝑦
, . . .})

= 𝑊
𝑡
({𝜆
𝑗
1

, . . . , 𝜆
𝑗
𝑁−|𝐴
𝑊

1
|

, . . . , 𝜆
𝑦
, 𝜆
𝑥
, . . .}) .

(15)

Lemma 8. For any 𝜆
𝑗
1

≤ ⋅ ⋅ ⋅ ≤ 𝜆
𝑥
≤ 𝜆
𝑦
≤ ⋅ ⋅ ⋅ ≤ 𝜆

𝑗
𝑁−|𝐴
𝑊

1
|

and
𝜆
𝑖
1

≤ ⋅ ⋅ ⋅ ≤ 𝜆
𝑖
|𝐴
𝑊

1
|

, one has

𝑊
𝑡
({. . . , 𝜆

𝑥
, 𝜆
𝑦
, . . . , 𝜆

𝑖
1

, . . . , 𝜆
𝑖
|𝐴
𝑊

1
|

})

= 𝑊
𝑡
({. . . , 𝜆

𝑦
, 𝜆
𝑥
, . . . , 𝜆

𝑖
1

, . . . , 𝜆
𝑖
|𝐴
𝑊

1
|

}) .

(16)

Proof. Lemmas 7 and 8 are true according to the definition of
𝑊
𝑡
.

Lemma 9. One has

𝑊
𝑡
({𝜆
𝑗
1

, . . . , 𝜆
𝑗
𝑁−|𝐴
𝑊

1
|

, 𝜆
𝑖
1

, . . . , 𝜆
𝑖
|𝐴
𝑊

1
|

})

−𝑊
𝑡
({𝜆
𝑗
1

, . . . , 𝜆
𝑖
1

, 𝜆
𝑗
𝑁−|𝐴
𝑊

1
|

, . . . , 𝜆
𝑖
|𝐴
𝑊

1
|

})

= (𝜆
𝑖
1

− 𝜆
𝑗
𝑁−|𝐴
𝑊

1
|

)

× [𝑊
𝑡
({𝜆
𝑗
1

, . . . , 0, 1, . . . , 𝜆
𝑖
|𝐴
𝑊

1
|

})

−𝑊
𝑡
({𝜆
𝑗
1

, . . . , 1, 0, . . . , 𝜆
𝑖
|𝐴
𝑊

1
|

})] .

(17)

Proof. We use LHS and RHS to denote the left-hand side
and the right-hand side of the equation, respectively. We can
prove that 𝑊

𝑡
({𝜆
𝑗
1

, . . . , 𝜆
𝑗
𝑁−|𝐴
𝑊

1
|

, 𝜆
𝑖
1

, . . . , 𝜆
𝑖
|𝐴
𝑊

1
|

}) is the first-
order function of 𝜆

𝑗
𝑁−|𝐴
𝑊

1
|

and 𝜆
𝑖
1

according to Lemma 3.
Consequently, we can suppose that

𝑊
𝑡
({𝜆
𝑗
1

, . . . , 𝜆
𝑗
𝑁−|𝐴
𝑊

1
|

, 𝜆
𝑖
1

, . . . , 𝜆
𝑖
|𝐴
𝑊

1
|

})

= 𝑎𝜆
𝑗
𝑁−|𝐴
𝑊

1
|

+ 𝑏𝜆
𝑖
1

+ 𝑐𝜆
𝑗
𝑁−|𝐴
𝑊

1
|

𝜆
𝑖
1

+ 𝑑,

(18)

where 𝑎, 𝑏, 𝑐, and 𝑑 are irrelevant with 𝜆
𝑗
𝑁−|𝐴
𝑊

1
|

and 𝜆
𝑖
1

.
Consequently, we have that

LHS = (𝑎𝜆
𝑗
𝑁−|𝐴
𝑊

1
|

+ 𝑏𝜆
𝑖
1

+ 𝑐𝜆
𝑗
𝑁−|𝐴
𝑊

1
|

𝜆
𝑖
1

+ 𝑑)

− (𝑎𝜆
𝑖
1

+ 𝑏𝜆
𝑗
𝑁−|𝐴
𝑊

1
|

+ 𝑐𝜆
𝑗
𝑁−|𝐴
𝑊

1
|

𝜆
𝑖
1

+ 𝑑)

= (𝑎 − 𝑏) (𝜆
𝑗
𝑁−|𝐴
𝑊

1
|

− 𝜆
𝑖
1

) ,

(19)

RHS = (𝜆
𝑖
1

− 𝜆
𝑗
𝑁−|𝐴
𝑊

1
|

)

× [(𝑎0 + 𝑏1 + 𝑐0 × 1 + 𝑑)

− (𝑎1 + 𝑏0 + 𝑐0 × 1 + 𝑑)]

= (𝑎 − 𝑏) (𝜆
𝑗
𝑁−|𝐴
𝑊

1
|

− 𝜆
𝑖
1

) = LHS.

(20)

The proof is complete.

Lemma 10. Consider Assumption 4. One has

𝑈
𝑡
({𝜆
1

𝑧
, 𝜆
1
, . . . , 𝜆

𝑁−1
})

− 𝑈
𝑡
({𝜆
1
, . . . , 𝜆

𝑖
, 𝜆
2

𝑧
, 𝜆
𝑖+1
, . . . , 𝜆

𝑁−1
})

≥ 𝜆
1

𝑧
− 𝜆
2

𝑧

(21)

for any 𝜆1
𝑧
≤ 𝜆
1
≤ ⋅ ⋅ ⋅ ≤ 𝜆

2

𝑧
≤ ⋅ ⋅ ⋅ ≤ 𝜆

𝑁−1
.
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Proof. We use LHS to denote the left-hand side of the
inequality. We use 𝑓𝑛(𝑥) to denote 𝑓(𝑓(⋅ ⋅ ⋅ 𝑓(𝑥) ⋅ ⋅ ⋅ )):

𝑓
𝑛
(𝑥) = (𝑝

11
− 𝑝
01
)
𝑛

𝑥 + (𝑝
11
− 𝑝
01
)
𝑛−1

𝑝
01
+ ⋅ ⋅ ⋅ + 𝑝

01

𝑓
𝑛
(𝑥) − 𝑓

𝑛
(𝑦) = (𝑝

11
− 𝑝
01
)
𝑛

(𝑥 − 𝑦) .

(22)

Consequently, we have

𝑓
𝑛
(𝑥) − 𝑓

𝑛
(𝑦) ≥ ⋅ ⋅ ⋅ ≥ 𝑓 (𝑥) − 𝑓 (𝑦) ≥ 𝑥 − 𝑦 (23)

for any 𝑥 ≤ 𝑦. Therefore, we have

LHS ≥ (𝜆
𝑖
− 𝜆
2

𝑧
) + (𝜆

𝑖−1
− 𝜆
𝑖
) + ⋅ ⋅ ⋅ + (𝜆

1

𝑧
− 𝜆
1
)

≥ 𝜆
1

𝑧
− 𝜆
2

𝑧
.

(24)

Lemma 11. Consider Assumptions 4 and 5. For any 𝜆
𝑗
1

≤ ⋅ ⋅ ⋅ ≤

𝜆
𝑗
𝑁−|𝐴
𝑊

1
|

and 𝜆
𝑖
1

≤ ⋅ ⋅ ⋅ ≤ 𝜆
𝑖
|𝐴
𝑊

1
|

, if 𝜆
𝑗
𝑁−|𝐴
𝑊

1
|

≥ 𝜆
𝑖
1

, one has

𝑊
𝑡
({𝜆
𝑗
1

, . . . , 𝜆
𝑗
𝑁−|𝐴
𝑊

1
|

, 𝜆
𝑖
1

, . . . , 𝜆
𝑖
|𝐴
𝑊

1
|

})

≤ 𝑊
𝑡
({𝜆
𝑗
1

, . . . , 𝜆
𝑖
1

, 𝜆
𝑗
𝑁−|𝐴
𝑊

1
|

, . . . , 𝜆
𝑖
|𝐴
𝑊

1
|

}) .

(25)

Proof. The inequality is true at time 𝑇. We have the following
equation for any time 𝑡 < 𝑇 according to Lemma 9:

𝑊
𝑡
({𝜆
𝑗
1

, . . . , 𝜆
𝑗
𝑁−|𝐴
𝑊

1
|

, 𝜆
𝑖
1

, . . . , 𝜆
𝑖
|𝐴
𝑊

1
|

})

−𝑊
𝑡
({𝜆
𝑗
1

, . . . , 𝜆
𝑖
1

, 𝜆
𝑗
𝑁−|𝐴
𝑊

1
|

, . . . , 𝜆
𝑖
|𝐴
𝑊

1
|

})

= (𝜆
𝑖
1

− 𝜆
𝑗
𝑁−|𝐴
𝑊

1
|

)

× [𝑊
𝑡
({𝜆
𝑗
1

, . . . , 0, 1, . . . , 𝜆
𝑖
|𝐴
𝑊

1
|

})

−𝑊
𝑡
({𝜆
𝑗
1

, . . . , 1, 0, . . . , 𝜆
𝑖
|𝐴
𝑊

1
|

})] .

(26)

Because 𝜆
𝑗
𝑁−|𝐴
𝑊

1
|

≥ 𝜆
𝑖
1

, 𝜆
𝑖
1

−𝜆
𝑗
𝑁−|𝐴
𝑊

1
|

≤ 0, we use LHS to denote
𝑊
𝑡
({𝜆
𝑗
1

, . . . , 0, 1, . . . , 𝜆
𝑖
|𝐴
𝑊

1
|

}) − 𝑊
𝑡
({𝜆
𝑗
1

, . . . , 1, 0, . . . , 𝜆
𝑖
|𝐴
𝑊

1
|

}).
According to the definition of𝑊

𝑡
, we have

LHS = 1 + 𝛼

× ∑

𝐴
𝑊

2
⊆𝐴
𝑊

1

[

[

( ∏

𝑗∈𝐴
𝑊

2
−{𝑖1}

𝜆
𝑗
)

×( ∏

𝑘∉𝐴
𝑊

2
,𝑘∈𝐴
𝑊

1
−{𝑖1}

(1 − 𝜆
𝑘
))

× (𝑈
𝑡+1
({𝑓 (1 − 𝑝

𝑖
1

𝑓
)}

⋃{𝑓(1 − 𝑝
𝑗

𝑓
) | 𝑗 ∉ 𝐴

𝑊

2
− {𝑖
1
}}

⋃{𝑓 (𝜆
𝑖
) | 𝑖 ∉ 𝐴

𝑊

1
}

⋃{𝑓 (1 − 𝑝
𝑘

𝑑
) | 𝑘 ∉ 𝐴

𝑊

2
,

𝑘 ∈ 𝐴
𝑊

1
− {𝑖
1
}}

⋃{𝑓 (𝜆
𝑖
) | 𝑖 ∉ 𝐴

𝑊

1
}

⋃{𝑓(1 − 𝑝
𝑗

𝑓
) | 𝑗 ∈ 𝐴

𝑊

2
− {𝑖
1
}}

⋃{𝑓(1 − 𝑝
𝑖
1

𝑓
)})

− 𝑈
𝑡+1
({𝑓(1 − 𝑝

𝑗
𝑁−|𝐴
𝑊

1
|

𝑑
)}

⋃{𝑓 (1 − 𝑝
𝑘

𝑑
) | 𝑘 ∉ 𝐴

𝑊

2
,

𝑘 ∈ 𝐴
𝑊

1
− {𝑖
1
}}

⋃{𝑓 (𝜆
𝑖
) | 𝑖 ∉ 𝐴

𝑊

1
}

⋃{𝑓(1 − 𝑝
𝑗

𝑓
) | 𝑗 ∈ 𝐴

𝑊

2
− {𝑖
1
}}

⋃{𝑓 (1)} ) )]

]

.

(27)

According to Lemma 10, we have

LHS ≥ 1

+ 𝛼 ∑

𝐴
𝑊

2
⊆𝐴
𝑊

1

[

[

( ∏

𝑗∈𝐴
𝑊

2
−{𝑖1}

𝜆
𝑗
)

×( ∏

𝑘∉𝐴
𝑊

2
,𝑘∈𝐴
𝑊

1
−{𝑖1}

(1 − 𝜆
𝑘
))

×((0− (1 − 𝑝

𝑗
𝑁−|𝐴
𝑊

1
|

𝑑
)) + (1−𝑝

𝑖
1

𝑓
−1))]

]

.

(28)

Consequently, LHS ≥ 0 under Assumption 5:

(𝜆
𝑖
1

− 𝜆
𝑗
𝑁−|𝐴
𝑊

1
|

) LHS ≤ 0. (29)

The proof is complete.

Now we can give the proof ofTheorem 6 with Lemmas 7,
8, and 11.

Proof. 𝑊
𝑇
≤ 𝑈
𝑇
due to their definitions. For any time 𝑡 < 𝑇,

𝜆
𝑗
1

≤ ⋅ ⋅ ⋅ ≤ 𝜆
𝑗
𝑁−|𝐴
𝑊

1
|

, 𝜆
𝑖
1

≤ ⋅ ⋅ ⋅ ≤ 𝜆
𝑖
|𝐴
𝑊

1
|

, and 𝜆
1
≤ ⋅ ⋅ ⋅ ≤ 𝜆

𝑁
, we

have

𝑊
𝑡
({𝜆
1
, . . . , 𝜆

𝑖−1
, 𝜆
𝑖+1
, . . . , 𝜆

𝑁
, 𝜆
𝑖
})

≤ 𝑊
𝑡
({𝜆
1
, . . . , 𝜆

𝑖−1
, 𝜆
𝑖+1
, . . . , 𝜆

𝑁−1
, 𝜆
𝑖
, 𝜆
𝑁
})

≤ 𝑊
𝑡
({𝜆
1
, . . . , 𝜆

𝑖−1
, 𝜆
𝑖
, 𝜆
𝑖+1
, . . . , 𝜆

𝑁
})

= 𝑈
𝑡
({𝜆
1
, . . . 𝜆
𝑁
}) ,

𝑊
𝑡
({𝜆
𝑗
1

, . . . , 𝜆
𝑗
𝑁−|𝐴
𝑊

1
|

, 𝜆
𝑖
1

, . . . , 𝜆
𝑖
|𝐴
𝑊

1
|

})

≤ 𝑊
𝑡
({ . . . , 𝜆

𝑖
1
−1
, 𝜆
𝑖
1

, 𝜆
𝑖
1
+1
, . . . ,

𝜆
𝑖
|𝐴
𝑊

1
|
−1
, 𝜆
𝑖
|𝐴
𝑊

1
|

, 𝜆
𝑖
|𝐴
𝑊

1
|
+1
, . . .})
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= 𝑊
𝑡
({𝜆
1
, . . . 𝜆
𝑁
})

= 𝑈
𝑡
({𝜆
1
, . . . 𝜆
𝑁
}) .

(30)

The inequalities are true due to Lemmas 7, 8, and 11. Conse-
quently,𝑊

𝑡
≤ 𝑈
𝑡
at time 𝑡 = 1, . . . , 𝑇. The myopic policy is

optimal according toTheorem 2. The proof is complete.

4.2. The Case of 𝑝
11
≤ 𝑝
01

Assumption 12. The transition probabilities 𝑝
11

and 𝑝
01

are
such that 𝑝

11
≤ 𝑝
01
.

The function 𝑓 is monotonically decreasing under
Assumption 12. For any 𝑥, 𝑦 ∈ [0, 1] and 𝑥 ≤ 𝑦, we have
𝑓(1) ≤ 𝑓(𝑦) ≤ 𝑓(𝑥) ≤ 𝑓(0).

Assumption 13. We assume that, for all the idle conditional
probabilities, the discounted factor 𝛼 is such that

1 − 𝛼 ∑

𝐴
2
⊆𝐴
1

[

[

(∏

𝑗∈𝐴
2

𝜆
𝑗
)

×( ∏

𝑘∉𝐴
2
,𝑘∈𝐴
1

(1 − 𝜆
𝑘
))

󵄨󵄨󵄨󵄨𝐴1
󵄨󵄨󵄨󵄨

(1 − 𝛼)

]

]

≥ 0.

(31)

Like Assumption 5, we can rewrite Assumption 13 as follows:

1 −
𝛼
󵄨󵄨󵄨󵄨𝐴1
󵄨󵄨󵄨󵄨

(1 − 𝛼)
≥ 0

󳨐⇒ 𝛼 ≤
1

(1 +
󵄨󵄨󵄨󵄨𝐴1
󵄨󵄨󵄨󵄨)
.

(32)

Theorem 14. Themyopic policy is optimal under Assumptions
12 and 13 when 𝑇 is finite.

Lemma 15. Consider Assumptions 12 and 13. For any 𝜆
𝑗
1

≤

⋅ ⋅ ⋅ ≤ 𝜆
𝑗
𝑁−|𝐴
𝑊

1
|

and 𝜆
𝑖
1

≤ ⋅ ⋅ ⋅ ≤ 𝜆
𝑖
|𝐴
𝑊

1
|

, if 𝜆
𝑗
𝑁−|𝐴
𝑊

1
|

≥ 𝜆
𝑖
1

, one has

𝑊
𝑡
({𝜆
𝑗
1

, . . . , 𝜆
𝑗
𝑁−|𝐴
𝑊

1
|

, 𝜆
𝑖
1

, . . . , 𝜆
𝑖
|𝐴
𝑊

1
|

})

≤ 𝑊
𝑡
({𝜆
𝑗
1

, . . . , 𝜆
𝑖
1

, 𝜆
𝑗
𝑁−|𝐴
𝑊

1
|

, . . . , 𝜆
𝑖
|𝐴
𝑊

1
|

}) .

(33)

Proof. The inequality is true at time 𝑇. We have the following
equation for any time 𝑡 < 𝑇 according to Lemma 9:

𝑊
𝑡
({𝜆
𝑗
1

, . . . , 𝜆
𝑗
𝑁−|𝐴
𝑊

1
|

, 𝜆
𝑖
1

, . . . , 𝜆
𝑖
|𝐴
𝑊

1
|

})

−𝑊
𝑡
({𝜆
𝑗
1

, . . . , 𝜆
𝑖
1

, 𝜆
𝑗
𝑁−|𝐴
𝑊

1
|

, . . . , 𝜆
𝑖
|𝐴
𝑊

1
|

})

= (𝜆
𝑖
1

− 𝜆
𝑗
𝑁−|𝐴
𝑊

1
|

)

× [𝑊
𝑡
({𝜆
𝑗
1

, . . . , 0, 1, . . . , 𝜆
𝑖
|𝐴
𝑊

1
|

})

−𝑊
𝑡
({𝜆
𝑗
1

, . . . , 1, 0, . . . , 𝜆
𝑖
|𝐴
𝑊

1
|

})] .

(34)

Because 𝜆
𝑗
𝑁−|𝐴
𝑊

1
|

≥ 𝜆
𝑖
1

, 𝜆
𝑖
1

−𝜆
𝑗
𝑁−|𝐴
𝑊

1
|

≤ 0, we use LHS to denote
𝑊
𝑡
({𝜆
𝑗
1

, . . . , 0, 1, . . . , 𝜆
𝑖
|𝐴
𝑊

1
|

}) − 𝑊
𝑡
({𝜆
𝑗
1

, . . . , 1, 0, . . . , 𝜆
𝑖
|𝐴
𝑊

1
|

}).
According to the definition of𝑊

𝑡
, we have

LHS = 1 + 𝛼

× ∑

𝐴
𝑊

2
⊆𝐴
𝑊

1

[

[

( ∏

𝑗∈𝐴
𝑊

2
−{𝑖1}

𝜆
𝑗
)

×( ∏

𝑘∉𝐴
𝑊

2
,𝑘∈𝐴
𝑊

1
−{𝑖
1
}

(1 − 𝜆
𝑘
))

× (𝑈
𝑡+1
({𝑓 (1 − 𝑝

𝑖
1

𝑓
)}

⋃{𝑓(1 − 𝑝
𝑗

𝑓
) | 𝑗 ∈ 𝐴

𝑊

2
− {𝑖
1
}}

⋃{𝑓 (𝜆
𝑖
) | 𝑖 ∉ 𝐴

𝑊

1
}

⋃{𝑓 (1 − 𝑝
𝑘

𝑑
) | 𝑘 ∉ 𝐴

𝑊

2
,

𝑘 ∈ 𝐴
𝑊

1
− {𝑖
1
}}

⋃{𝑓 (0)} )

− 𝑈
𝑡+1
( {𝑓 (1)}

⋃{𝑓(1 − 𝑝
𝑗

𝑓
) | 𝑗 ∈ 𝐴

𝑊

2
− {𝑖
1
} }

⋃{𝑓 (𝜆
𝑖
) | 𝑖 ∉ 𝐴

𝑊

1
}

⋃{𝑓 (1 − 𝑝
𝑘

𝑑
) | 𝑘 ∉ 𝐴

𝑊

2
,

𝑘 ∈ 𝐴
𝑊

1
− {𝑖
1
}}

⋃{𝑓(1 − 𝑝

𝑗
𝑁−|𝐴
𝑊

1
|

𝑑
)}))]

]

.

(35)

We have the following inequalities due to the definition
of 𝑈
𝑡
:

𝑈
𝑡+1
({𝑓 (1 − 𝑝

𝑖
1

𝑓
)}

⋃{𝑓(1 − 𝑝
𝑗

𝑓
) | 𝑗 ∈ 𝐴

𝑊

2
− {𝑖
1
}}

⋃{𝑓 (𝜆
𝑖
) | 𝑖 ∉ 𝐴

𝑊

1
}

⋃{𝑓 (1 − 𝑝
𝑘

𝑑
) | 𝑘 ∉ 𝐴

𝑊

2
, 𝑘 ∈ 𝐴

𝑊

1
− {𝑖
1
}}

⋃ {𝑓 (0)} )

≥ 0

(36)

𝑈
𝑡+1
( {𝑓 (1)}⋃{𝑓(1 − 𝑝

𝑗

𝑓
) | 𝑗 ∈ 𝐴

𝑊

2
− {𝑖
1
}}

⋃{𝑓 (𝜆
𝑖
) | 𝑖 ∉ 𝐴

𝑊

1
}

⋃{𝑓 (1 − 𝑝
𝑘

𝑑
) | 𝑘 ∉ 𝐴

𝑊

2
, 𝑘 ∈ 𝐴

𝑊

1
− {𝑖
1
}}

⋃{𝑓(1 − 𝑝

𝑗
𝑁−|𝐴
𝑊

1
|

𝑑
)})
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≤
󵄨󵄨󵄨󵄨󵄨
𝐴
𝑊

1

󵄨󵄨󵄨󵄨󵄨
(1 + 𝛼

1
+ ⋅ ⋅ ⋅ + 𝛼

𝑇−𝑡
)

≤
󵄨󵄨󵄨󵄨󵄨
𝐴
𝑊

1

󵄨󵄨󵄨󵄨󵄨
(1 + 𝛼

1
+ ⋅ ⋅ ⋅ + 𝛼

+∞
)

=

󵄨󵄨󵄨󵄨󵄨
𝐴
𝑊

1

󵄨󵄨󵄨󵄨󵄨

(1 − 𝛼)
.

(37)

Then, we have
LHS ≥ 1

+ 𝛼 ∑

𝐴
𝑊

2
⊆𝐴
𝑊

1

[

[

( ∏

𝑗∈𝐴
𝑊

2
−{𝑖1}

𝜆
𝑗
)

×( ∏

𝑘∉𝐴
𝑊

2
,𝑘∈𝐴
𝑊

1
−{𝑖1}

(1 − 𝜆
𝑘
))

×(0 −

󵄨󵄨󵄨󵄨󵄨
𝐴
𝑊

1

󵄨󵄨󵄨󵄨󵄨

(1 − 𝛼)
)] .

(38)

Consequently, LHS ≥ 0 under Assumption 13.

(𝜆
𝑖
1

− 𝜆
𝑗
𝑁−|𝐴
𝑊

1
|

) LHS ≤ 0. (39)

The proof is complete.

Now we can give the proof of Theorem 14 with Lemmas
7, 8, and 15.The proof ofTheorem 14 is similar with the proof
of Theorem 6.

4.3. The Case of 𝑇 → +∞. We discuss the optimality of the
myopic policy in above subsections when 𝑇 is finite; now we
consider the extensions of results when 𝑇 is infinite.

Theorem 16. If the myopic policy is optimal when 𝑇 is finite,
it is optimal when 𝑇 is infinite.

Proof.

max
𝜋
𝐽
𝜋

𝛼
(Λ (1))

= max
𝜋
𝐸
𝜋

Λ(1)
[ lim
𝑇→+∞

𝑇

∑

𝑡=1

𝛼
𝑡−1
𝑟 (Λ (𝑡) , 𝑎 (𝑡))]

= max
𝜋

lim
𝑇→+∞

𝐸
𝜋

Λ(1)
[

𝑇

∑

𝑡=1

𝛼
𝑡−1
𝑟 (Λ (𝑡) , 𝑎 (𝑡))]

= max
𝜋

lim
𝑇→+∞

𝐽
𝜋

𝑇
(Λ (1)) ,

(40)

where 𝐽𝜋
𝑇
(Λ(1)) denotes 𝐸𝜋

Λ(1)
[∑
𝑇

𝑡=1
𝛼
𝑡−1
𝑟(Λ(𝑡), 𝑎(𝑡))] only in

this proof.
For

𝑇

∑

𝑡=1

𝛼
𝑡−1
𝑟 (Λ (𝑡) , 𝑎 (𝑡))

≤
󵄨󵄨󵄨󵄨𝐴1
󵄨󵄨󵄨󵄨 (1 + 𝛼 + ⋅ ⋅ ⋅ + 𝛼

𝑇−1
)

≤
󵄨󵄨󵄨󵄨𝐴1
󵄨󵄨󵄨󵄨 (1 + 𝛼 + ⋅ ⋅ ⋅ + 𝛼

+∞
)

=

󵄨󵄨󵄨󵄨𝐴1
󵄨󵄨󵄨󵄨

(1 − 𝛼)
,

(41)

we can use the bounded convergence theorem to interchange
lim
𝑇→+∞

and 𝐸𝜋
Λ(1)

. Then, we consider the relationship of
lim
𝑇→+∞

and max
𝜋
, and two sequences are given as follows:

Sequence 1: {𝐽𝜋
1
(Λ(1)), 𝐽

𝜋

2
(Λ(1)), . . .}

Sequence 2: {max
𝜋
𝐽
𝜋

1
(Λ(1)),max

𝜋
𝐽
𝜋

2
(Λ(1)), . . .}.

We have the following inequalities:

𝐸
𝜋

Λ(1)
[

𝑇+1

∑

𝑡=1

𝛼
𝑡−1
𝑟 (Λ (𝑡) , 𝑎 (𝑡))]

≥ 𝐸
𝜋

Λ(1)
[

𝑇

∑

𝑡=1

𝛼
𝑡−1
𝑟 (Λ (𝑡) , 𝑎 (𝑡))]

󳨐⇒ 𝐽
𝜋

𝑇+1
(Λ (1)) ≥ 𝐽

𝜋

𝑇
(Λ (1))

max
𝜋
𝐽
𝜋

𝑇+1
(Λ (1)) ≥ 𝐽

𝜋
󸀠

𝑇+1
(Λ (1)) ≥ 𝐽

𝜋
󸀠

𝑇
(Λ (1))

󳨐⇒ max
𝜋
𝐽
𝜋

𝑇+1
(Λ (1)) ≥ max

𝜋
𝐽
𝜋

𝑇
(Λ (1)) ,

(42)

where 𝜋󸀠 denotes argmax
𝜋
𝐽
𝜋

𝑇
(Λ(1)). And for any 𝑇, we have

𝐽
𝜋

𝑇
(Λ (1)) ≤

󵄨󵄨󵄨󵄨𝐴1
󵄨󵄨󵄨󵄨

(1 − 𝛼)

max
𝜋
𝐽
𝜋

𝑇
(Λ (1)) ≤

󵄨󵄨󵄨󵄨𝐴1
󵄨󵄨󵄨󵄨

(1 − 𝛼)
.

(43)

Consequently, Sequences 1 and 2 are monotonically increas-
ing and bounded. We can conclude that Sequences 1 and 2
have finite limits due to the monotone convergence theorem.
We thus have

lim
𝑇→+∞

max
𝜋
𝐽
𝜋

𝑇
(Λ (1)) − lim

𝑇→+∞

𝐽
𝜋

𝑇
(Λ (1))

= lim
𝑇→+∞

(max
𝜋
𝐽
𝜋

𝑇
(Λ (1)) − 𝐽

𝜋

𝑇
(Λ (1))) ≥ 0

(44)

for any policy 𝜋 and 𝑇. Therefore, we have

lim
𝑇→+∞

max
𝜋
𝐽
𝜋

𝑇
(Λ (1)) ≥ max

𝜋
lim
𝑇→+∞

𝐽
𝜋

𝑇
(Λ (1)) . (45)

For max
𝜋
𝐽
𝜋

𝑇
(Λ(1)) ∈ {𝐽

𝜋

𝑇
(Λ(1)) | 𝜋}, we have

lim
𝑇→+∞

max
𝜋
𝐽
𝜋

𝑇
(Λ (1)) ≤ max

𝜋
lim
𝑇→+∞

𝐽
𝜋

𝑇
(Λ (1)) . (46)

We can conclude that

lim
𝑇→+∞

max
𝜋
𝐽
𝜋

𝑇
(Λ (1)) = max

𝜋
lim
𝑇→+∞

𝐽
𝜋

𝑇
(Λ (1)) . (47)

Consequently, we have

max
𝜋
𝐽
𝜋

𝛼
(Λ (1))

= lim
𝑇→+∞

max
𝜋
𝐽
𝜋

𝑇
(Λ (1))

= lim
𝑇→+∞

max
𝜋
𝐸
𝜋

Λ(1)
[

𝑇

∑

𝑡=1

𝛼
𝑡−1
𝑟 (Λ (𝑡) , 𝑎 (𝑡))]

= lim
𝑇→+∞

𝑅
1
(Λ (1)) .

(48)
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The myopic policy is thus optimal when 𝑇 is infinite if the
myopic policy is optimal when 𝑇 is finite. 𝑅

1
(Λ(1)) has been

defined in Section 2.
Then, we consider the uniqueness of the optimal policy.

Let 𝜋∗ be the myopic policy, and 𝑎∗(𝑡) = {𝐴∗
1
(𝑡), 𝐴
∗

2
(𝑡)} is the

action at time 𝑡; we have

max
𝜋
𝐽
𝜋

𝛼
(Λ (1))

= lim
𝑇→+∞

max
𝜋
𝐽
𝜋

𝑇
(Λ (1))

= lim
𝑇→+∞

𝐽
𝜋
∗

𝑇
(Λ (1))

= lim
𝑇→+∞

𝐸
𝜋
∗

Λ(1)
[

𝑇

∑

𝑡=1

𝛼
𝑡−1
𝑟 (Λ (𝑡) , 𝑎

∗
(𝑡))]

= ∑

𝑖∈𝐴
∗

1
(1)

𝜆
𝑖
+ 𝛼

× ∑

𝐴
∗

2
(1)⊆𝐴

∗

1
(1)

[

[

( ∏

𝑗∈𝐴
∗

2
(1)

𝜆
𝑗
(1))

× ( ∏

𝑘∉𝐴
∗

2
(1),𝑘∈𝐴

∗

1
(1)

(1 − 𝜆
𝑘
(1)))

× lim
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𝐸
𝜋
∗

Λ(2)

×[

𝑇

∑

𝑡=2

𝛼
𝑡−2
𝑟 (Λ (2) ,𝑎

∗
(2) | 𝑎

∗
(1))]]

]

.

(49)

For

lim
𝑇→+∞

𝐸
𝜋
∗
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𝑇
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𝛼
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𝑟 (Λ (2) , 𝑎

∗
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= lim
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𝐽
𝜋
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∗
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= lim
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𝐽
𝜋
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𝑇
(Λ (2) | 𝑎

∗
(1))

= 𝐽
𝜋
∗

𝛼
(Λ (2) | 𝑎

∗
(1)) ,

(50)

we have

𝐽
𝜋
∗

𝛼
(Λ (1))
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∗

1
(1)

𝜆
𝑖
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𝐴
∗

2
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∗

1
(1)

[

[

( ∏

𝑗∈𝐴
∗

2
(1)

𝜆
𝑗
(1))

× ( ∏

𝑘∉𝐴
∗

2
(1),𝑘∈𝐴

∗

1
(1)

(1 − 𝜆
𝑘
(1)))

×𝐽
𝜋
∗

𝛼
(Λ (2) | 𝑎

∗
(1)) ]

]

.

(51)

The above equation is the dynamic programming equation
for the infinite horizon discounted reward problem. The

uniqueness of the optimal policy can be proved due to the
uniqueness of the dynamic programming solution.

The proof is complete.

Theorem 17. If the myopic policy is optimal for the discounted
reward, it is optimal for the average reward.

Proof. Wefirst consider the Blackwell optimality [19, pp. 336–
341] of the optimal policy for the discounted reward. The
sequence of {𝛼

1
, 𝛼
2
, . . .} is given, and 𝛼

1
≤ 𝛼
2
≤ ⋅ ⋅ ⋅ ≤ 1,

lim
𝑘→+∞

𝛼
𝑘
= 1. For

(1 − 𝛼
𝑘
) 𝐽
𝜋

𝛼
𝑘

(Λ (1))

≤ (1 − 𝛼
𝑘
)
󵄨󵄨󵄨󵄨𝐴1
󵄨󵄨󵄨󵄨 (1 + 𝛼𝑘 + 𝛼

2

𝑘
+ ⋅ ⋅ ⋅ ) =

󵄨󵄨󵄨󵄨𝐴1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝐽
𝜋

𝛼
𝑘

(Λ) − 𝐽
𝜋

𝛼
𝑘

(Λ (1))
󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨󵄨
0 −
󵄨󵄨󵄨󵄨𝐴1
󵄨󵄨󵄨󵄨 (1 + 𝛼𝑘 + 𝛼

2

𝑘
+ ⋅ ⋅ ⋅ )

󵄨󵄨󵄨󵄨󵄨
=

󵄨󵄨󵄨󵄨𝐴1
󵄨󵄨󵄨󵄨

(1 − 𝛼
𝑘
)
,

(52)

we can give the definition of 𝐽(Λ(1)) and ℎ(Λ) due to the
boundedness of (1 − 𝛼

𝑘
)𝐽
𝜋

𝛼
𝑘

(Λ(1)) and |𝐽𝜋
𝛼
𝑘

(Λ) − 𝐽
𝜋

𝛼
𝑘

(Λ(1))|:

𝐽 (Λ (1)) = max
𝜋
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𝑘
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𝑘
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𝜋
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(𝐽
𝜋

𝛼
𝑘

(Λ) − 𝐽
𝜋

𝛼
𝑘

(Λ (1)))

(53)

for any Λ.
Then, we can give the average cost optimality equation

(ACOE) [20]. Here, we calculate the reward:

𝐽 (Λ (1)) + ℎ
𝜋
(Λ (1))

= max
𝜋
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[(1 − 𝛼
𝑘
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𝜋
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For
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𝑘
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×𝐽
𝜋

𝛼
(Λ (2) | 𝑎 (1)) ]

]

,
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(55)

we have
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]
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(56)

Consequently, we have

𝐽 (Λ (1)) + ℎ
𝜋
(Λ (1))

= max
𝜋

[

[
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1
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(57)

We thus can conclude that the stationary deterministic
policy realizing the pointwise maximum on the right-hand
side of the ACOE is the average optimal policy due to
the boundedness of ℎ𝜋(Λ(1)), and 𝐽(Λ(1)) is the maximum
average expected reward [20, Theorems 4.1–4.3].

For
𝐽 (Λ (1)) = max

𝜋
lim
𝑘→+∞

(1 − 𝛼
𝑘
) 𝐽
𝜋

𝛼
𝑘

(Λ (1)) , (58)
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Figure 2: Performance comparison of OP and MP when 𝑝
11
≥ 𝑝
01

and 𝑝
11
≤ 𝑝
01
.

the optimal policy for the discounted reward can maximize
𝐽(Λ(1)). Consequently, the myopic policy is optimal for the
average reward when it is optimal for the discounted reward.
The proof is complete.

5. Numerical Results

We consider twenty independent channels with the same
bandwidth 𝐵 = 1 and transition probabilities {𝑝

11
, 𝑝
01
}. The

sensing capacity of the user who transmits the data on these
channels is limited to𝐶; that is, the user can sense𝐶 channels
in a sensing procedure. The transition probabilities are set as
follows: 𝑝

11
= 0.8 and 𝑝

01
= 0.5 when 𝑝

11
≥ 𝑝
01
, 𝑝
11
= 0.3

and 𝑝
01
= 0.5 when 𝑝

11
≤ 𝑝
01
. The detection probability 𝑝

𝑑

equals 0.9, and the false alarm probability 𝑝
𝑓
equals 0.05. We

present the numerical results to evaluate the performance of
the optimal policy (OP) which is the dynamic programming
solution and the myopic policy (MP).

We first use the throughput of the policies to evaluate
the performance. The above subfigure of Figure 2 shows the
performance comparison of OP and MP when 𝑝

11
≥ 𝑝
01
.

The myopic policy is the optimal policy in this case for the
reason that Assumptions 4 and 5 are met. We observe that
the performance of OP is similar with MP’s. The following
subfigure shows the performance comparison of OP and MP
when 𝑝

11
≤ 𝑝
01
. We observe that there is a large difference

between OP and MP with the growth of the sensing capacity
𝐶. The reason is that Assumption 13 is not met. For example,
the curves of MP and OP at 𝛼 = 0.1 separate when 𝐶 equals
11 for the reason that 𝛼 ≥ 1/(1 + 𝐶).

Then, we use the collision probabilities which are the
probabilities which the user accesses occupied channels to
evaluate the performance. The collision probability is the
key metric which measures the interference caused by the
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user. Figure 3 gives us similar results of Figure 2. The above
subfigure shows the collision probabilities of OP and MP
when 𝑝

11
≥ 𝑝
01
. We observe that they have the same

collision probabilities for the reason that the myopic policy
is the optimal policy. The following subfigure shows the
collision probabilities of OP and MP when 𝑝

11
≤ 𝑝
01
. The

myopic policies at 𝛼 = 0.1, 0.3, 0.6 have the same collision
probabilities for the reason that they are the same policy. On
the other hand, the optimal policies are different at different
𝛼.

At last, we also give the comparison of the time com-
plexity of OP and MP in Table 1. Since 𝑝

11
, 𝑝
01
, and 𝛼 do

not make impact on the time complexity of the policies, we
mainly consider the variation of the sensing capacity. The
first column of the table is the sensing capacity. The second
and third columns show the time overhead of OP and MP,
respectively, and the unit is second.The time overhead of MP
is nearly 0 as MP does not need to calculate any parameter.
In particular, the time overhead of OP is also almost 0 when
the sensing capacity is 20 for the reason that OP can directly
choose the channels which are observed as 1(idle). From
Table 1, we can find that the time complexity of MP is much
smaller than OP’s.

6. Conclusion

We show the optimality of the simple and robust myopic
policy for the infinite horizon discounted and average reward
criteria in the case where the stochastic evolution of chan-
nels can be modeled as the independent and identically
distributed two-state Markov chains. The myopic policy is
optimal when the state transitions are positively correlated
and the detection probability and the false alarm probability
are limited. The myopic policy is also optimal when the state

Table 1: Comparison of time complexity of OP and MP.

𝐶 Optimal policy Myopic policy
1 1217.44 0.12
2 1012.68 0.03
4 697.82 0.07
6 473.34 0.06
8 334.71 0.01
10 198.34 0.05
12 127.3 0.11
14 79.57 0.06
16 39.12 0.07
18 22.37 0.02
20 0.07 0.08

transitions are negatively correlated and the discounted factor
is limited.
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