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The edge-neighbor-rupture degree of a connected graph 𝐺 is defined to be ENR(𝐺) = max{𝜔(𝐺 − 𝑆) − |𝑆| − 𝑚(𝐺 − 𝑆) : 𝑆 ⊆ 𝐸(𝐺),

𝜔(𝐺 − 𝑆) ≥ 1}, where 𝑆 is any edge-cut-strategy of 𝐺, 𝜔(𝐺− 𝑆) is the number of the components of 𝐺− 𝑆, and𝑚(𝐺− 𝑆) is the maxi-
mumorder of the components of𝐺−𝑆. In this paper, the edge-neighbor-rupture degree of some graphs is obtained and the relations
between edge-neighbor-rupture degree and other parameters are determined.

1. Introduction

In a communication network, the vulnerability measures the
resistance of the network to disruption of operation after
the failure of certain stations or communication links. To
measure the vulnerability we have some parameters which
are connectivity [1], integrity [2], scattering number [3], and
rupture degree [4].

A spy network can be modeled by a graph whose
vertices represent the stations and whose edges represent
the lines of communication. If a station is destroyed, the
adjacent stations will be betrayed so that the betrayed sta-
tions become useless to network as a whole [5]. Therefore,
instead of considering the stability of a communication
network in standard sense, some new graph parameters
such as vertex-neighbor-connectivity [6] and edge-neighbor-
connectivity [7], vertex-neighbor-integrity [8] and edge-
neighbor-integrity [9], vertex-neighbor-scattering number
[10] and edge-neighbor-scattering number [11], and vertex-
neighbor-rupture degree [12] were introduced tomeasure the
stability of communication networks in “neighbor” sense.

We use Bondy and Murty [1] for terminology and
notation not defined here and consider only finite simple
connected graphs. Let𝐺 = (𝑉, 𝐸) be a graph and 𝑒 any edge in
𝐺.The diameter of 𝐺, denoted by diam(𝐺), is the maximum
distance over all pairs of vertices in 𝐺.

𝑁(𝑒) = {𝑓 ∈ 𝐸(𝐺) | 𝑓 ̸= 𝑒; 𝑒 and𝑓are adjacent} is the
open-edge-neighborhood of 𝑒, and 𝑁[𝑒] = 𝑁(𝑒) ∪ {𝑒} is the
closed-edge-neighborhood of 𝑒. An edge 𝑒 in 𝐺 is said to be

subverted when𝑁[𝑒] is deleted from𝐺. In other words, if 𝑒 =
[𝑢, V], 𝐺−𝑁[𝑒] = 𝐺− {𝑢, V}. A set of edges 𝑆 is called an edge
subversion strategy of 𝐺 if each of the edges in 𝑆 has been
subverted from𝐺. The survival subgraph is denoted by𝐺−𝑆.
An edge subversion strategy 𝑆 is called an edge-cut-strategy
of𝐺 if the survival subgraph𝐺−𝑆 is disconnected or is a single
vertex or the empty graph [13].

The edge-neighbor-connectivity of 𝐺, Λ(𝐺), is the mini-
mum size of all edge-cut-strategies of𝐺. A graph𝐺 ism-edge-
neighbor-connected if Λ(𝐺) = 𝑚 [7].

The edge-neighbor-integrity of a graph 𝐺, ENI(𝐺), is de-
fined to be

ENI (𝐺) = min
𝑆⊆𝐸(𝐺)

{|𝑆| + 𝑚 (𝐺 − 𝑆)} , (1)

where 𝑆 is any edge subversion strategy of 𝐺 and𝑚(𝐺 − 𝑆) is
maximum order of the components of 𝐺 − 𝑆 [9].

The edge-neighbor-scattering number of 𝐺, ENS(𝐺), is
defined as

ENS (𝐺) = max
𝑆⊆𝐸(𝐺)

{𝜔 (𝐺 − 𝑆) − |𝑆|} , (2)

where 𝑆 is any edge-cut-strategy of 𝐺 and 𝜔(𝐺 − 𝑆) is the
number of the components of 𝐺 − 𝑆 [11].

The known parameters concerning the neighborhoods
do not deal with the number of the removing edges, the
number of the components, and the number of the vertices
in the largest component of the remaining graph in a
disrupted network simultaneously. In order to fill this void
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Figure 1: The graphs 𝐺
1
and 𝐺

2
.

in the literature, the current study proposes a definition
of edge-neighbor-rupture degree which is a new parameter
concerning these three values. Additionally, this study also
analyzes the relations between edge-neighbor-rupture degree
and some other parameters and obtains edge-neighbor-
rupture degree of some graphs.

The edge-neighbor-rupture degree of a connected graph
𝐺 is defined to be

ENR (𝐺) = max {𝜔 (𝐺 − 𝑆) − |𝑆| − 𝑚 (𝐺 − 𝑆) : 𝑆 ⊆ 𝐸 (𝐺) ,

𝜔 (𝐺 − 𝑆) ≥ 1} ,

(3)

where 𝑆 is any edge-cut-strategy of𝐺, 𝜔(𝐺−𝑆) is the number
of the components of 𝐺 − 𝑆, and 𝑚(𝐺 − 𝑆) is the maximum
order of the components of𝐺−𝑆. A set 𝑆∗ ⊆ 𝐸(𝐺) is said to be
the ENR-set of𝐺 if ENR(𝐺) = 𝜔(𝐺− 𝑆

∗
)−| 𝑆
∗
|−𝑚(𝐺− 𝑆

∗
).

The edge-neighbor-rupture degree differs from edge-
neighbor-connectivity, edge-neighbor-integrity, and edge-
neighbor-scattering number in showing the vulnerability of
networks. For example, consider the graphs 𝐺

1
and 𝐺

2
in

Figure 1.
It can be easily seen that the edge-neighbor-connectivity,

edge-neighbor-integrity, and edge-neighbor-scattering num-
ber of these graphs are equal:

Λ (𝐺
1
) = Λ (𝐺

2
) = 1,

ENI (𝐺1) = ENI (𝐺2) = 4,

ENS (𝐺
1
) = ENS (𝐺

2
) = 4.

(4)

On the other hand, the edge-neighbor-rupture degrees of
𝐺1 and 𝐺2 are different:

ENR (𝐺
1
) = 1,

ENR (𝐺2) = 2.

(5)

Hence, the edge-neighbor-rupture degree is a better
parameter for distinguishing vulnerability of graphs 𝐺

1
and

𝐺
2
.

2. Bounds for Edge-Neighbor-Rupture Degree

In this section some lower and upper bounds are given for
the edge-neighbor-rupture degree of a graph using different
graph parameters.

Theorem 1. Let 𝐺 be a connected graph of order 𝑛. Then,

ENR (𝐺) ≤ 𝑛 − 4. (6)

Proof. Let 𝑆 be an edge-cut-strategy of 𝐺 and |𝑆| = 𝑟. If 𝑟 ≥ 1,
then 𝜔(𝐺 − 𝑆) ≤ 𝑛 − 2 and𝑚(𝐺 − 𝑆) ≥ 1. Therefore,

𝜔 (𝐺 − 𝑆) − |𝑆| − 𝑚 (𝐺 − 𝑆) ≤ 𝑛 − 2 − 1 − 1. (7)

Hence we have

ENR (𝐺) ≤ 𝑛 − 4. (8)

The proof is completed.

Theorem 2. Let 𝐺 be a connected graph of order 𝑛, and let
𝛼(𝐺), Λ(𝐺) be the independent number and edge-neighbor-
connectivity of 𝐺, respectively. Then,

ENR (𝐺) ≤ 𝛼 (𝐺) − Λ (𝐺) − 1. (9)

Proof. Let 𝑆 be an edge-cut-strategy of𝐺. For any 𝑆 of𝐺, |𝑆| ≥
Λ(𝐺), 𝜔(𝐺 − 𝑆) ≤ 𝛼(𝐺), and𝑚(𝐺 − 𝑆) ≥ 1. Hence we get

ENR (𝐺) ≤ 𝛼 (𝐺) − Λ (𝐺) − 1. (10)

The proof is completed.

Theorem 3. Let 𝐺 be a connected graph of order 𝑛 ≥ 3. If
ENR(𝐺) = 𝑛 − 4; then diam(𝐺) ≤ 3.

Proof. Assume that diam(𝐺) ≥ 4; then 𝐺 contains a path 𝑃5.
Thus for any edge 𝑒 in 𝐺, 𝜔(𝐺 − 𝑆) ≤ 𝑛 − 2, 𝑚(𝐺 − {𝑒}) ≥

2, and for any two edges 𝑒1 and 𝑒2 in 𝐺, 𝜔(𝐺 − 𝑒) ≤ 𝑛 − 2,
𝑚(𝐺 − {𝑒𝑙, 𝑒2}) ≥ 1. Therefore

ENR (𝐺) ≤ 𝑛 − 5, (11)

a contradiction. Hence diam(𝐺) ≤ 3.
The proof is completed.
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Theorem 4. Let 𝐺 be a connected graph of order 𝑛 and 𝛼󸀠(𝐺)
edge independence number of 𝐺. Then,

ENR (𝐺) ≤ 𝑛 − 3𝛼
󸀠
(𝐺) − 1. (12)

Proof. Let 𝑆 be an edge-cut-strategy of 𝐺. If |𝑆| = 𝛼
󸀠
(𝐺), then

𝐺 − 𝑆 contains 𝑛 − 2𝛼
󸀠
(𝐺) isolated vertices and𝑚(𝐺 − 𝑆) ≥ 1.

From the definition of edge neighbor rupture degree we have

ENR (𝐺) ≤ 𝑛 − 3𝛼
󸀠
(𝐺) − 1. (13)

The proof is completed.

3. Edge-Neighbor-Rupture Degree of
Some Graphs

In this section,we consider the edge-neighbor-rupture degree
of some graphs.

Theorem 5. Let 𝑃
𝑛
be a path with order 𝑛(≥ 4). Then

ENR (𝑃
𝑛
) = {

0, 𝑛 ≡ 1 (mod 3) ,

− 1, 𝑛 ≡ 0, 2 (mod 3) .
(14)

Proof. Let 𝑆 be an edge-cut-strategy of 𝑃
𝑛
and |𝑆| = 𝑟. If 𝑟 ≤

⌊(𝑛 − 1)/3⌋, then 𝜔(𝑃
𝑛
− 𝑆) ≤ 𝑟 + 1 and 𝑚(𝑃

𝑛
− 𝑆) ≥ ⌈(𝑛 −

2𝑟)/(𝑟 + 1)⌉. Thus

𝜔 (𝑃
𝑛
− 𝑆) − |𝑆| − 𝑚 (𝑃

𝑛
− 𝑆) ≤ 𝑟 + 1 − 𝑟 − ⌈

𝑛 − 2𝑟

𝑟 + 1
⌉

ENR (𝑃𝑛) ≤ max
𝑟

{1 − ⌈
𝑛 − 2𝑟

𝑟 + 1
⌉} ,

(15)

the function 𝑓(𝑟) takes its maximum value at 𝑟 = ⌊(𝑛 − 1)/3⌋,
and we get ENR(𝑃

𝑛
) ≤ −1 where 𝑛 ≡ 0, 2 (Mod 3) and

ENR(𝑃
𝑛
) ≤ 0 where 𝑛 ≡ 1 (Mod 3). So, we have

ENR (𝑃
𝑛) ≤ {

0, 𝑛 ≡ 1 (mod 3) ,

−1, 𝑛 ≡ 0, 2 (mod 3) .
(16)

On the other hand, if 𝑟 ≥ ⌊(𝑛 − 1)/3⌋ + 1, then we have
𝜔(𝑃
𝑛
− 𝑆) ≤ 𝑟 and𝑚(𝑃

𝑛
− 𝑆) ≥ 1. Hence

𝜔 (𝑃
𝑛
− 𝑆) − |𝑆| − 𝑚 (𝑃

𝑛
− 𝑆) ≤ 𝑟 − 𝑟 − 1,

ENR (𝑃
𝑛
) ≤ −1.

(17)

It can be easily seen that there is an edge-cut-strategy 𝑆∗ of
𝑃
𝑛
such that |𝑆∗| = ⌊(𝑛−1)/3⌋,𝜔(𝑃

𝑛
−𝑆
∗
) = ⌊(𝑛−1)/3⌋+1, and

𝑚(𝑃
𝑛
− 𝑆
∗
) = 2 where 𝑛 ≡ 0, 2 (Mod 3) and 𝑚(𝑃

𝑛
− 𝑆
∗
) = 1

where 𝑛 ≡ 1 (Mod 3). Therefore,

ENR (𝑃
𝑛
) = {

0, 𝑛 ≡ 1 (mod 3) ,

−1, 𝑛 ≡ 0, 2 (mod 3) .
(18)

The proof is completed by (16), (17), and (18).

Theorem 6. Let 𝐶𝑛 be a cycle with order 𝑛(≥ 6). Then

ENR (𝐶
𝑛
) = {

−1, 𝑛 ≡ 0 (mod 3) ,

−2, 𝑛 ≡ 1, 2 (mod 3) .
(19)

Proof. Let 𝑆 be an edge-cut-strategy of 𝐶
𝑛
and |𝑆| = 𝑟. If 𝑟 ≤

⌊𝑛/3⌋, then 𝜔(𝐶
𝑛
− 𝑆) ≤ 𝑟 and𝑚(𝐶

𝑛
− 𝑆) ≥ ⌈(𝑛 − 2𝑟)/𝑟⌉. Thus

𝜔 (𝐶
𝑛 − 𝑆) − |𝑆| − 𝑚 (𝐶𝑛 − 𝑆) ≤ 𝑟 − 𝑟 − ⌈

𝑛 − 2𝑟

𝑟
⌉ ,

ENR (𝐶
𝑛
) ≤ max

𝑟
{⌈

𝑛 − 2𝑟

𝑟
⌉} ,

(20)

the function 𝑓(𝑟) takes its maximum value at 𝑟 = ⌊𝑛/3⌋, and
we get ENR(𝐶

𝑛
) ≤ −1 where 𝑛 ≡ 0 (Mod 3) and ENR(𝐶

𝑛
) ≤

−2 where 𝑛 ≡ 1, 2 (Mod 3). So, we have

ENR (𝐶
𝑛
) ≤ {

−1, 𝑛 ≡ 0 (mod 3) ,

−2, 𝑛 ≡ 1, 2 (mod 3) .
(21)

On the other hand, if 𝑟 ≥ ⌊𝑛/3⌋ + 1, then we have 𝜔(𝐶
𝑛
−

𝑆) ≤ 𝑟 − 1 and𝑚(𝐶
𝑛
− 𝑆) ≥ 1. Hence

𝜔 (𝐶
𝑛
− 𝑆) − |𝑆| − 𝑚 (𝐶

𝑛
− 𝑆) ≤ 𝑟 − 1 − 𝑟 − 1

ENR (𝐶
𝑛
) ≤ −2.

(22)

It can be easily seen that there is an edge-cut-strategy 𝑆∗
of 𝐶
𝑛
such that |𝑆∗| = ⌊𝑛/3⌋, 𝜔(𝐶

𝑛
− 𝑆
∗
) = ⌊𝑛/3⌋, and𝑚(𝐶

𝑛
−

𝑆
∗
) = 2 where 𝑛 ≡ 1, 2 (Mod 3) and 𝑚(𝐶

𝑛
− 𝑆
∗
) = 1 where

𝑛 ≡ 0 (Mod 3). Therefore

ENR (𝐶
𝑛
) = {

−1, 𝑛 ≡ 0 (mod 3) ,

−2, 𝑛 ≡ 1, 2 (mod 3) .
(23)

The proof is completed by (21), (22), and (23).

Lemma 7 (see [7]). For any graph 𝐺 with order 𝑛, Λ(𝐺) ≤

⌊𝑛/2⌋.

Theorem 8. Let 𝐾
𝑛
be a complete graph with order 𝑛. Then

ENR (𝐾𝑛) = − ⌊
𝑛

2
⌋ . (24)

Proof. Let 𝑆 be an edge-cut-strategy of 𝐾
𝑛
and |𝑆| = 𝑟. By

Lemma 7 we know Λ(𝐾
𝑛
) = ⌊𝑛/2⌋. If 𝑟 ≥ ⌊𝑛/2⌋, then 𝜔(𝐾

𝑛
−

𝑆) ≤ 1 and𝑚(𝐾
𝑛
− 𝑆) ≥ 1. Hence,

𝜔 (𝐾
𝑛 − 𝑆) − |𝑆| − 𝑚 (𝐾𝑛 − 𝑆) ≤ 1 − ⌊

𝑛

2
⌋ − 1,

ENR (𝐾
𝑛
) ≤ − ⌊

𝑛

2
⌋ .

(25)

It can be easily seen that there is an edge set 𝑆∗ of𝐾
𝑛
such

that |𝑆∗| = ⌊𝑛/2⌋, then we have𝜔(𝐾
𝑛
−𝑆) = 1 and𝑚(𝐾

𝑛
−𝑆) =

1. From the definition of edge-neighbor-rupture degree we
have

ENR (𝐾𝑛) = − ⌊
𝑛

2
⌋ . (26)

The proof is completed.

Definition 9. We also call 𝐾
1,𝑛

a star with 𝑛 + 1 vertices. Let
DS(𝑛
𝑙
, 𝑛
2
) be a double star with {𝑛

𝑙
, 𝑛
2
} end-vertices, where

𝑛
1
≥ 0 and 𝑛

2
≥ 0, and a common edge [𝑢, V], as shown in

Figure 2. Note that if either 𝑛
1
or 𝑛
2
is 0, then the double star

DS(𝑛
𝑙
, 𝑛
2
) is a star.
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Figure 2: DS(𝑛
𝑙
, 𝑛
2
).

Theorem 10. Let 𝑇 be a tree of order 𝑛 ≥ 4. Then ENR(𝑇) =
𝑛 − 4 if and only if 𝑇 is either a star 𝐾

1,𝑛−1
or a double star

DS(𝑛
𝑙
, 𝑛
2
), where 𝑛

1
≥ 1, 𝑛

2
≥ 1, and 𝑛

1
+ 𝑛
2
= 𝑛 − 2.

Proof. If 𝑇 is a tree of order 𝑛 ≥ 3 and ENR(𝑇) = 𝑛 − 4, then
byTheorem 3 we have either diam(𝑇) = 2 or diam(𝑇) = 3. If
diam(𝑇) = 2, then 𝑇 is a star𝐾

1,𝑛−1
. If diam(𝑇) = 3, then 𝑇 is

a double star DS(𝑛
𝑙
, 𝑛
2
), where 𝑛

1
> 0, 𝑛

2
> 0, and 𝑛

1
+ 𝑛
2
=

𝑛 − 2.
Conversely, let 𝑇 be either a star𝐾

1,𝑛−1
with the order 𝑛 ≥

4 or a double star DS(𝑛
𝑙
, 𝑛
2
), where 𝑛

1
≥ 1, 𝑛

2
≥ 1, and 𝑛

1
+

𝑛
2
+ 2 = 𝑛 ≥ 4.
If 𝑆 is an edge-cut-strategy of 𝐾

1,𝑛−1
and |𝑆| = 1, then we

have 𝑛−2 isolated vertices.Therefore we have𝜔(𝑇−𝑆) = 𝑛−2

and𝑚(𝑇 − 𝑆) = 1. So

𝜔 (𝐾
1,𝑛−1

− 𝑆) − |𝑆| − 𝑚 (𝐾
1,𝑛−1

− 𝑆) = 𝑛 − 2 − 1 − 1

ENR (𝐾1,𝑛−1) = 𝑛 − 4.

(27)

It can be easily seen that there is an edge-cut-strategy 𝑆∗
of DS(𝑛

𝑙
, 𝑛
2
) such that |𝑆∗| = 1; then we have 𝜔(DS(𝑛

𝑙
, 𝑛
2
) −

𝑆
∗
) = 𝑛 − 2 and𝑚(DS(𝑛

𝑙
, 𝑛
2
) − 𝑆
∗
) = 1. So

𝜔 (DS (𝑛
𝑙
, 𝑛
2
) − 𝑆
∗
) −

󵄨󵄨󵄨󵄨𝑆
∗󵄨󵄨󵄨󵄨 − 𝑚 (DS (𝑛

𝑙
, 𝑛
2
) − 𝑆
∗
)

= 𝑛 − 2 − 1 − 1,

ENR (DS (𝑛𝑙, 𝑛2)) = 𝑛 − 4.

(28)

If 𝑆 is an edge set of DS(𝑛
𝑙
, 𝑛
2
) and |𝑆| > 1, then we have

𝜔(DS(𝑛
𝑙
, 𝑛
2
) − 𝑆) = 1 and𝑚(DS(𝑛

𝑙
, 𝑛
2
) − 𝑆) ≥ 2.

The proof is completed.

Theorem 11. Let𝐾
𝑚,𝑛

be a complete bipartite graph with |𝑚 −

𝑛| ≥ 1. Then

ENR (𝐾
𝑚,𝑛

) = {
𝑚 − 2𝑛 − 1, 𝑖𝑓 𝑚 > 𝑛,

𝑛 − 2𝑚 − 1, 𝑖𝑓 𝑚 < 𝑛.
(29)

Proof. Assume 𝑚 > 𝑛. Let 𝑆 be an edge-cut-strategy of 𝐾
𝑚,𝑛

and |𝑆| = 𝑟. If 𝑟 ≥ 𝑛, then 𝜔(𝐾
𝑚,𝑛

− 𝑆) ≤ 𝑚 − 𝑛 and𝑚(𝐾
𝑚,𝑛

−

𝑆) ≥ 1. Hence,

𝜔 (𝐾𝑚,𝑛 − 𝑆) − |𝑆| − 𝑚 (𝐾𝑚,𝑛 − 𝑆) ≤ 𝑚 − 𝑛 − 𝑟 − 1, (30)

the function 𝑓(𝑟) is a decreasing function and takes its
maximum value at 𝑟 = 𝑛, and we get

ENR (𝐾
𝑚,𝑛

) ≤ 𝑚 − 2𝑛 − 1. (31)

u

Figure 3: The wheel graph𝑊
6
.

It can be easily seen that there is an edge set 𝑆∗ of 𝐾
𝑚,𝑛

such that |𝑆∗| = 𝑛; then we have 𝜔(𝐾
𝑚,𝑛

− 𝑆) = 𝑚 − 𝑛 and
𝑚(𝐾
𝑚,𝑛

−𝑆) = 1. From the definition of edge neighbor rupture
degree we have

ENR (𝐾
𝑚,𝑛

) = 𝑚 − 2𝑛 − 1. (32)

Similarly, we obtain ENR(𝐾
𝑚,𝑛

) = 𝑛−2𝑚−1when 𝑛 > 𝑚.
Finally, we have

ENR (𝐾
𝑚,𝑛) = {

𝑚 − 2𝑛 − 1, if 𝑚 > 𝑛,

𝑛 − 2𝑚 − 1, if 𝑚 < 𝑛.
(33)

The proof is completed.

Definition 12. Thewheel graphwith 𝑛 spokes,𝑊
𝑛
, is the graph

that consists of an n-cycle and one additional vertex, say 𝑢,
that is adjacent to all the vertices of the cycle. In Figure 3, we
display𝑊

6
.

Theorem 13. Let𝑊
𝑛
be a wheel graph with order 𝑛(≥ 5). Then

ENR (𝑊
𝑛
) = {

−1, 𝑛 ≡ 2 (mod 3) ,

−2, 𝑛 ≡ 0, 1 (mod 3) .
(34)

Proof. The graph𝑊
𝑛
has subgraphs 𝐶

𝑛
and𝐾

1,𝑛
. Let 𝑒 be any

one edge of𝐾
1,𝑛
.

If 𝑒 ∈ 𝑆 and |𝑆| = 1, then we get 𝜔(𝑊
𝑛
− 𝑆) = 𝑃

𝑛−1
. So,

ENR (𝑊
𝑛
) = ENR (𝑃

𝑛−1
) − 1. (35)

If 𝑒 ∉ 𝑆 and |𝑆| = 1, then𝜔(𝑊𝑛−𝑆) = 1 and𝑚(𝑊𝑛−𝑆) ≥ 2.
Hence,

ENR (𝑊𝑛) ≤ 𝜔 (𝑊𝑛 − 𝑆) − |𝑆| − 𝑚 (𝑊𝑛 − 𝑆) ≤ 1 − 1−2 = −2.

(36)

If 𝑒 ∉ 𝑆 and |𝑆| ≥ 2, then𝜔(𝑊
𝑛
−𝑆) = 1 and𝑚(𝑊

𝑛
−𝑆) ≥ 1.

Thus,

ENR (𝑊
𝑛
) ≤ 𝜔 (𝑊

𝑛
− 𝑆) − |𝑆| − 𝑚 (𝑊

𝑛
− 𝑆) ≤ 1 − 2−1 = −2.

(37)

The proof is completed by (35), (36), and (37).
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