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The generalizedNash equilibriumproblem (GNEP) is an extension of the standardNash equilibriumproblem (NEP), in which each
player’s strategy set may depend on the rival player’s strategies. In this paper, we present two descent type methods.The algorithms
are based on a reformulation of the generalized Nash equilibrium using Nikaido-Isoda function as unconstrained optimization.
We prove that our algorithms are globally convergent and the convergence analysis is not based on conditions guaranteeing that
every stationary point of the optimization problem is a solution of the GNEP.

1. Introduction

The generalized Nash equilibrium problem (GNEP for short)
is an extension of the standard Nash equilibrium problem
(NEP for short), in which the strategy set of each player
depends on the strategies of all the other players as well as
on his own strategy. The GNEP has recently attracted much
attention due to its applications in various fields like mathe-
matics, computer science, economics, and engineering [1–11].
For more details, we refer the reader to a recent survey paper
by Facchinei and Kanzow [3] and the references therein.

Let us first recall the definition of the GNEP. There are
𝑁 players labelled by an integer 𝑣 = 1, . . . , 𝑁. Each player
𝑣 controls the variables 𝑥𝑣 ∈ 𝑅

𝑛
𝑣 . Let 𝑥 = (𝑥

1

⋅ ⋅ ⋅ 𝑥
𝑛

)
𝑇 be

the vector formed by all these decision variables, where 𝑛 :=
𝑛
1
+𝑛
2
+ ⋅ ⋅ ⋅ + 𝑛

𝑣
. To emphasize the 𝑣th player variable within

the vector𝑥, we sometimes write𝑥 = (𝑥
𝑣

, 𝑥
−𝑣

)
𝑇

∈ 𝑅
𝑛, where

𝑥
−𝑣 denotes all the other player’s variables. In the games, each

player controls the variables 𝑥𝑣 and tries to minimize a cost
function 𝜃

𝑣
(𝑥
𝑣

, 𝑥
−𝑣

) subjects to the constraint (𝑥𝑣, 𝑥−𝑣)𝑇 ∈ 𝑋
with 𝑥−𝑣 given as exogenous, where 𝑋 is a common strategy
set. A vector 𝑥∗ := (𝑥

∗,1

, . . . , 𝑥
∗,𝑁

)
𝑇 is called a solution of the

GNEP or a generalized Nash equilibrium, if for each player
𝑣 = 1, . . . , 𝑁, 𝑥∗,𝑣 solves the following optimization problem
with 𝑥∗,−𝑣 being fixed:

min
𝑥
𝑣

𝜃
𝑣
(𝑥
𝑣

, 𝑥
∗,−𝑣

) ,

s.t. (𝑥𝑣, 𝑥∗,−𝑣) ∈ 𝑋.
(1)

If 𝑋 is defined as the Cartesian product of certain sets
𝑋
𝑣
∈ 𝑅
𝑛
𝑣 , that is, 𝑋 = 𝑋

1
× 𝑋
2
× ⋅ ⋅ ⋅ × 𝑋

𝑁
, then the GNEP

reduces to the standard Nash equilibrium problem.
Throughout this paper, we can make the following

assumption.

Assumption 1. (a)The set𝑋 is nonempty, closed, and convex.
(b) The utility function 𝜃

𝑣
is continuously differentiable and,

as a function of 𝑥𝑣 alone, convex.

A basic tool for both the theoretical and the numerical
solution of (generalized) Nash equilibrium problems is the
Nikaido-Isoda function defined as

Ψ (𝑥, 𝑦) =

𝑁

∑

𝑣=1

[𝜃
𝑣
(𝑥
𝑣

, 𝑥
−𝑣

) − 𝜃
𝑣
(𝑦
𝑣

, 𝑥
−𝑣

)] . (2)

Sometimes also the name Ky-Fan function can be found
in the literature, see [12, 13]. In the following, we state a
definition which we have taken from [9].

Definition 1. 𝑥∗ is a normalized Nash equilibrium of the
GNEP, if max

𝑦
Ψ(𝑥
∗

, 𝑦) = 0 holds, whereΨ(𝑥, 𝑦) denotes the
Nikaido-Isoda function defined as (2).

In order to overcome the nondifferentiable property of
the mapping Ψ(𝑥, 𝑦), von Heusinger and Kanzow [8] used
a simple regularization of the Nikaido-Isoda function. For
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a parameter 𝛼 > 0, the following regularized Nikaido-Isoda
function was considered:

Ψ
𝛼
(𝑥, 𝑦) =

𝑁

∑

𝑣=1

[𝜃
𝑣
(𝑥
𝑣

, 𝑥
−𝑣

) − 𝜃
𝑣
(𝑦
𝑣

, 𝑥
−𝑣

)] −
𝛼

2

𝑥 − 𝑦


2

.

(3)

Since under the given Assumption 1, Ψ
𝛼
(𝑥, 𝑦) is strongly

concave in 𝑦, the maximization problem

max
𝑦

Ψ
𝛼
(𝑥, 𝑦) ,

s.t. 𝑦 ∈ 𝑋

(4)

has a unique solution for each 𝑥, denoted by 𝑦
𝛼
(𝑥).

The corresponding value function is then defined by

𝑉
𝛼
(𝑥) = max

𝑦

Ψ
𝛼
(𝑥, 𝑦) = Ψ

𝛼
(𝑥, 𝑦
𝛼
(𝑥)) . (5)

Let 𝛽 > 𝛼 > 0 be a given parameter. The corresponding
value function is then defined by

𝑉
𝛽
(𝑥) = max

𝑦

Ψ
𝛽
(𝑥, 𝑦) = Ψ

𝛽
(𝑥, 𝑦
𝛽
(𝑥)) . (6)

Define

𝑉
𝛼𝛽
(𝑥) = 𝑉

𝛼
(𝑥) − 𝑉

𝛽
(𝑥) . (7)

In [8], the following important properties of the function
𝑉
𝛼𝛽
(𝑥) have been proved.

Theorem 2. The following statements hold:

(a) 𝑉
𝛼𝛽
(𝑥) ≥ 0 for any 𝑥 ∈ 𝑅𝑛;

(b) 𝑥∗ is a normalized Nash equilibrium of the GNEP if
and only if 𝑉

𝛼𝛽
(𝑥
∗

) = 0;
(c) 𝑉
𝛼𝛽
(𝑥) is continuously differentiable on 𝑅𝑛 and that

∇𝑉
𝛼𝛽
(𝑥)

= ∇𝑉
𝛼
(𝑥) − ∇𝑉

𝛽
(𝑥)

=

𝑁

∑

𝑣=1

[∇𝜃
𝑣
(𝑦
𝛽
(𝑥)
𝑣

, 𝑥
−𝑣

) − ∇𝜃
𝑣
(𝑦
𝛼
(𝑥)
𝑣

, 𝑥
−𝑣

)]

+(

∇
𝑥
1𝜃
1
(𝑦
𝛼
(𝑥)
1

, 𝑥
−1

) − ∇
𝑥
1𝜃
1
(𝑦
𝛽
(𝑥)
1

, 𝑥
−1

)

...
∇
𝑥
𝑁𝜃
𝑁
(𝑦
𝛼
(𝑥)
𝑁

, 𝑥
−𝑁

) − ∇
𝑥
𝑁𝜃
𝑁
(𝑦
𝛽
(𝑥)
𝑁

, 𝑥
−𝑁

)

)

− 𝛼 (𝑥 − 𝑦
𝛼
(𝑥)) + 𝛽 (𝑥 − 𝑦

𝛽
(𝑥)) .

(8)

From Theorem 2, we know that the normalized Nash
equilibrium of the GNEP is precisely the global minima of
the smooth unconstrained optimization problem (see [5]) as

min
𝑥∈𝑅
𝑛

𝑉
𝛼𝛽
(𝑥) (9)

with zero optimal value.

In this paper, we develop two new descent methods for
finding a normalized Nash equilibrium of the GNEP by
solving the optimization problem (9).The key to ourmethods
is a strategy for adjusting 𝛼 and 𝛽 when a stationary point
of V

𝛼𝛽
(𝑥) is not a solution of the GNEP. We will show

that our algorithms are globally convergent to a normalized
Nash equilibrium under appropriate assumption on the cost
function, which is not stronger than the one considered in [8].

The organization of the paper is as follows. In Section 2,
we state the main assumption underlying our algorithms and
present some examples of theGNEP satisfying it. In Section 3,
we derive some useful properties of the function 𝑉

𝛼𝛽
(𝑥).

In Section 4, we formally state our algorithms and prove
that they are both globally convergent to a normalized Nash
equilibrium.

2. Main Assumption

In order to construct algorithms and guarantee the conver-
gence of them, we give the following assumption.

Assumption 2. For any 𝛽 > 𝛼 > 0 and 𝑥 ∈ 𝑅
𝑛,

if 𝑦
𝛼
(𝑥) ̸= 𝑦

𝛽
(𝑥), we have

𝑁

∑

𝑣=1

(∇𝜃
𝑣
(𝑦
𝛽
(𝑥)
𝑣

, 𝑥
−𝑣

) − ∇𝜃
𝑣
(𝑦
𝛼
(𝑥)
𝑣

, 𝑥
−𝑣

))
𝑇

⋅ (𝑦
𝛽
(𝑥) − 𝑦

𝛼
(𝑥))

≥

𝑁

∑

𝑣=1

(∇
𝑥
𝑣𝜃
𝑣
(𝑦
𝛽
(𝑥)
𝑣

, 𝑥
−𝑣

) − ∇
𝑥
𝑣𝜃
𝑣
(𝑦
𝛼
(𝑥)
𝑣

, 𝑥
−𝑣

))
𝑇

⋅ (𝑦
𝛽
(𝑥)
𝑣

− 𝑦
𝛼
(𝑥)
𝑣

) .

(10)

We next consider three examples which satisfy
Assumption 2.

Example 3. Let us consider the case in which all the cost
functions are separable, that is,

𝜃
𝑣
(𝑥) = 𝑓

𝑣
(𝑥
𝑣

) + 𝑔
𝑣
(𝑥
−𝑣

) , (11)

where 𝑓
𝑣
: 𝑅
𝑛
𝑣 → 𝑅 is convex and 𝑔

𝑣
: 𝑅
𝑛−𝑛
𝑣 → 𝑅. A simple

calculation shows that, for any 𝑦 ∈ 𝑅
𝑛, we have

𝑁

∑

𝑣=1

(∇
𝑥
𝑣𝜃
𝑣
(𝑦
𝛽
(𝑥)
𝑣

, 𝑥
−𝑣

) − ∇
𝑥
𝑣𝜃
𝑣
(𝑦
𝛼
(𝑥)
𝑣

, 𝑥
−𝑣

))
𝑇

⋅ (𝑦
𝛽
(𝑥)
𝑣

− 𝑦
𝛼
(𝑥)
𝑣

)

=

𝑁

∑

𝑣=1

(∇𝑓
𝑣
(𝑦
𝛽
(𝑥)
𝑣

) − ∇𝑓
𝑣
(𝑦
𝛼
(𝑥)
𝑣

))
𝑇

(𝑦
𝛽
(𝑥)
𝑣

− 𝑦
𝛼
(𝑥)
𝑣

) ,

𝑁

∑

𝑣=1

(∇𝜃
𝑣
(𝑦
𝛽
(𝑥)
𝑣

, 𝑥
−𝑣

) − ∇𝜃
𝑣
(𝑦
𝛼
(𝑥)
𝑣

, 𝑥
−𝑣

))
𝑇

⋅ (𝑦
𝛽
(𝑥)
𝑣

− 𝑦
𝛼
(𝑥)
𝑣

)

=

𝑁

∑

𝑣=1

(∇𝑓
𝑣
(𝑦
𝛽
(𝑥)
𝑣

) − ∇𝑓
𝑣
(𝑦
𝛼
(𝑥)
𝑣

))
𝑇

(𝑦
𝛽
(𝑥)
𝑣

− 𝑦
𝛼
(𝑥)
𝑣

) .

(12)

Hence Assumption 2 holds.
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Example 4. Consider the case where the cost function 𝜃
𝑣
(𝑥)

is quadratic, that is,

𝜃
𝑣
(𝑥) =

1

2
(𝑥
𝑣

)
𝑇

𝐴
𝑣𝑣
𝑥
𝑣

+

𝑁

∑

𝜇=1,𝜇 ̸= 𝑣

(𝑥
𝑣

)
𝑇

𝐴
𝑣𝜇
𝑥
𝜇 (13)

for 𝑣 = 1, . . . , 𝑁. We have

𝑁

∑

𝑣=1

(∇
𝑥
𝑣𝜃
𝑣
(𝑦
𝛽
(𝑥)
𝑣

, 𝑥
−𝑣

) − ∇
𝑥
𝑣𝜃
𝑣
(𝑦
𝛼
(𝑥)
𝑣

, 𝑥
−𝑣

))
𝑇

⋅ (𝑦
𝛽
(𝑥)
𝑣

− 𝑦
𝛼
(𝑥)
𝑣

)

=

𝑁

∑

𝑣=1

⟨𝑦
𝛽
(𝑥)
𝑣

− 𝑦
𝛼
(𝑥)
𝑣

, 𝐴
𝑣𝑣
(𝑦
𝛽
(𝑥)
𝑣

− 𝑦
𝛼
(𝑥)
𝑣

)⟩ ,

𝑁

∑

𝑣=1

(∇𝜃
𝑣
(𝑦
𝛽
(𝑥)
𝑣

, 𝑥
−𝑣

) − ∇𝜃
𝑣
(𝑦
𝛼
(𝑥)
𝑣

, 𝑥
−𝑣

))
𝑇

⋅ (𝑦
𝛽
(𝑥) − 𝑦

𝛼
(𝑥))

=⟨𝑦
𝛽
(𝑥) − 𝑦

𝛼
(𝑥) ,

(

𝐴
11

𝐴
21

⋅ ⋅ ⋅ 𝐴
1𝑁

𝐴
21

𝐴
22

⋅ ⋅ ⋅ 𝐴
2𝑁

...
...

. . .
...

𝐴
1𝑁

𝐴
2𝑁

⋅ ⋅ ⋅ 𝐴
𝑁𝑁

)𝑦
𝛽
(𝑥) − 𝑦

𝛼
(𝑥)⟩.

(14)

Therefore, if the matrix

(

0 𝐴
12

⋅ ⋅ ⋅ 𝐴
1𝑁

𝐴
21

0 ⋅ ⋅ ⋅ 𝐴
2𝑁

...
...

. . .
...

𝐴
𝑁1

𝐴
𝑁2

⋅ ⋅ ⋅ 0

) (15)

is positive semidefinite, Assumption 2 is satisfied.

In the following example, we show the relationship
between our assumption and the one considered in [8] as
follows.

For any 𝛽 > 𝛼 > 0, a given 𝑥 ∈ 𝑅𝑛 with 𝑦
𝛼
(𝑥) ̸= 𝑦

𝛽
(𝑥), the

inequality

𝑁

∑

𝑣=1

(∇𝜃
𝑣
(𝑦
𝛽
(𝑥)
𝑣

, 𝑥
−𝑣

) − ∇𝜃
𝑣
(𝑦
𝛼
(𝑥)
𝑣

, 𝑥
−𝑣

))
𝑇

× (𝑦
𝛽
(𝑥) − 𝑦

𝛼
(𝑥)) > 0

(16)

holds.

Example 5. Consider the GNEP with𝑁 = 2 as

𝑋 = {𝑥 ∈ 𝑅
𝑛

: 𝑥
1

≥ 1, 𝑥
2

≥ 1, 𝑥
1

+ 𝑥
2

≤ 10} (17)

and the cost function 𝜃
1
(𝑥) = 𝑥

1

𝑥
2 and 𝜃

2
(𝑥) = −𝑥

1

𝑥
2.

The point 𝑥∗ = (1, 9)
𝑇 is the unique normalized Nash

equilibrium. For any 𝑦 ∈ 𝑅
2, we have

𝑁

∑

𝑣=1

(∇𝜃
𝑣
(𝑦
𝛽
(𝑥)
𝑣

, 𝑥
−𝑣

) − ∇𝜃
𝑣
(𝑦
𝛼
(𝑥)
𝑣

, 𝑥
−𝑣

))
𝑇

⋅ (𝑦
𝛽
(𝑥) − 𝑦

𝛼
(𝑥)) = 0,

𝑁

∑

𝑣=1

(∇
𝑥
𝑣𝜃
𝑣
(𝑦
𝛽
(𝑥)
𝑣

, 𝑥
−𝑣

) − ∇
𝑥
𝑣𝜃
𝑣
(𝑦
𝛼
(𝑥)
𝑣

, 𝑥
−𝑣

))
𝑇

⋅ (𝑦
𝛽
(𝑥)
𝑣

− 𝑦
𝛼
(𝑥)
𝑣

) = 0.

(18)

Therefore Assumption 2 holds, but (16) does not hold for
any 𝛽 > 𝛼 > 0.

3. Properties of 𝑉
𝛼𝛽
(𝑥)

Lemma 6. For any 𝛽 > 𝛼 > 0 and 𝑥 ∈ 𝑅
𝑛, we have

𝑉
𝛼𝛽
(𝑥) ≥

𝛽 − 𝛼

2


𝑥 − 𝑦
𝛽
(𝑥)



2

+
𝛼

2


𝑦
𝛼
(𝑥) − 𝑦

𝛽
(𝑥)



2

,

(19)

𝑉
𝛼𝛽
(𝑥) ≤

𝛽 − 𝛼

2

𝑥 − 𝑦𝛼 (𝑥)


2

−
𝛽

2


𝑦
𝛼
(𝑥) − 𝑦

𝛽
(𝑥)



2

.

(20)

Proof. Since 𝑦
𝛼
(𝑥) satisfies the optimality condition, then

𝑁

∑

𝑣=1

[∇
𝑥
𝑣𝜃
𝑣
(𝑦
𝛼
(𝑥)
𝑣

, 𝑥
−𝑣

) − 𝛼 (𝑥
𝑣

− 𝑦
𝛼
(𝑥)
𝑣

)]
𝑇

⋅ (𝑦
𝛽
(𝑥)
𝑣

− 𝑦
𝛼
(𝑥)
𝑣

) ≥ 0.

(21)

In a similar way, it follows that 𝑦
𝛽
(𝑥) satisfies

𝑁

∑

𝑣=1

[∇
𝑥
𝑣𝜃
𝑣
(𝑦
𝛽
(𝑥)
𝑣

, 𝑥
−𝑣

) − 𝛽 (𝑥
𝑣

− 𝑦
𝛽
(𝑥)
𝑣

)]
𝑇

⋅ (𝑦
𝛼
(𝑥)
𝑣

− 𝑦
𝛽
(𝑥)
𝑣

) ≥ 0.

(22)

Since 𝜃
𝑣
(𝑥) as a function of 𝑥𝑣 alone is convex, we have

𝑁

∑

𝑣=1

[𝜃
𝑣
(𝑦
𝛽
(𝑥)
𝑣

, 𝑥
−𝑣

) − 𝜃
𝑣
(𝑦
𝛼
(𝑥)
𝑣

, 𝑥
−𝑣

)]

− 𝛼(𝑥 − 𝑦
𝛼
(𝑥))
𝑇

(𝑦
𝛽
(𝑥) − 𝑦

𝛼
(𝑥)) ≥ 0,

(23)

𝑁

∑

𝑣=1

[𝜃
𝑣
(𝑦
𝛼
(𝑥)
𝑣

, 𝑥
−𝑣

) − 𝜃
𝑣
(𝑦
𝛽
(𝑥)
𝑣

, 𝑥
−𝑣

)]

− 𝛽(𝑥 − 𝑦
𝛽
(𝑥))
𝑇

(𝑦
𝛼
(𝑥) − 𝑦

𝛽
(𝑥)) ≥ 0

(24)
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respectively.Thus, using the definition of𝑉
𝛼𝛽
(𝑥) and (23), we

have

𝑉
𝛼𝛽
(𝑥) =

𝑁

∑

𝑣=1

[𝜃
𝑣
(𝑦
𝛼
(𝑥)
𝑣

, 𝑥
−𝑣

) − 𝜃
𝑣
(𝑦
𝛽
(𝑥)
𝑣

, 𝑥
−𝑣

)]

+
𝛽

2


𝑥 − 𝑦
𝛽
(𝑥)



2

−
𝛼

2

𝑥 − 𝑦𝛼 (𝑥)


2

≥ 𝛼(𝑥 − 𝑦
𝛼
(𝑥))
𝑇

(𝑦
𝛽
(𝑥) − 𝑦

𝛼
(𝑥))

+
𝛽

2


𝑥 − 𝑦
𝛽
(𝑥)



2

−
𝛼

2

𝑥 − 𝑦𝛼 (𝑥)


2

= 𝛼(𝑥 − 𝑦
𝛼
(𝑥))
𝑇

(𝑦
𝛽
(𝑥) − 𝑦

𝛼
(𝑥)) +

𝛽

2


𝑥 − 𝑦
𝛽
(𝑥)



2

−
𝛼

2


𝑥 − 𝑦
𝛽
(𝑥) + 𝑦

𝛽
(𝑥) − 𝑦

𝛼
(𝑥)



2

=
𝛽 − 𝛼

2


𝑥 − 𝑦
𝛽
(𝑥)



2

+
𝛼

2


𝑦
𝛼
(𝑥) − 𝑦

𝛽
(𝑥)



2

.

(25)

Similarly, using the definition of𝑉
𝛼𝛽
(𝑥) and (24), we have

𝑉
𝛼𝛽
(𝑥) ≤

𝛽 − 𝛼

2

𝑥 − 𝑦𝛼 (𝑥)


2

−
𝛽

2


𝑦
𝛼
(𝑥) − 𝑦

𝛽
(𝑥)



2

.

(26)

The proof is complete.

Lemma 7. Assume 𝑋 is bounded. For any 𝛽 > 𝛼 > 0 and
𝑥 ∈ 𝑅

𝑛, we have

lim sup
𝛽

→∞,𝛼


→0

𝑉
𝛼

𝛽
 (𝑥)

𝛽 − 𝛼
≤

𝑉
𝛼𝛽
(𝑥)

𝛽 − 𝛼
. (27)

Proof. We have from (19) that
2𝑉
𝛼𝛽
(𝑥)

𝛽 − 𝛼

≥

𝑥 − 𝑦
𝛽
(𝑥)



2

+
𝛼

𝛽 − 𝛼


𝑦
𝛼
(𝑥) − 𝑦

𝛽
(𝑥)



2

≥

𝑥 − 𝑦
𝛽
(𝑥)



2

.

(28)

By the definition of 𝑉
𝛼𝛽
(𝑥), we have

2𝑉
𝛼

𝛽


𝛽 − 𝛼

=

2∑
𝑁

𝑣=1
[𝜃
𝑣
(𝑦
𝛽
(𝑥)
𝑣

, 𝑥
−𝑣

) − 𝜃
𝑣
(𝑦
𝛼
(𝑥)
𝑣

, 𝑥
−𝑣

)]

𝛽 − 𝛼

−

𝛼
𝑥 − 𝑦𝛼 (𝑥)



2

+ 𝛽


𝑥 − 𝑦
𝛽
 (𝑥)



2

𝛽 − 𝛼
.

(29)

Since 𝑦
𝛼
(𝑥) ∈ 𝑋, 𝑦

𝛽
(𝑥) ∈ 𝑋 and 𝑋 is bounded, we get

that

lim sup
𝛽

→∞,𝛼


→0

𝑉
𝛼

𝛽
 (𝑥)

𝛽 − 𝛼
≤
1

2


𝑥 − 𝑦
𝛽
(𝑥)



2

≤

𝑉
𝛼𝛽

𝛽 − 𝛼
. (30)

This completes the proof.

Equation (8) and Assumption 2 yield

𝑉
𝛼𝛽
(𝑥)
𝑇

(𝑦
𝛽
(𝑥) − 𝑦

𝛼
(𝑥))

=

𝑁

∑

𝑣=1

[∇𝜃
𝑣
(𝑦
𝛽
(𝑥)
𝑣

, 𝑥
−𝑣

) − ∇𝜃
𝑣
(𝑦
𝛼
(𝑥)
𝑣

, 𝑥
−𝑣

)]
𝑇

⋅ (𝑦
𝛽
(𝑥) − 𝑦

𝛼
(𝑥))

+(

∇
𝑥
1𝜃
1
(𝑦
𝛼
(𝑥)
1

, 𝑥
−1

)−∇
𝑥
1𝜃
1
(𝑦
𝛽
(𝑥)
1

, 𝑥
−1

)

...
∇
𝑥
𝑁𝜃
𝑁
(𝑦
𝛼
(𝑥)
𝑁

, 𝑥
−𝑁

)−∇
𝑥
𝑁𝜃
𝑁
(𝑦
𝛽
(𝑥)
𝑁

, 𝑥
−𝑁

)

)

𝑇

⋅ (𝑦
𝛽
(𝑥) − 𝑦

𝛼
(𝑥))

− [𝛼 (𝑥 − 𝑦
𝛼
(𝑥)) − 𝛽 (𝑥 − 𝑦

𝛽
(𝑥))]
𝑇

⋅ (𝑦
𝛽
(𝑥) − 𝑦

𝛼
(𝑥))

≥ −[𝛼 (𝑥 − 𝑦
𝛼
(𝑥)) − 𝛽 (𝑥 − 𝑦

𝛽
(𝑥))]
𝑇

⋅ (𝑦
𝛽
(𝑥) − 𝑦

𝛼
(𝑥))

=: 𝑒
𝛼𝛽
(𝑥) ≥ 0,

(31)

where nonnegativity of 𝑒
𝛼𝛽
(𝑥) follows from the inequalities

(23) and (24). In particular, either 𝑒
𝛼𝛽
(𝑥) is above a tolerance

𝜀 > 0, in which case 𝑦
𝛼
(𝑥) − 𝑦

𝛽
(𝑥) is a direction of sufficient

descent for𝑉
𝛼𝛽
(𝑥) at𝑥 or else, as we show in the lemmabelow,

and 𝑥 is an approximate solution of the GNEP with accuracy
depending on 𝜀, 𝛼, 𝛽. This result will lead to our methods.

Lemma 8. For any 𝛽 > 𝛼 > 0 and 𝑥 ∈ 𝑅𝑛, we have


𝑥 − 𝑦
𝛽
(𝑥)


≤ √

2𝑉
𝛼𝛽
(𝑥)

𝛽 − 𝛼
, (32)

𝛾
𝛼𝛽
(𝑥) ≤ 𝑉

𝛼
(𝑥) ≤ 𝛾

𝛼𝛽
(𝑥) + 𝑒

𝛼𝛽
(𝑥) +

𝛼

2


𝑦
𝛼
(𝑥) − 𝑦

𝛽
(𝑥)



2

,

(33)

where 𝛾
𝛼𝛽
(𝑥) = ∑

𝑁

𝑣=1
[𝜃
𝑣
(𝑥
𝑣

, 𝑥
−𝑣

) − 𝜃
𝑣
(𝑦
𝛽
(𝑥)
𝑣

, 𝑥
−𝑣

)] −

(𝛼/2)‖𝑥 − 𝑦
𝛽
(𝑥)‖
2.

Proof. Inequality (32) follows immediately from (19) in
Lemma 6.

The definition of 𝑉
𝛼
(𝑥) implies that

𝑉
𝛼
(𝑥) ≥

𝑁

∑

𝑣=1

[𝜃
𝑣
(𝑥
𝑣

, 𝑥
−𝑣

) − 𝜃
𝑣
(𝑦
𝛽
(𝑥)
𝑣

, 𝑥
−𝑣

)]

−
𝛼

2


𝑥 − 𝑦
𝛽
(𝑥)



2

,

(34)

which proves the first inequality in (33).
Since 𝑒

𝛼𝛽
(𝑥) is the sum of the nonnegative quantity

(∑
𝑁

𝑣=1
[𝜃
𝑣
(𝑦
𝛽
(𝑥)
𝑣

, 𝑥
−𝑣

) − 𝜃
𝑣
(𝑦
𝛼
(𝑥)
𝑣

, 𝑥
−𝑣

)] − 𝛼(𝑥 − 𝑦
𝛼
(𝑥))
𝑇

⋅(𝑦
𝛽
(𝑥)−𝑦

𝛼
(𝑥)))with another nonnegative quantity (see (23)

and (24)), we have

𝑒
𝛼𝛽
(𝑥) ≥

𝑁

∑

𝑣=1

[𝜃
𝑣
(𝑦
𝛽
(𝑥)
𝑣

, 𝑥
−𝑣

) − 𝜃
𝑣
(𝑦
𝛼
(𝑥)
𝑣

, 𝑥
−𝑣

)]

− 𝛼(𝑥 − 𝑦
𝛼
(𝑥))
𝑇

(𝑦
𝛽
(𝑥) − 𝑦

𝛼
(𝑥)) .

(35)
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Thus,

𝑉
𝛼
(𝑥) ≤ 𝛾

𝛼𝛽
(𝑥) + 𝑒

𝛼𝛽
(𝑥) +

𝛼

2


𝑦
𝛼
(𝑥) − 𝑦

𝛽
(𝑥)



2

, (36)

which is the second inequality in (33). This completes the
proof.

4. Two Methods for Solving the GNEP

In this section, we introduce two methods for solving the
GNEP, motivated by the D-gap function scheme for solving
monotone variational inequalities [14, 15]. We first formally
describe our methods below and then analyze their conver-
gence using Lemma 8.

Algorithm 9. Choose an arbitrary initial point 𝑥0 ∈ 𝑅
𝑛, and

any 𝛽
0
> 𝛼
0
> 0. Choose any sequences of numbers 𝜀𝑘 >

0, 𝜂
𝑘
≥ 0, 𝜆

𝑘
∈ [0, 1), 𝑘 = 1, 2, . . ., such that

lim
𝑘→∞

𝜀
𝑘

= lim
𝑘→∞

𝜂
𝑘

1 − 𝜆
𝑘

= 0,

∞

∑

𝑘=1

(1 − 𝜆
𝑘
) = ∞. (37)

For 𝑘 = 1, 2, . . ., we iterate the following.
Iteration k. Choose any 0 < 𝛼

𝑘
≤ (1/2)𝛼

𝑘−1
. Choose any 𝛽

𝑘
≥

2𝛽
𝑘−1

and 𝑥𝑘 ∈ 𝑅𝑛 satisfying

𝑉
𝛼
𝑘
𝛽
𝑘

(𝑥
𝑘

)

𝛽
𝑘
− 𝛼
𝑘

≤ 𝜂
𝑘
+ 𝜆
𝑘

𝑉
𝛼
𝑘−1
𝛽
𝑘−1

(𝑥
𝑘−1

)

𝛽
𝑘−1

− 𝛼
𝑘−1

. (38)

Apply a descent method to the unconstrained minimiza-
tion of the function 𝑉

𝛼
𝑘
𝛽
𝑘

, with 𝑥𝑘 as the starting point and
using 𝑦

𝛼
𝑘

−𝑦
𝛽
𝑘

as a safeguard descent direction at 𝑥, until the
method generates an 𝑥 ∈ 𝑅

𝑛 satisfying 𝑒
𝛼
𝑘
𝛽
𝑘

(𝑥) ≤ 𝜀
𝑘. The

resulting 𝑥 is denoted by 𝑥𝑘.

Theorem 10. Assume X is bounded. Let {𝑥
𝑘

, 𝛼
𝑘
, 𝛽
𝑘
, 𝜀
𝑘
,

𝜂
𝑘
, 𝜆
𝑘
}
𝑘=0,1,2,...

be generated by Algorithm 9. Then {𝑥
𝑘

} is
bounded; 𝛽

𝑘
→∞; 𝛼

𝑘
→ 0; and every cluster point of {𝑥𝑘} is

a normalized Nash equilibrium of the GNEP.

Proof. Denote 𝑎𝑘 = 𝑉
𝛼
𝑘
𝛽
𝑘

(𝑥
𝑘

)/(𝛽
𝑘
− 𝛼
𝑘
). By (38), we have

𝑎
𝑘

≤ 𝜂
𝑘
+ 𝜆
𝑘
𝑎
𝑘−1 for 𝑘 = 1, 2, . . . and it follows from (37)

that 𝑎𝑘 → 0 ([16], Lemma 3). For each 𝑘 ∈ {1, 2, . . .},
we have from Lemma 8 that (32) and (33) hold with𝛼 =

𝛼
𝑘
, 𝛽 = 𝛽

𝑘
, 𝑥 = 𝑥

𝑘. This together with 𝑒
𝛼
𝑘
,𝛽
𝑘

(𝑥
𝑘

) ≤ 𝜀
𝑘 and

‖𝑦
𝛼
𝑘

(𝑥
𝑘

) − 𝑦
𝛽
𝑘

(𝑥
𝑘

)‖ ≤ diam(𝑋) yields


𝑥
𝑘

− 𝑦
𝛽
𝑘

(𝑥
𝑘

)

≤ √2𝑎𝑘,

𝛾
𝑘

≤ 𝑉
𝛼
𝑘

(𝑥
𝑘

) ≥ 𝛾
𝑘

+ 𝜀
𝑘

+
𝛼
𝑘
diam (𝑋)

2

2
,

(39)

where 𝛾
𝑘

= ∑
𝑁

𝑣=1
[𝜃
𝑣
(𝑥
𝑘,𝑣

, 𝑥
𝑘,−𝑣

) − 𝜃
𝑣
(𝑦
𝑣

𝛽
𝑘

(𝑥
𝑘

), 𝑥
𝑘,−𝑣

)] −

(𝛼/2)‖𝑥
𝑘

− 𝑦
𝛽
𝑘

(𝑥
𝑘

)‖
2

and diam(𝑋) = max
𝑥,𝑦∈𝑋

‖𝑥 − 𝑦‖.
Since 𝑎𝑘 → 0, the first inequality in (39) implies {𝑥𝑘} is
bounded. Moreover, this also implies 𝑟𝑘 → 0.

Since 𝛼
𝑘

→ 0, the last two inequalities in (39) yield
𝑉
𝛼
𝑘

(𝑥
𝑘

) → 0. Since for each 𝑦 ∈ 𝑋, we have 𝑉
𝛼
𝑘

(𝑥
𝑘

) ≥

Ψ(𝑥, 𝑦) − (𝛼
𝑘
/2)‖𝑥
𝑘

− 𝑦‖
2

, and this yields 0 ≥ Ψ(𝑥
∞

, 𝑦) for
each cluster point 𝑥∞ of {𝑥𝑘}. Thus, each cluster point 𝑥∞ is
a normalized Nash equilibrium of the GNEP. This completes
the proof.
Algorithm 11. Choose any 𝑥0 ∈ 𝑅

𝑛, any 𝛽
0
> 𝛼
0
, and two

sequences of nonnegative numbers 𝜌
𝑘
, 𝜂
𝑘
, 𝑘 = 1, 2 . . . such

that
𝜂
𝑘
+ 𝜌
𝑘
> 0 ∀𝑘,

∞

∑

𝑘=1

𝜌
𝑘
< ∞,

∞

∑

𝑘=1

𝜂
𝑘
< ∞. (40)

Choose any continuous function𝜙 : 𝑅
+
→ 𝑅
+
with𝜙(𝑡) =

0 ⇔ 𝑡 = 0. For 𝑘 = 1, 2, . . ., we iterate the following.
Iteration k. Choose any 0 < 𝛼

𝑘
≤ (1/2)𝛼

𝑘−1
and then choose

𝛽
𝑘
≥ 2𝛽
𝑘−1

satisfying
𝑉
𝛼
𝑘
𝛽
𝑘

(𝑥
𝑘−1

)

𝛽
𝑘
− 𝛼
𝑘

≤ (1 + 𝜌
𝑘
)

𝑉
𝛼
𝑘−1
𝛽
𝑘−1

(𝑥
𝑘−1

)

𝛽
𝑘−1

− 𝛼
𝑘−1

+ 𝜂
𝑘
. (41)

Apply a descent method to the unconstrained mini-
mization of the function 𝑉

𝛼
𝑘
𝛽
𝑘

(𝑥
𝑘

) with 𝑥
𝑘−1 as the starting

point. We assume the descent method has the property that
the amount of descent achieved at 𝑥 per step is bounded
away from zero whenever 𝑥 is bounded and ‖∇𝑉

𝛼
𝑘
𝛽
𝑘

(𝑥)‖ is
bounded away from zero. Then, either the method in a finite
number of steps generates an x satisfying


∇𝑉
𝛼
𝑘
𝛽
𝑘

(𝑥)

≤ 𝜙(

𝑉
𝛼
𝑘
𝛽
𝑘

(𝑥)

𝛽
𝑘
− 𝛼
𝑘

) , (42)

whichwedenote by𝑥𝑘, or else𝑉
𝛼
𝑘
𝛽
𝑘

(𝑥)must decrease towards
zero, in which case any cluster point of 𝑥 solves the GNEP.

Theorem 12. Assume X is bounded. Let {𝑥
𝑘

, 𝛼
𝑘
, 𝛽
𝑘
,

𝜌
𝑘
, 𝜂
𝑘
}
𝑘=0,1,2,...

be generated by Algorithm 11.

(a) Suppose 𝑥𝑘 is obtained for all 𝑘. Then, {𝑥𝑘}is bounded;
𝛽
𝑘
→ ∞; 𝛼

𝑘
→ 0, and every cluster point of {𝑥𝑘} is a

normalized Nash equilibrium of the GNEP.
(b) Suppose 𝑥

𝑘 is not obtained for some 𝑘. Then, the
descent method generates a bounded sequence of x with
𝑉
𝛼
𝑘
𝛽
𝑘

(𝑥) → 0 so every cluster point of 𝑥 solves the
GNEP.

Proof. (a) Since we use a descent method at iteration 𝑘 to
obtain 𝑥

𝑘 from 𝑥
𝑘−1, then 𝑉

𝛼
𝑘
𝛽
𝑘

(𝑥
𝑘

) ≤ 𝑉
𝛼
𝑘
𝛽
𝑘

(𝑥
𝑘−1

), so (41)
yields

𝑉
𝛼
𝑘
𝛽
𝑘

(𝑥
𝑘

)

𝛽
𝑘
− 𝛼
𝑘

≤ (1 + 𝜌
𝑘
)

𝑉
𝛼
𝑘−1
𝛽
𝑘−1

(𝑥
𝑘−1

)

𝛽
𝑘−1

− 𝛼
𝑘−1

+ 𝜂
𝑘
. (43)

Denote 𝑎𝑘 = 𝑉
𝛼
𝑘
𝛽
𝑘

(𝑥
𝑘

)/(𝛽
𝑘
−𝛼
𝑘
).This can then be written

as 𝑎𝑘 ≤ (1 + 𝜌
𝑘
)𝑎
𝑘−1

+ 𝜂
𝑘
for 𝑘 = 1, 2, . . .. Using 𝑎𝑘 ≥ 0 and

(41), it follows that the sequence {𝑎𝑘} converges to some 𝑎 ≥ 0

([16], Lemma 2). Since (32) implies

𝑥
𝑘

− 𝑦
𝛽
𝑘

(𝑥
𝑘

)

≤ √2𝑎𝑘, ∀𝑘 (44)

the sequence {𝑥𝑘} is bounded.
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We claim that 𝑎 = 0. Suppose the contrary. Then for all 𝑘
sufficiently large, it holds that 𝑎𝑘 ≥ 𝑎/2. Then,

𝑎

2
≤

∑
𝑁

𝑣=1
[𝜃
𝑣
(𝑦
𝑣

𝛽
𝑘

(𝑥
𝑘

) , 𝑥
𝑘,−𝑣

) − 𝜃
𝑣
(𝑦
𝑣

𝛼
𝑘

(𝑥
𝑘

) , 𝑥
𝑘,−𝑣

)]

𝛽
𝑘
− 𝛼
𝑘

−

(𝛼
𝑘
/2)


𝑥
𝑘

− 𝑦
𝛼
𝑘

(𝑥
𝑘

)


2

+ (𝛽
𝑘
/2)


𝑥
𝑘

− 𝑦
𝛽
𝑘

(𝑥
𝑘

)


2

𝛽
𝑘
− 𝛼
𝑘

(45)

Since, by the construction of the algorithm,𝛽
𝑘
→ ∞ and

𝛼
𝑘
→ 0, and {𝑥𝑘} is bounded (as are𝑦

𝛼
𝑘

(𝑥
𝑘

) and 𝑦
𝛽
𝑘

(𝑥
𝑘

)), we
get

0 <
𝑎

2
≤ lim inf
𝑘→∞


𝑥
𝑘

− 𝑦
𝛽
𝑘

(𝑥
𝑘

)


2

. (46)

Then lim
𝑘→∞

‖𝑥
𝑘

− 𝑦
𝛽
𝑘

(𝑥
𝑘

)‖𝛽
𝑘
= ∞, so

lim
𝑘→∞


∇𝑉
𝛼
𝑘
,𝛽
𝑘

(𝑥
𝑘

)

= ∞. (47)

Since 𝑥𝑘 satisfies (42), ‖∇𝑉
𝛼
𝑘
,𝛽
𝑘

(𝑥
𝑘

)‖ ≤ 𝜙(𝑎
𝑘

) for all 𝑘,
this contradicts convergence of {𝜙(𝑎𝑘)} (recall that 𝜙 is a
continuous function). Hence, 𝑎 = 0. For each 𝑘 ∈ {1, 2, . . .},
we have from Lemma 8 that (33) holds with 𝛼 = 𝛼

𝑘
, 𝛽 = 𝛽

𝑘
,

𝑥 = 𝑥
𝑘 and from the fact 𝑒

𝛼𝛽
(𝑥) ≥ 0 that

𝑒
𝛼
𝑘
𝛽
𝑘

(𝑥
𝑘

) ≤ 𝜀
𝑘

:= ∇𝑉
𝛼
𝑘
𝛽
𝑘

(𝑥
𝑘

)
𝑇

(𝑦
𝛽
𝑘

(𝑥
𝑘

) − 𝑦
𝛼
𝑘

(𝑥
𝑘

)) .

(48)

This, together with ‖𝑦
𝛼
𝑘

(𝑥
𝑘

) −𝑦
𝛽
𝑘

(𝑥
𝑘

)‖ ≤ diam(𝑋), yields

𝛾
𝑘

≤ 𝑉
𝛼
(𝑥) ≤ 𝛾

𝑘

+ 𝜀
𝑘

+
𝛼
𝑘
diam (𝑋)

2

2
, (49)

where 𝛾
𝑘

= ∑
𝑁

𝑣=1
[𝜃
𝑣
(𝑥
𝑘,𝑣

, 𝑥
𝑘,−𝑣

) − 𝜃
𝑣
(𝑦
𝛽
𝑘

(𝑥
𝑘

)
𝑣

, 𝑥
𝑘,−𝑣

)] −

(𝛼
𝑘
/2)‖𝑥
𝑘

− 𝑦
𝛽
𝑘

(𝑥
𝑘

)‖
2

and diam(𝑋) = max
𝑥,𝑦∈𝑋

‖𝑥−𝑦‖. Since
𝑎
𝑘

→ 0, (44) implies {𝑥𝑘} is bounded.Moreover, (44) implies
𝛾
𝑘

→ 0. Also, we have ‖∇𝑉
𝛼
𝑘
𝛽
𝑘

(𝑥
𝑘

)‖ ≤ 𝜙(𝑎
𝑘

) → 0, so 𝜀𝑘 → 0.
From the facts that 𝛼

𝑘
→ 0, (49), 𝛾𝑘 → 0 and 𝜀𝑘 → 0,

we get 𝑉
𝛼
𝑘

(𝑥
𝑘

) → 0. Since for each 𝑦 ∈ 𝑋, we have from the
definition of 𝑉

𝛼
(𝑥) that

𝑉
𝛼
𝑘

(𝑥
𝑘

) ≥ Ψ (𝑥, 𝑦) −
𝛼
𝑘

2


𝑥
𝑘

− 𝑦


2

, (50)

which yields 0 ≥ Ψ(𝑥
∞

, 𝑦) for each cluster point 𝑥∞ of {𝑥𝑘}.
Thus, each cluster point 𝑥∞ is a normalizedNash equilibrium
of the GNEP.

(b) It is easy to proof that 𝑉
𝛼
𝑘
𝛽
𝑘

(𝑥) → 0. Hence 𝑥∞ is a
normalized Nash equilibrium of the GNEP.

The proof is completed.
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