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Finding similar images to a given query image can be computed by different distancemeasures.One of the general distancemeasures
is the Earth Mover’s Distance (EMD). Although EMD has proven its ability to retrieve similar images in an average precision of
around 95%, high execution time is itsmajor drawback. Embedding EMD into L

1
is a solution that solves this problem by sacrificing

performance; however, it generates a heavily tailed image feature vector. We aimed to reduce the execution time of embedded
EMD and increase its performance using three dimension reduction methods: sampling, sketching, and Dimension Reduction in
Embedding by Adjustment in Tail (DREAT). Sampling is a method that randomly picks a small fraction of the image features. On
the other hand, sketching is a distance estimation method that is based on specific summary statistics. The last method, DREAT,
randomly selects an equally distributed fraction of the image features. We tested the methods on handwritten Persian digit images.
Our first proposed method, sampling, reduces execution time by sacrificing the recognition performance. The sketching method
outperforms sampling in the recognition, but it records higher execution time. The DREAT outperforms sampling and sketching
in both the execution time and performance.

1. Introduction

One of the interesting problems in database communities is
image retrieval from large databases.The fundamental issue is
how to design a similaritymeasure in amanner that shows the
concept of similarity between two images, because choosing
a proper measure has considerable effects on image retrieval
applications. Some of the similarity measures include the
Earth Mover’s Distance (EMD), Jeffrey’s divergence, and
Minkowski-form distance [1].

The EMD is a general and flexible metric that has desir-
able and striking properties for content-based image retrieval
[2, 3]. This similarity measure, which applies to weighted
point sets, measures theminimum amount of work needed to
transform one set into another set by weight transportation.
The most significant feature of EMD is that it quantifies
perceptual similarity better than other types of distances
used for image retrieval [2]. Although EMD can measure
the exact distance between images, and by this measure we
can retrieve the most similar images from a database, its

execution time is problematic, and this similarity measure is
very time consuming.

Another method, called embedded EMD to L
1
, was

proposed to solve the EMD problem. This method maps the
image matrix to an L

1
norm; therefore, instead of comparing

2-dimensional matrixes, we can compare 1-dimensional vec-
tors. Although this idea is less time consuming, it produces
distortion. Sometimes, an exact computation may be practi-
cally infeasible; in this situation, an approximation solution
is helpful to find the exact result with some distortion. Both
execution time and performance are important factors in
image retrieval, and we should attempt to reduce distortion
as much as possible. In this paper, we propose two methods
to improve the performance of embedded EMD. The first
method, sampling, reduces the time but decreases perfor-
mance. In the next proposed method, sketching, we improve
performance by sacrificing the time of execution. Finally,
in the last method, by solving the problem of sampling, we
improve the performance while reducing the execution time.
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Table 1: Relationship between image’s size and array’s length.

𝐺
1
𝐺
2
𝐺
3
𝐺
4
𝐺
5

𝑛
2
𝑛
2/4 𝑛2/16 𝑛2/64 𝑛2/256

Number of elements in array 256 64 16 4 1
Side length 1 2 4 8 16

The remainder of this paper is organized as follows.
In Section 2 we discuss related previous work. In Section 3
we describe our proposed technique. Section 4 provides the
details of our proposed methods. Finally, we discuss the
results and our conclusion in Sections 5 and 6.

2. Previous Work

The concept of Earth Mover Distance (EMD) was first
explored in [4] to measure perceptual shape similarity. The
use of EMD for computing similarity between images was
later proposed in [5]. Since then, the EMD has become a
trendy similarity measure in computer vision; it has been
used effectively in various applications including color-based
image retrieval systems, texture signatures [6], shape match-
ing [7–9], andmusic scorematching [10].The EMDperforms
quite well in comparisonwith other similaritymeasures, such
as the Jeffrey divergence and the Minkowski-form distance.
In addition, the EMD can be used to measure the differences
between vector fields [11].

Some authors in [2] have compared the EMD with other
similarity measures and evaluated the retrieval performance
of each. The results of the comparisons demonstrate that the
EMD is more robust than other measures for the purpose of
image retrieval because itmatches similarity better than other
distances.

The main idea behind the EMD metric is as follows.
Suppose that each image is a set of colored points in 2-
dimensional space.Theminimum amount of work needed to
transform one set into another set is defined as the distance
of two set points. In recent years, a low-distortion embedding
of EMD into 𝐿

1
has been developed [12]; although the empir-

ical results show that this distortion is much smaller than
what had been estimated previously, the embedding steps
themselves decrease the complexity of computing similarity
between two images. Other authors [9] have reported on
the complexities of querying the time and space of an exact
EMD versus an embedded EMD for shape similarity. In
this work, we demonstrate how to reduce the complexity of
the computing correspondence between two images that are
mapped to an L

1
norm by dimension reduction.

The most similar work in this area is that of Grauman
andDarrell [9], who show a contourmatching algorithm that
quickly quantifies the minimum weight matching between
sets of descriptive local features using the embedding of
the Earth Mover’s Distance (EMD) into a normed space.
Their method achieves an increase in speed of four orders
of magnitude over the exact method at the cost of only a 4%
reduction in accuracy.

3. Dimension Reductions in 𝐿
1

Inmodern image retrieval applications, the data is sometimes
not only very large relative to the physical memory or even
to the disk, but also highly sparse. Accordingly, computing
the embedded L

1
on large-scale sparse data can be chal-

lenging and time consuming. Various projection methods
have been suggested for speeding up these computations.
Dimension reduction in the L

1
norm has many applications

in information retrieval. The authors of [13] show that
dimension reduction by sampling from L

1
does not produce

poor results. Additionally, by estimating distances in L
1
from

random samples, the original L
1
distances can be recovered.

Samplingmethods becomemore important with increasingly
large collections [14] because we can use the same set of
random samples to estimate any L

1
pairwise distances [15],

whereas measuring exact pairwise distances is often too
time consuming or sometimes infeasible; however, random
sampling often performs poorly when most of the samples
are zeros [13]. Additionally, in strictly heavy-tailed data, the
estimation errors are sometimes very large.

As another choice of random projection, various sketch-
ing algorithms have become popular. In general, a sketching
algorithm outperforms random sampling, although random
sampling ismuchmore flexible [15]. In the sketchingmethod,
after scanning the data, we compute specific summary statis-
tics, and then repeat this step k times.

3.1. Procedures of Sampling and Sketching. Suppose we have
a database of n images and we want to compare a particular
image with this database. To do so, we need a measurement;
this is when we use EMD. Consider that we have 2 images
with high similarity, for example, in Figures 1 and 2 apples
with spots in different positions.

In this situation, the EMD of two spots in these images is
computed as follows.

Euclidean distance between

(i) 1st pixels:√(8 − 9)2 + (12 − 8)2 = √15,

(ii) 2nd pixels: √(8 − 9)2 + (13 − 9)2 = √15,

(iii) 3rd pixels:√(9 − 10)2 + (12 − 8)2 = √15,

(iv) 4th pixels:√(9 − 10)2 + (13 − 9)2 = √15.

Therefore, the EMD of two spots is√15+√15+√15+√15 =
4√15 = 15.5.

In the EMD metric, Euclidean distances between all
weighted point sets are computed and then the minimum
distance between each pair of point sets can be found. There
are different methods to solve this type of weighted matching
problems; in our case we use the “Hungarian” method [16–
19]. This method finds the minimum distances between
each pair of points in two images with n points in 𝑂(𝑛3)
arithmetic operations; therefore, the typical EMD is very time
consuming, which is the biggest drawback for EMD. Another
drawback is that when two weighted point sets have unequal
total weights, EMD is not an appropriate metric; however,
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Table 2: Number of vector elements in four methods.

In 𝐿
1
-vector (EEMDmethods)

𝐺
1

𝐺
2

𝐺
3

𝐺
4

𝐺
5

𝐺
6

𝐺
7

↓ ↓ ↓ ↓ ↓ ↓ ↓

Elements: 4096 + 1024 + 256 + 64 + 16 + 4 + 1 = 5461
In sample and sketch vector

Elements: 10% of 𝐿
1
vector = 546

In DREAT vector
10% of 𝐺

1
10% of 𝐺

2
10% of 𝐺

3
10% of 𝐺

4
10% of 𝐺

5
10% of 𝐺

6
10% of 𝐺

7

↓ ↓ ↓ ↓ ↓ ↓ ↓

Elements: 409 + 102 + 25 + 6 + 1 + 4 + 1 = 548

Table 3: Some samples of handwritten Persian digit images.

Class No. of images Digit Correct shape Samples
1 2 3 4 5

Class 1 432 Zero

Class 2 1500 One

Class 3 1067 Two

Class 4 256 Three

Class 5 173 Four (1)

Class 6 22 Four (2)

Class 7 180 Five

Class 8 138 Six (1)

Class 9 31 Six (2)

Class 10 713 Seven

Class 11 150 Eight

Class 12 657 Nine

it is desirable for robust matching to allow point sets with
different total weights and cardinalities [18]. On the other
hand, approximation is a good idea because usually exact
computation is practically infeasible and an approximate
solution can help to find the exact solution more efficiently.

In implementing EMD, in order to embed two sets of
contour features with different total weights, we simulate
equal weights by eliminating the appropriate number of
random points from the larger weight set. For example,
in Figure 2, when points are sampled uniformly from the
contours of two images of Persian number 3 with a size
of 64 × 64 pixels, the first image has 124 points, while the
second image has 131 points. Therefore, the first image has 13
more points than the second one, and 13 points are randomly
chosen from its contour to be eliminated.

The next part of the application is implementing embed-
ded EMD into L

1
. We formally show how to construct an

embedded EMD into L
1
. A boundary of √log 𝑛 on any

L
1
embedding distortion has been defined [20], where n is the

number of pixels in the width or height of image (width and
height of image are equal). We embed the minimum weight
matching of contour features into L

1
via the EMD embedding

of [12, 21]. To embed EMD into L
1
, we put bitmap image in a

grid whose size is twice bigger than that of the original image
and shift grid randomly upon the image. Afterwards, we map
pixels of the new image (which are all 0 or 1) to elements of
an array in a special orientation starting from the first pixel
in the left-top bit of the image to its last pixel in the right-
bottom bit. The rest of the array should be set after some
computation. For example, in the embedding of a 16 × 16
image, G

1
is the first grid and it includes 256 elements, each

of which has a side length equal to 1. The first 256 elements
of the array are set with these elements. In the next step, we
add each of the 4 neighbouring elements in G

1
and place the
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Table 4: Some samples of handwritten Persian letter images.

Letter Correct shape samples
1 2 3 4 5

Cha

Ja

Zha

Za

Ta

Sa

Fa

Gha

function Calculate 𝐿
1
(image)

begin
Scale image to 64 × 64
Initialize an image matrix, original img, of 64 × 64
Initialize an image matrix, imageMtrx, of (2 × 64) × (2 × 64)
Set imageMtrx to original img
Initialize 𝑈

1
, a random number between 0 and 64

Initialize 𝑉
1
, a random number between 0 and 64

Shift each position in imageMtrx to position (𝑈
1
, 𝑉
1
)

Set 𝐺
1
array to pixels of imageMtrx

//Create 𝐿
1
vector of image matrix including 𝐺

1
array followed by 𝐺

2
array,. . .,

followed by 𝐺
𝑛
array (as in Figure 3)

Initialize 𝐿
1
vector to null

𝐿
1
vector = 𝐺

1

for 𝑖 = 1 to 6
Set 𝐺
𝑖+1

to sum of each 4-neighbour elements of 𝐺
𝑖
multiplied by side length

𝐿
1
vector = 𝐿

1
vector + 𝐺

𝑖+1

end for
return 𝐿

1
vector

end
function Calculate Embedded EMD(image 1, image 2)
begin

Initialize 𝐿
1
vector 1

Initialize 𝐿
1
vector 2

Initialize EEMD
Set 𝐿
1
vector 1 to Calculate 𝐿

1
(image 1)

Set 𝐿
1
vector 2 to Calculate 𝐿

1
(image 2)

Subtract each pair of corresponding elements of 𝐿
1
vector 1 and 𝐿

1
vector 2

Add all subtractions into EEMD and display it
end

Pseudocode 1
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Table 5: Preprocessing of some test images.

Original image 1st process 2nd process 3rd process 4th process
Crop white margin Resize image Get contour Remove spots randomly

Width: 77
Height: 95

Width: 64
Height: 64 Black spots Black spots: 150

Width: 20, height: 23 284

Width:13, height: 35 246

Width: 18, height: 39 287

Width: 34, height: 41 265

Width: 22, height: 43 359

Width: 33, height: 50 438

Width: 29, height: 43 334

Width: 36, height: 42 292

Width: 29, height: 43 322

Width: 28, height: 39 342

Width: 25, height: 36 350

Width: 34, height: 43 272

results in the corresponding elements ofG
2
, which will be the

next 64 elements in the array. In the 3rd step, we add each
of the 4 neighbouring elements in G

2
and place the results

in the corresponding elements of G
3
, which will be the next

16 elements in the array. We continue this process until we
have just one element, G

5
, which will be the last element of

the array. In Figure 3, you can observe the embedding of an
image’s pixels to an array in L

1
.

The length of array is the sum of all the grids’ lengths.
So, in our example length of the array is 341 which is
approximately equal to 2 × 162. As a result, length of the
embedding vector is 2Δ2. Table 1 shows the relationship
between the size of an image, side length, and the number
of each grid’s elements in an array.

Pseudocode 1 describes the embedded EMD technique.

Finding the EMD of two images with this method has
a complexity of O(n2), because, for the mapping to L

1
, the

vectors are of length O(n2). Therefore, finding the L
1
of two

vectors, that is, vector A and B as in Figure 4, can be done
in O(n2), which is better than O(n3) in exact EMD. The L

1

mapping is defined as

𝐿
1
(𝐴, 𝐵) =

𝐴0 − 𝐵0
 +
𝐴1 − 𝐵1

 + ⋅ ⋅ ⋅

+
𝐴 𝑖 − 𝐵𝑖
 + ⋅ ⋅ ⋅ +


𝐴
2

2𝑥
− 𝐵
2

2𝑥


.

(1)

Note that the exact EMD has a complexity of O(n3),
which is the complexity of the Hungarian algorithm used
for its implementation, and that the embedding EMD to L

1
,

which computes an approximation instead of the exact EMD,
reduces the complexity to O(n2).We propose two techniques
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function Calculate Sampling(image 1, image 2)
begin

Initialize 𝐿
1
vector 1

Initialize 𝐿
1
vector 2

Initialize sampling 𝐿
1
Vector 1

Initialize sampling 𝐿
1
Vector 2

Initialize sampling EMD
Set 𝐿
1
vector 1 to Calculate 𝐿

1
(image 1)

Set 𝐿
1
vector 2 to Calculate 𝐿

1
(image 2)

Select 10% indexes of 𝐿
1
vector 1 randomly

Put the elements of selected indexes of 𝐿
1
vector 1 into sampling 𝐿

1
Vector 1

Put the elements of selected indexes of 𝐿
1
vector 2 into sampling 𝐿

1
Vector 2

Subtract each pair of corresponding elements in sampling 𝐿
1
Vector 1 and sampling 𝐿

1
Vector 2

Add all subtractions into sampling EMD and display it
end

Pseudocode 2

function Calculate Sketching (image 1, image 1)
begin

Initialize 𝐿
1
vector 1

Initialize 𝐿
1
vector 2

Initialize Sketching Vector Length as 10% of 𝐿
1
vector 1 length

Initilize Sketching Mtrx as 𝐿
1
vector 1 length 𝑥 Sketching Vector Length randomly

// Sketching Mtrx is as in Figure 6
Initialize sketching Vector 1
Initialize sketching Vector 2
Initialize sketching EMD
Set 𝐿
1
vector 1 to Calculate 𝐿

1
(image 1)

Set 𝐿
1
vector 2 to Calculate 𝐿

1
(image 2)

for 𝑖 = 1 to Sketching Vector Length
Multiply each pair of corresponding elements in row 𝑖 of Sketching Mtrx and 𝐿

1
vector 1

Put the sum of multiplications in sketching Vector 1
Multiply each pair of corresponding elements in row 𝑖 of Sketching Mtrx and 𝐿

1
vector 2

Put the sum of multiplications in sketching Vector 2
end for
Subtract each pair of corresponding elements in sketching Vector 1 and sketching Vector 2
Add all subtractions into sketching EMD and display it

end

Pseudocode 3

to reduce the complexity of EMD toO(n) by using dimension
reduction in the L

1
, sampling, and sketching. Concept of

the dimension reduction technique from n to predetermined
N-dimensional space is based on linear transformation, for
example, elements of transformation 2-dimensional matrixA
to a 1-dimensional vector [22].

Sampling is an option for dimension reduction in any
norm (e.g., L

1
or L
2
). In fact, using this technique, distances

in L
1
or L
2
from random samples can be estimated by a simple

scaling [13, 22]. Although it is a simple and popularmethod to
approximate distances, it does not guarantee accuracy. In this
method, as it is shown in Figure 5, we randomly pick k (out of
D) columns from the imagematrixA and imagematrix B.We
subtract them and set the results as a corresponding element
in the sample vector. Finally, we sum all of the elements of

the sample vector and call the result the sampling EMD of
two images A and B.

In order to get the best or, at least, near to the EEMD
method, we tested different sampling rates, for example 5%,
20%, 30%, and above the whole vector. Finally, we found that
10% is the best sampling rate. Therefore, we randomly select
10% of elements from L

1
vector that will generate just 546

elements.
Sampling EMD is displayed in Pseudocode 2.
Sketching is another option for dimension reduction. In

this method, after scanning the data, we multiply the original
data of image matrix A and image matrix B by a random
matrix R which has either a 0 or 1 for each element, and the
subtraction of the resulting matrices forms one element of
the sketch vector. We repeat this step k times. The sum of all
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function Calculate DREAT(image 1, image 2)
begin

Initialize 𝐿
1
vector 1

Initialize 𝐿
1
vector 2

Initialize index Vector
Initialize DREAT Vector 1
Initialize DREAT Vector 2
Initialize DREAT EMD
Set 𝐿
1
vector 1 to Calculate 𝐿

1
(image 1)

Set 𝐿
1
vector 2 to Calculate 𝐿

1
(image 2)

For 𝑖 = 1 to 7
Select 10% indexes of 𝐺

𝑖
randomly

Put the selected indexes in index Vector
end for
Select all elements of 𝐿

1
vector 1 whose indexes are in index Vector

Put the elements in DREAT Vector 1
Select all elements of 𝐿

1
vector 2 whose indexes are in index Vector

Put the elements in DREAT Vector 2
Subtract each pair of corresponding elements in DREAT Vector 1 and DREAT Vector 2
Add all subtractions into DREAT EMD and display it

end

Pseudocode 4

12 13

8
9

98

9
10

A B

Figure 1: Two figures with high similarity.

(a) Input images (b) EMD flow

Figure 2: Computation of dissimilarity between two input images in Euclidean space and their corresponding EMD flow.
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Figure 3: Mapping of a 16 × 16 image into a vector.

Table 6: Example of average precision calculation.

𝑛 Doc no. Relevance Precision points
1 588 Yes 𝑃 = 1/1 = 1
2 589 No
3 576 Yes 𝑃 = 2/3 = 0. 667
4 590 No
5 986 Yes 𝑃 = 3/5 = 0.6
6 592 No
7 984 No
8 988 Yes 𝑃 = 4/8 = 0.5
9 578 Yes 𝑃 = 5/9 = 0.556
10 985 No

0 1 i 2x
2· · ·· · ·

Vector A

Vector B

Figure 4: Computing L
1
(A, B).

elements of the sketch vector is what we call the sketching
EMD. Sketching method is illustrated in Figure 6.

Pseudocode 3 shows sketching method.

3.2. Procedures of DREAT. Based on the sampling and sketch-
ing experiments, the images’ L

1
vectors are heavily tailed

where there aremany zero elements in former grids andmany
nonzero elements in latter grids. In the sampling method,
we choose samples of the 𝐿

1
vector and apply EMD to the

samples instead of the whole vector; therefore, the execution

time is reduced. However, the problem is that all elements of
vector are sampled at the same rate.

When we go through the vector, most data in the initial
sections, such as G

1
and G

2
, contain almost all zeros when

compared with the latter sections, such asG
3
,G
4
, andG

5
. We

considered this fact to be a heavy-tailed vector. As a result,
when we apply the sampling method, the vector might by
chance contain almost all zeros, which is meaningless. That
is the reason why we need to create a method that will select
an equal portion of samples from each part of the grid instead
of randomly sampling from the whole.

We called the proposedmethod as theDimension Reduc-
tion in Embedding byAdjustment inTail (DREAT), amethod
that hybrids both the sampling and sketching. For example,
suppose we want to select 10% of a vector as a sample
vector. In the original samplingmethodwe randomly selected
elements of the vector, but, in the DREAT method, we
selected only 10% of the elements of each grid part,Gn. In this
way, we can select the same portion of all parts of the vector,
not only among early elements that have many zeros but also
among latter elements with large numbers that are required
for recognition.

Table 2 shows the comparison between the number of
vector elements in sampling, sketching, and DREAT meth-
ods. In DREAT method, we select 10% elements from each
grid part because it will produce a number of vector elements
that are near to the ones produced by the sampling and
sketchingmethods.Therefore, by using similar idea of adjust-
ing the heavy-tailed vector that we used in the sketching
method and combining it with the sampling method we can
improve the accuracy without increase of the running time.

This can be expressed in Pseudocode 4.

4. Experiments

In this work, we tested 5 methods: exact EMD, embedded
EMD, sampling, sketching, and DREAT. Our image dataset
includes bitmap images from Amirkabir University of Iran
[23].The images are scanned fromhandwritten Persian letters
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Table 7: Results of 5 methods.

MAP Percentage of first correct recognition
1st pos. 2nd pos. 3rd pos. 4th pos. 5th pos. 6th pos. >6th pos.

Exact EMD 0.97 0.99 0.01 — — — — —
Embedded EMD 0.85 0.90 0.01 0.02 0.03 0.01 0.01 0.02
Sampling 0.59 0.58 0.09 0.02 0.05 0.03 0.01 0.23
Sketching 0.87 0.89 0.04 0.02 0.01 — 0.01 0.03
DREAT 0.91 0.91 0.06 0.02 — — — 0.01

1 2 3 4 5 6 7

1 2 3 4 k

d

· · ·

· · ·

Vector A

Vector B

Figure 5: Sampling method on vector A and vector B.

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7
1

2

3

Random Matrix R

k

d

d

d

...

· · ·

· · ·

· · ·

Vector A

Vector B

Figure 6: Sketching method on vector 𝐴 and vector 𝐵.

and digits. The dataset includes 47 classes which are divided
into two parts. The first part of the dataset consists of 35
classes including letter images and the second part of the
dataset consists of 12 classes including digit images.

In the dataset, each image is named based on a combina-
tion of class number and running number. The first part of
image name is its class number as listed in Table 3. Similarity
is measured by comparing between the class number of a test
image and the queried image. In our work, we only use the
second part of the dataset that consists of 12 classes of 5319
handwritten Persian digit images. In Table 3, some of digit
images are shown.

We did not use the letter images because Persian letters
are very similar in handwritten shape even for a human
reader. As some samples are shown in Table 4, letters that
have two or three dots are similar to other handwritten letters
with a dot. For example in the first sample of Table 4, letter
“Cha” is very similar to letter “Ja” because the dots of letter
“Cha” stick to each other and they look like one dot. Similarly,
letter “Zha” is similar to letter “Za” in some cases. In this case,

the similarity measurement will produce a high distortion.
Since that is not a focus of this work, we excluded all the
letters.

We divided our dataset into two parts: reference images
and test images. The reference set includes 100 images that
we randomly selected from the dataset and tested them on
the rest of the dataset. In other terms, we remove these 100
reference images from test images’ part. So, we will only
find similar images to these reference images not exact ones.
For each reference image, we applied the 5 methods and
calculated EMD. We then computed the average precision
(AP) and placed the results in a table. Finally, we computed
the mean average precision (MAP) for all 100 reference
images for each method; the results are shown in Table 5.

In each method, some preprocessing steps should be
performed. The first step, which is common to all methods,
is cropping the white margin of the image. Then, in the next
step, the image should be resized to a particular size 64 × 64.
As a result of pre-processing, we have some images with the
same features.

In the first method, exact EMD, what we need is the
contour of the image as well as the same number of spots for
all of the images.Therefore, 2 additional steps are necessary in
this method: getting the contour of the image and removing
the additional spots randomly until the same number of spots
is achieved, which should be 150 spots.

However, for the methods of embedded EMD, sampling,
and sketching, we need the whole image not just its contour.
Therefore, preprocessing steps in these methods are only up
to the second step. Preprocessing of some of the images is
illustrated in Table 5.

5. Results

We computed the mean average precision (MAP) values for
the results of 5 differentmethods applied to 100 query images.
Average precision (AP) is the average of the precision values
at the points at which each relevant document is retrieved.
Precision is defined as

Precision = number of relevant documents retrieved
total number of documents retrieved

.

(2)

For example in Table 6 it can be clearly seen that 5 out of
10 documents are relevant; thus, the AP is computed as

AP : (1 + 0.667 + 0.6 + 0.5 + 0.556)
5

= 0.665. (3)
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Table 8: Time execution of 3 reference images and estimation for 100 images.

Image query 1: Image query 2: Image query 3:
Average for 100 images Total for 100 images

mm : ss mm : ss mm : ss mm : ss hh :mm
Exact EMD 22 : 45 23 : 11 22 : 57 22 : 57 36 : 41
Embedded EMD 9 : 18 9 : 51 9 : 39 9 : 36 16 : 00
Sampling 9 : 10 9 : 13 9 : 11 9 : 11 15 : 18
Sketching 11: 06 11 : 20 11 : 14 11 : 13 18 : 41
DREAT 8 : 45 9 : 09 9 : 02 8 : 58 14 : 56

Information retrieval systems are frequently judged by
their mean average precision (MAP). MAP is the average
of the average precision values for a set of queries; it is a
performance evaluation measure of information retrieval.
Using this measure, we are able to retrieve top-ranked images
that are mostly relevant.

The results of all of our experiments are presented in
Tables 7 and 8. We compute the AP, which is the average
precision of relevant retrieved images among the 10 top-
ranked images of the test image sets. In Table 7, the average
AP of 100 test images for each method is in the second
column. In columns 3 to 8 the percentages of first correct
recognition in the first to sixth positions are shown. In the
last column, the percentages of first correct recognition in the
seventh position and beyond are shown.

In Table 8, the execution times of 5 methods for 3
randomly selected test images are shown. In the fifth column
we estimate an average execution time, and in the last column
we estimate the execution time for 100 test images for each
method. As can be seen in this table, exact EMD has the
highest execution time, and embedded EMD reduces this
time by half. We can reduce this time by using our proposed
methods. The last method, DREAT, achieves the lowest
execution time.

6. Conclusion

DREAT is a method that hybrids both the sampling and
sketching. In this paper, it shows its usefulness in dimension
reduction of sparse and heavy-tailed data. As can be seen in
the results, the exact EMD has aMAP value of 0.97; theMAP
value is the average of relevant retrieved images among the
10 top-ranked images of 100 images. Although this method
is excellent for measuring image similarity, its execution time
is very high. By using embedded EMD, a MAP value of 0.85
can be achieved in half the time of exact EMD. Our first
proposed method, sampling, reduces the time of execution,
but it achieves the poorest MAP value of 0.59. Our second
method, sketching, improves the MAP to 0.87 by sacrificing
the execution time. Our last method, DREAT, has the lowest
execution time and produces one of the best MAP values,
which is 0.91.

In general, the results show that dimension reduction
techniques like those in this paper, are useful for improv-
ing the processing time and matching. DREAT, especially,

combines sketching and sampling where it converts sketches
of the data into conditional random samples online in the
estimation stage, with the sample size being determined
retrospectively. The improvement to the EEMD is useful for
overcoming problems with heavily tailed feature vectors.
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