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The instantaneous availability of a periodically inspected system with several minimal repairs before a replacement or a perfect
repair is studied. First, we investigate two concrete minimal repair models with periodic inspection and constant repair time and
give their instantaneous availability formulas.Then the instantaneous availability of the proposed model with constant repair times
is presented by a set of recursive formulas, and its piecewise monotonicity is also shown. An example is presented to illustrate its
application.

1. Introduction

A system is either in the upstate or in the downstate at any
instant 𝑡, where the term “up-state”means that the system still
works and the term “down-state” means that the system does
not work.The state of the system at instant 𝑡 can be written as,

𝑋
𝑡
=

{{{{

{{{{

{

1,

the system is in the upstate at instant 𝑡,
0,

the system is in the downstate at instant 𝑡,

(1)

and the instantaneous availability at instant 𝑡 can be defined as

𝐴 (𝑡) = 𝑃 (𝑋
𝑡
= 1) . (2)

The purpose of repair is to make the failed system
work well. From the viewpoint of reliability, replacement or
perfect repair may be the first choice, where perfect repair
means the failed system is repaired to as good as new in
[1]. The availability of the system under periodic inspection
with different perfect repair or replacement policy has been
studied in [2, 3]. Cui et al. [4] presented an availability
model for storage products under periodic inspection, and
Cui et al. [5] analyzed the single-unit repairable system and

gave formulas for reliability indexes by state aggregations.
However, from the viewpoint of engineering or economics,
replacement or perfect repair is not always desirable, since
they may be too expensive or need too much time. Hence,
imperfect repair policy is often adopted in practice. The
imperfect repair model proposed in [6] has been studied
extensively [7–14]. In the imperfect repair model, if the
system fails, it will return to the good-as-new state by perfect
repair with probability 𝑝, and it will return to a functioning
state as bad as old by minimal repair with probability 𝑞 =

1 − 𝑝. Since the probability 𝑝 is hard to obtain, the imperfect
model is not widely used in practice, and another promise
model is proposed in [15], where the system is maintained
by several imperfect repairs before a replacement or a perfect
repair. Notice that periodic inspection is often adopted in
practice, and we focus on the periodically inspected system
maintained through several minimal repairs before a replace-
ment or a perfect repair. The structure sketch of the above
system can be seen in Figure 1, and some basic assumptions
are presented in detail as follows:

(1) at instant 𝑡 = 0, the system is assumed to be normal,
and from then on it is inspected regularly at time
instants 𝜏

1
= 𝜏, 𝜏
2
= 2𝜏, . . .;
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Figure 1: The structure sketch of a periodically inspected system maintained through several minimal repairs before a replacement or a
perfect repair, where “∙” denotes the system failure, MR and PR denote minimal repair and perfect repair or replacement, respectively, and
𝑚 is prefixed as 2.

(2) for each inspection, if the system is functioning, it will
continue its work without any repair; if the system
fails, the failure times 𝑘 will be recorded at first, and
the prefixed minimal repair times𝑚− 1 between two
consecutive replacements or perfect repairs can be
determined from the constraints of cost, resource, and
maintainability in advance;

(3) if 𝑘 mod 𝑚 ̸= 0, the systemwill be repaired to as bad as
old byminimal repair with constant repair time 𝑏 (0 ≤
𝑏 < 𝜏); if 𝑘 mod 𝑚 = 0, the system will be replaced by
a good new one or repaired to the good-as-new state
by perfect repair with constant repair time 𝑐 (0 ≤ 𝑐 <
𝜏). The system will immediately work after repair or
replacement;

(4) each replacement or the completion of each perfect
repair can be regarded as a renewal.

The time interval between two consecutive renewals is
denoted by 𝑇

𝑖
(𝑖 = 1, 2, . . .), and let

𝑆
0
= 0, 𝑆

𝑗
=

𝑗

∑

𝑖=1

𝑇
𝑖
;

(3)

that is, 𝑆
1

= 𝑇
1
is the time of the first renewal; 𝑆

2
=

𝑇
1
+ 𝑇
2
is the time of the second renewal. In general, 𝑆

𝑗

denotes the time of the 𝑗th renewal (see Figure 1). From the
previous assumptions, 𝑇

𝑖
(𝑖 = 1, 2, . . .) are independent, and

𝑇
𝑖
(𝑖 = 2, 3, . . .) are independent and identically distributed;

thus, {𝑇
𝑖
, 𝑖 = 1, 2, . . .} forms a delayed renewal process.

For convenience, the renewal times in time interval [0, 𝑡) are
denoted by 𝑁

𝐷
(𝑡), and the last renewal time is denoted by

𝑆
𝑁𝐷(𝑡)

.
The instantaneous availability 𝐴(𝑡) is focused on under

the following two models:
(A) 𝑚−1minimal repairs are allowed before replacement

with a new one;
(B) 𝑚 − 1 minimal repairs are allowed before a perfect

repair.
For convenience, let 𝑏

𝑘
= 𝜏 ∗ 𝑘 + 𝑏, 𝑐

𝑘
= 𝜏 ∗

𝑘 + 𝑐, where 𝑘 = 1, 2, . . . . For model B, distributions of
𝑇
1
and 𝑇

𝑖
(𝑖 = 2, 3, . . .) are denoted as 𝐺(𝑡) and 𝐻(𝑡),

respectively, and for model A, 𝑇
1
, 𝑇
2
, . . . are independent and

identically distributed, and 𝐺(𝑡) = 𝐻(𝑡). From the viewpoint
of rsseliability, the effect of replacement and perfect repair is
identical; in other words, replacement can be considered as a
special perfect repair whose repair time is 0. Hence, model A

can be considered as a special case ofmodel B inmathematics,
and model B is studied in detail in this paper. If 𝑚 = +∞,
model B degenerates into the ordinary minimal repair model
with periodic inspection and constant repair time, which is
discussed in Section 2; if𝑚 = 1, model B degenerates into the
perfect repair model with periodic inspection and constant
repair time [2, 3].

The instantaneous availability of the ordinary minimal
repair model with periodic inspection and constant repair
time is presented in Section 2; in Section 3, the instantaneous
availability of the system under model B is given, and its
monotonicity is also discussed; and some conclusions are
given in the end.

2. System under Periodic Inspections with
Minimal Repair

In order to study the instantaneous availability of the
proposed model, a minimal repair model with periodic
inspection and constant repair time is discussed first. For this
minimal repair model, the system starts work at instant 0
and will be inspected at regular time instants 𝜏

𝑘
= 𝑘 ∗ 𝜏,

𝑘 = 1, 2, . . . . At instant 𝜏
𝑘
, if the system fails, it will be repaired

to as bad as old by minimal repair with constant repair time
𝑏 (0 ≤ 𝑏 ≤ 𝜏); otherwise, it will continue its work without any
repair. For convenience, this model is referred to as minimal
repair model I.

Assume that the distribution of time to first failure of the
system is 𝐹(𝑡) and its reliability 𝑅(𝑡) = 1 − 𝐹(𝑡), and the
system instantaneous availability underminimal repair model
I is denoted by 𝐴

1
(𝑡). In [16], the following theorem and

corollary are given.

Theorem 1. For minimal repair model I, the instantaneous
availability of the system is

𝐴
1
(𝑡) =

{{{{{{{{{{{{{{

{{{{{{{{{{{{{{

{

𝑅 (𝑡) ,

0 ≤ 𝑡 ≤ 𝜏
1
,

𝑅 (𝑡)
𝐴
1
(𝜏
𝑘
)

𝑅 (𝜏
𝑘
)
,

𝜏
𝑘
< 𝑡 ≤ 𝑏

𝑘
, 𝑘 = 1, 2, . . . ,

𝑅 (𝑡) × [
𝐴
1
(𝜏
𝑘
)

𝑅 (𝜏
𝑘
)
+
1 − 𝐴

1
(𝜏
𝑘
)

𝑅 (𝑏
𝑘
)

] ,

𝑏
𝑘
< 𝑡 ≤ 𝜏

𝑘+1
, 𝑘 = 1, 2, . . . .

(4)
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Corollary 2. For minimal repair model I, the availability of
the system is piecewise monotonic decreasing, and it arrives at
its minimum values at instant 𝑏

𝑘
, 𝑘 = 1, 2, . . . .

The assumption ofminimal repairmodel II is similar to that
of minimal repair model I, except that the system starts work
at instant (0 ≤ 𝑑 < 𝜏). The system instantaneous availability
under minimal repair model II is denoted by 𝐴

2
(𝑡). Similarly,

𝐴
2
(𝑡) is expressed as follows:

𝐴
2
(𝑡) =

{{{{{{{{{{{{{{

{{{{{{{{{{{{{{

{

𝑅 (𝑡 − 𝑑) ,

𝑑 ≤ 𝑡 ≤ 𝜏
1
,

𝑅 (𝑡 − 𝑑)
𝐴
2
(𝜏
𝑘
)

𝑅 (𝜏
𝑘
− 𝑑)

,

𝜏
𝑘
< 𝑡 ≤ 𝑏

𝑘
, 𝑘 = 1, 2, . . . ,

𝑅 (𝑡 − 𝑑) {
𝐴
2
(𝜏
𝑘
)

𝑅 (𝜏
𝑘
− 𝑑)

+
[1 − 𝐴

2
(𝜏
𝑘
)]

𝑅 (𝑏
𝑘
− 𝑑)

} ,

𝑏
𝑘
< 𝑡 ≤ 𝜏

𝑘+1
, 𝑘 = 1, 2, . . . .

(5)

And its instantaneous availability is also piecewise monotonic
decreasing, and it arrives at its minimum values at instant 𝑏

𝑘
,

𝑘 = 1, 2, . . ..

3. Availability of a Periodically Inspected
System Maintained by 𝑚−1 Minimal Repairs
before a Perfect Repair

In this section, the instantaneous availability for model B is
discussed. Since there is no perfect repair in time interval
[0, 𝑐
𝑚
] from the assumptions of model B, then the system

instantaneous availability of model B is the same as that of
minimal repair model I, and we have the following result.

Proposition 3. For model B,

𝐴 (𝑡) = 𝐴
1
(𝑡) , 𝑡 ∈ [0, 𝑐

𝑚
] . (6)

Since model B under condition 𝑇
1
> 𝑡 and condition 𝑇

2
>

𝑡 − 𝑐 is equal to minimal repair model I and minimal repair
model II with 𝑑 = 𝑐, respectively, one has

𝑃 {𝑋
𝑡
= 1 | 𝑇

1
> 𝑡} = 𝐴

1
(𝑡) ,

𝑃 {𝑋
𝑡
= 1 | 𝑇

2
> 𝑡 − 𝑐} = 𝐴

2
(𝑡) .

(7)

Proposition 4. For model B,

𝐴 (𝑡) =

n
∑

k=m

[k/m]
∑

j=1
𝑃 {𝑆
𝑗
= 𝑐
𝑘
}𝐴
2
(𝑡 − 𝜏
𝑘
) P {𝑇
2
> 𝑡 − 𝑐

𝑘
}

+ 𝐴
1
(𝑡) 𝑃 {𝑇

1
> 𝑡} ,

(8)

where 𝑡 ∈ [𝑐
𝑛
, 𝑐
𝑛+1
], 𝑛 = 𝑚,𝑚 + 1, . . . , [𝑥] denotes the largest

integer not exceeding 𝑥, and 𝑆
𝑗
is the time of the 𝑗th renewal.

Proof. On [0, 𝑡), the time of the last renewal 𝑆
𝑗
will be 𝑐

𝑘
, 𝑘 =

𝑚,𝑚+1, . . . , 𝑛; then the systemwill be renewed atmost [𝑘/𝑚]
times. Hence, by the total probability theorem, we have

𝐴 (𝑡) = 𝑃 {𝑋
𝑡
= 1}

= 𝑃 {𝑋
𝑡
= 1, 𝑇

1
> 𝑡}

+

𝑛

∑

𝑘=𝑚

[𝑘/𝑚]

∑

𝑗=1

𝑃 {𝑋
𝑡
= 1, 𝑆
𝑗
= 𝑐
𝑘
, 𝑇
𝑗+1

> 𝑡 − 𝑐
𝑘
}

= 𝑃 {𝑋
𝑡
= 1 | 𝑇

1
> 𝑡} 𝑃 {𝑇

1
> 𝑡}

+

𝑛

∑

𝑘=𝑚

[𝑘/𝑚]

∑

𝑗=1

𝑃 {𝑆
𝑗
= 𝑐
𝑘
} 𝑃 {𝑋

𝑡
= 1, 𝑇

𝑗+1
> 𝑡 − 𝑐

𝑘
}

= 𝐴
1
(𝑡) 𝑃 {𝑇

1
> 𝑡}

+

𝑛

∑

𝑘=𝑚

[𝑘/𝑚]

∑

𝑗=1

𝑃 {𝑆
𝑗
= 𝑐
𝑘
} 𝑃 {𝑋

𝑡
= 1, 𝑇

2
> 𝑡 − 𝑐

𝑘
}

= 𝐴
1
(𝑡) 𝑃 {𝑇

1
> 𝑡}

+

𝑛

∑

𝑘=𝑚

[𝑘/𝑚]

∑

𝑗=1

𝑃 {𝑆
𝑗
= 𝑐
𝑘
}𝐴
2
(𝑡 − 𝜏
𝑘
)

× 𝑃 {𝑇
2
> 𝑡 − 𝑐

𝑘
} ,

(9)

where the three but last equations follow from the fact that
𝑇
𝑖
, 𝑖 = 1, 2, . . . are independent and the two but last equations

follow from the fact that 𝑇
𝑖
, 𝑖 = 2, 3, . . . are independent and

identically distributed. Thus, the proof is completed.

For convenience, let 𝑔
𝑘
= 𝑃{𝑇

1
= 𝑐
𝑘
}, 𝑘 = 𝑚,𝑚 + 1, . . . .

Forminimal repair model I, the event that there are 𝑗 (𝑘 ≥ 𝑗 ≥
1) failures in [0, 𝜏

𝑘
] and one failure in (𝜏

𝑘−1
, 𝜏
𝑘
] is denoted

by 𝐵(𝑘, 𝑗, 1); and the event that there are 𝑗 (𝑘 ≥ 𝑗 ≥ 1)

failures in [0, 𝜏
𝑘
] and no failure in (𝜏

𝑘−1
, 𝜏
𝑘
] is denoted by

𝐵(𝑘, 𝑗, 0). The probabilities of 𝐵(𝑘, 𝑗, 0), 𝑗 = 0, 1, . . . , 𝑘−1 and
𝐵(𝑘, 𝑗, 1), 𝑗 = 1, 2, . . . , 𝑘 can be obtained by the argument of
mathematical induction

𝑃 {𝐵 (𝑘, 0, 0)} = 𝑅 (𝜏
𝑘
) ,

𝑃 {𝐵 (𝑘, 1, 1)} = 𝑅 (𝜏
𝑘−1
) − 𝑅 (𝜏

𝑘
) ,

𝑃 {𝐵 (𝑘, 𝑘, 1)} = [𝑅 (𝑏
𝑘−1
) − 𝑅 (𝜏

𝑘
)]

× 𝑃 {𝐵 (𝑘 − 1, 𝑘 − 1, 1)} ,

𝑃 {𝐵 (𝑘, 𝑗, 1)} = [𝑅 (𝑏
𝑘−1
) − 𝑅 (𝜏

𝑘
)]

× 𝑃 {𝐵 (𝑘 − 1, 𝑗 − 1, 1)}

+ [𝑅 (𝜏
𝑘−1
) − 𝑅 (𝜏

𝑘
)]

× 𝑃 {𝐵 (𝑘 − 1, 𝑗 − 1, 0)} ,
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𝑃 {𝐵 (𝑘, 𝑘 − 1, 0)} = [1 − 𝑅 (𝑏
𝑘−1
) + 𝑅 (𝜏

𝑘
)]

× 𝑃 {𝐵 (𝑘 − 1, 𝑘 − 1, 1)} ,

𝑃 {𝐵 (𝑘, 𝑗, 0)} = [1 − 𝑅 (𝑏
𝑘−1
) + 𝑅 (𝜏

𝑘
)]

× 𝑃 {𝐵 (𝑘 − 1, 𝑗, 1)}

+ [1 − 𝑅 (𝜏
𝑘−1
) + 𝑅 (𝜏

𝑘
)]

× 𝑃 {𝐵 (𝑘 − 1, 𝑗, 0)} ,

(10)

where 1 < 𝑗 ≤ 𝑘 − 1.
From the definition of 𝐵(𝑘, 𝑗, 1) and model B, we have

{𝑇
1
= 𝑐
𝑘
} = 𝐵(𝑘,𝑚, 1); then

𝑔
𝑘
=𝑃{𝑇

1
= 𝑐
𝑘
} =𝑃{𝐵 (𝑘,𝑚, 1)} , 𝑘 = 𝑚, 𝑚 + 1, . . . ,

(11)

and they can be calculated by (10).
For convenience, let ℎ

𝑘
= 𝑃{𝑇

2
= 𝜏
𝑘
}, 𝑘 = 𝑚,𝑚 + 1, . . . .

For minimal repair model II with 𝑑 = 𝑐, the event that there
are 𝑗 (𝑘 ≥ 𝑗 ≥ 1) failures in [𝑐, 𝜏

𝑘
] and one failure in (𝜏

𝑘−1
, 𝜏
𝑘
]

is denoted by𝐷(𝑘, 𝑗, 1); and the event that there are 𝑗 (𝑘 ≥ 𝑗 ≥
1) failures in [𝑐, 𝜏

𝑘
] and no failure in (𝜏

𝑘−1
, 𝜏
𝑘
] is denoted by

𝐷(𝑘, 𝑗, 0). The recursive formula of probabilities of𝐷(𝑘, 𝑗, 0),
𝑗 = 0, 1, . . . , 𝑘 − 1 and 𝐷(𝑘, 𝑗, 1), 𝑗 = 1, 2, . . . , 𝑘 − 1 can be
obtained by the argument of mathematical induction

𝑃 {𝐷 (1, 1, 1)} = 1 − 𝑅 (𝜏 − 𝑐) ,

𝑃 {𝐷 (𝑘, 0, 0)} = 𝑅 (𝜏
𝑘
− 𝑐) ,

𝑃 {𝐷 (𝑘, 1, 1)} = 𝑅 (𝜏
𝑘−1

− 𝑐) − 𝑅 (𝜏
𝑘
− 𝑐) ,

𝑃 {𝐷 (𝑘, 𝑘, 1)} = [𝑅 (𝑏
𝑘−1

− 𝑐) − 𝑅 (𝜏
𝑘
− 𝑐)]

× 𝑃 {𝐷 (𝑘 − 1, 𝑘 − 1, 1)} ,

𝑃 {𝐷 (𝑘, 𝑗, 1)} = [𝑅 (𝑏
𝑘−1

− 𝑐) − 𝑅 (𝜏
𝑘
− 𝑐)]

× 𝑃 {𝐷 (𝑘 − 1, 𝑗 − 1, 1)}

+ [𝑅 (𝜏
𝑘−1

− 𝑐) − 𝑅 (𝜏
𝑘
− 𝑐)]

× 𝑃 {𝐷 (𝑘 − 1, 𝑗 − 1, 0)} ,

1 < 𝑗 ≤ 𝑘 − 1,

𝑃 {𝐷 (𝑘, 𝑘 − 1, 0)} = [1 − 𝑅 (𝑏
𝑘−1

− 𝑐) + 𝑅 (𝜏
𝑘
− 𝑐)]

× 𝑃 {𝐷 (𝑘 − 1, 𝑘 − 1, 1)} ,

𝑃 {𝐷 (𝑘, 𝑗, 0)} = [1 − 𝑅 (𝑏
𝑘−1

− 𝑐) + 𝑅 (𝜏
𝑘
− 𝑐)]

× 𝑃 {𝐷 (𝑘 − 1, 𝑗, 1)}

+ [1 − 𝑅 (𝜏
𝑘−1

− 𝑐) + 𝑅 (𝜏
𝑘
− 𝑐)]

× 𝑃 {𝐷 (𝑘 − 1, 𝑗, 0)} ,

1 < 𝑗 ≤ 𝑘 − 1.

(12)

From the definition of 𝐷(𝑘, 𝑗, 1) and model B, we have
{𝑇
2
= 𝜏
𝑘
} = 𝐷(𝑘,𝑚, 1); then

ℎ
𝑘
= 𝑃 {𝑇

2
= 𝜏
𝑘
} = 𝑃 {𝐷 (𝑘,𝑚, 1)} , 𝑘 = 𝑚, 𝑚 + 1, . . . ,

(13)

and they can be calculated by (12).
For the first renewal time 𝑇

1
, let 𝑄

1
(𝑡) = 𝑃{𝑇

1
> 𝑡}. In

this case, the system starts work at instant 0, and from (11),
we have

𝑃 {𝑇
1
> 𝑡} =

∞

∑

𝑘=[(𝑡−𝑐)/𝜏]+1

𝑃 {𝑇
1
= 𝑐
𝑘
}

= 1 −

[(𝑡−𝑐)/𝜏]

∑

𝑘=𝑚

𝑃 {𝑇
1
= 𝑐
𝑘
}

= 1 −

[(𝑡−𝑐)/𝜏]

∑

𝑘=𝑚

𝑔
𝑘
;

(14)

then

𝑄
1
(𝑡) = 1 −

[(𝑡−𝑐)/𝜏]

∑

𝑘=𝑚

𝑔
𝑘
. (15)

For the second renewal time, let 𝑄
2
(𝑡) = 𝑃(𝑇

2
> 𝑡). In

this case, the system starts work at instant 𝑐, and from (13),
we have

𝑃 {𝑇
2
> 𝑡} =

∞

∑

𝑘=[𝑡/𝜏]+1

𝑃 {𝑇
2
= 𝜏
𝑘
}

= 1 −

[𝑡/𝜏]

∑

𝑘=𝑚

𝑃 {𝑇
2
= 𝜏
𝑘
}

= 1 −

[𝑡/𝜏]

∑

𝑘=𝑚

ℎ
𝑘
;

(16)

then

𝑄
2
(𝑡) = 1 −

[𝑡/𝜏]

∑

𝑘=𝑚

ℎ
𝑘
. (17)

From the fact that 𝑇
1
and 𝑇

𝑖
(𝑖 = 2, 3, . . .) follow distribu-

tions𝐺 and𝐻, respectively, it is easy to know that the time of
the 𝑗th renewal 𝑆

𝑗
= ∑
𝑗

𝑘=1
𝑇
𝑘
follows distribution 𝐺 ∗ 𝐻

𝑗−1
,

where∗means the convolution of distribution functions, and
the value set of 𝑆

𝑗
is {𝑐
𝑘
: 𝑘 = 𝑚𝑗,𝑚𝑗+1, . . .}. For convenience,

probability generating functions of distributions𝐺 and𝐻 are
denoted by𝑔(𝑠) and ℎ(𝑠), respectively, which can be expressed
as 𝑔(𝑠) = ∑∞

𝑙=𝑚
𝑔
𝑙
𝑠
𝑙 and ℎ(𝑠) = ∑∞

𝑖=𝑚
ℎ
𝑖
𝑠
𝑖, respectively.

Let 𝑃{𝑆
𝑗
= 𝑐
𝑘
} = V(𝑗)
𝑘

and 𝐺 ∗ 𝐻
𝑗−1

= {V(𝑗)
𝑘
: 𝑘 = 𝑚𝑗,𝑚𝑗 +

1, . . .}, so the probability generating function of 𝐺∗𝐻
𝑗−1

can
be expressed as ∑∞

𝑘=𝑚𝑗
V(𝑗)
𝑘
𝑠
𝑘. Since 𝑇

1
, 𝑇
2
, . . . forms a delay
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renewal process and consequently 𝑆
𝑗
(𝑗 = 1, 2, . . .) forms a

delay renewal process, then

∞

∑

𝑘=𝑚𝑗

V(𝑗)
𝑘
𝑠
𝑘
= (

∞

∑

𝑙=𝑚

𝑔
𝑙
𝑠
𝑙
) × (

∞

∑

𝑖=𝑚

ℎ
𝑖
𝑠
𝑖
)

𝑗−1

. (18)

Through comparison of similar items between two sides
of (18), we have

V(1)
𝑘
= 𝑔
𝑘
, 𝑘 = 𝑚,𝑚 + 1, . . .

V(2)
𝑘
=

𝑘−𝑚

∑

𝑖=𝑚

V(1)
𝑖
ℎ
𝑘−𝑖
, 𝑘 = 2𝑚, 2𝑚 + 1, . . .

...

V(𝑗)
𝑘
=

𝑘−𝑚

∑

𝑖=𝑚(𝑗−1)

V(𝑗−1)
𝑖

ℎ
𝑘−𝑖
, 𝑘 = 𝑚𝑗,𝑚𝑗 + 1, . . . .

(19)

From the previous results, we have the following theorem
and corollary.

Theorem5. The instantaneous availability of the systemunder
model B is

𝐴 (𝑡) =

{{{{{{{

{{{{{{{

{

𝐴
1
(𝑡) ,

0 ≤ t ≤ 𝑐
𝑚
,

𝐴
1
(𝑡) 𝑄
1
(𝑡)+

𝑛

∑

𝑘=𝑚

[𝑘/𝑚]

∑

𝑗=1

V(𝑗)
𝑘
𝐴
2
(𝑡−𝜏
𝑘
) 𝑄
2
(𝑡−𝑐
𝑘
) ,

𝑐
𝑛
≤ 𝑡 < 𝑐

𝑛+1
, 𝑛=𝑚,𝑚+1, . . . .

(20)

Corollary 6. The instantaneous availability of the system
undermodel B is piecewisemonotonic decreasing, and it arrives
at its minimum values at instant 𝑏

𝑖
, 𝑖 = 1, 2, . . . .

Proof. On [0, 𝑐
𝑚
), 𝐴(𝑡) = 𝐴

1
(𝑡), and from Corollary 2, we

have that𝐴(𝑡) is piecewise monotonic decreasing and arrives
at its minimal values at instant 𝑏

𝑖
, 𝑖 = 1, 2, . . . , 𝑚.

On [𝑐
𝑛
, 𝑐
𝑛+1
), 𝑛 = 𝑚,𝑚+1, . . . , from (15) and (17),𝑄

1
(𝑡) =

1 − ∑
𝑛

l=𝑚 𝑔𝑙 and 𝑄2(𝑡 − 𝑐𝑘) = 1 − ∑
𝑛−𝑘

𝑙=𝑚
ℎ
𝑙
; that is, 𝑄

1
(𝑡) and

𝑄
2
(𝑡 − 𝑐

𝑘
) are fixed constants on [𝑐

𝑛
, 𝑐
𝑛+1
). Similarly, it can

be proved that V(𝑗)
𝑘

is also a fixed constant. From Theorem 5,
𝐴(𝑡) = 𝐴

1
(𝑡)𝑄
1
(𝑡) + ∑

𝑛

𝑘=𝑚
∑
[𝑘/𝑚]

𝑗=1
V(𝑗)
𝑘
𝐴
2
(𝑡 − 𝜏

𝑘
)𝑄
2
(𝑡 − 𝑐

𝑘
),

and from Corollary 2, 𝐴
1
(𝑡) and 𝐴

2
(𝑡 − 𝜏

𝑘
) are piecewise

monotonic decreasing and arrive at their minimum values
at instant 𝑏

𝑖
, 𝑖 = 1, 2, . . . ; then 𝐴(𝑡) is piecewise monotonic

decreasing and arrives at its minimum values at instant 𝑏
𝑖
,

𝑖 = 1, 2, . . . . Thus, the proof is completed.

For model A, the periodically inspected system is main-
tained by 𝑚 − 1 minimal repairs before replacement. As
mentioned previously, model A is equal to a special case
of model B whose perfect repair time is 0. Hence, the 𝑐 in
(20) is replaced by 0, and the instantaneous availability of
model A can be given. And notice that 𝑇

𝑖
, 𝑖 = 1, 2, . . . form
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Figure 2:The availability curve undermodel Bwith 𝜏 = 1.0, 𝑏 = 0.1,
𝑐 = 0.2, and𝑚 = 3.

a renewal process under model A and they are independent
and identically distributed; thus, 𝐴

2
(𝑡) = 𝐴

1
(𝑡) and 𝑄

2
(𝑡) =

𝑄
1
(𝑡) under model A. Hence, we have the following theorem

and corollary.

Theorem7. The instantaneous availability of the systemunder
model A is

𝐴 (𝑡) =

{{{{{{{

{{{{{{{

{

𝐴
1
(𝑡) ,

0 ≤ 𝑡 ≤ 𝜏
𝑚
,

𝐴
1
(𝑡) 𝑄
1
(𝑡)+

𝑛

∑

𝑘=𝑚

[𝑘/𝑚]

∑

𝑗=1

V(𝑗)
𝑘
𝐴
1
(𝑡 − 𝜏
𝑘
) 𝑄
1
(𝑡 − 𝑐
𝑘
) ,

𝜏
𝑛
≤ 𝑡 < 𝜏

𝑛+1
, 𝑛 = 𝑚,𝑚 + 1, . . . .

(21)

Corollary 8. The instantaneous availability of the system
under model A is piecewise monotonic decreasing, and it
arrives at its minimum values at instant 𝑏

𝑖
, 𝑖 = 1, 2, . . . .

Example 9. Suppose the distribution of time to first failure of
a system is 𝐹(𝑡) = 1 − exp{−(𝑡/5)1.2}, and it is periodically
inspected and maintained by 2 minimal repairs before a
perfect repair, where the regular inspection interval 𝜏 = 1.0

and the constant repair times of minimal repair and perfect
repair are 0.1 and 0.2, respectively. In other words, it is under
model B with 𝜏 = 1.0, 𝑏 = 0.1, 𝑐 = 0.2, and 𝑚 = 3.
From Theorem 5, its instantaneous availability 𝐴(𝑡) can be
calculated, and its availability curve can be seen in Figure 2.

For the previous example, if the perfect repair is replaced
by replacement, that is to say, the system is under model A
with 𝜏 = 1.0, 𝑏 = 0.1, and 𝑚 = 3. According to Theorem 7,
its instantaneous availability 𝐴(𝑡) can be calculated, and its
availability curve can be seen in Figure 3.

The availability curves in Figures 2 and 3 show that
the instantaneous availability of the periodically inspected
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Figure 3:The availability curve undermodelAwith 𝜏 = 1.0, 𝑏 = 0.1,
and𝑚 = 3.

system maintained through several minimal repairs before
a replacement or a perfect repair is piecewise monotonic
decreasing and arrives at its minimum values at instant 𝑏

𝑘
,

which provides important information for management and
decisions of reliability and maintenance. For example, if the
instantaneous availability requirement is considered, we can
only focus on the instantaneous availability at instant 𝑏

𝑘
, 𝑘 =

1, 2, . . . .

Conclusion

Theavailability of a periodically inspected systemmaintained
through several minimal repairs before a replacement or a
perfect repair is studied in this paper. The instantaneous
availability of the proposed model is derived by a set of
recursive formulas, and it is found that its availability is
piecewise monotonic decreasing, which provides theoretical
basis for management and decisions in terms of system
reliability and maintenance in practice. In particular, the
monotonicity of the instantaneous availability can be utilized
to optimize the practical reliability work and make our
attention focused on some critical time instants.

For simplicity, minimal repair and perfect repair are
supposed to take different constant times in this contribution,
and this assumption reflects the difference between minimal
repair and perfect repair in a certain degree. Availability with
random repair time and more realistic assumptions will be
investigated in our future research.
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