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The problem of bounded-input bounded-output (BIBO) stability is investigated for a class of delay switched systems with mixed
time-varying discrete and constant neutral delays and nonlinear perturbation. Based on the Lyapunov-Krasovskii functional theory,
new BIBO stabilization criteria are established in terms of delay-dependent linear matrix inequalities. The numerical simulation is
carried out to demonstrate the effectiveness of the results obtained in the paper.

1. Introduction

Time delay is a source of instability and poor performance
and appears in many dynamic systems, for example, bio-
logical systems, chemical systems, metallurgical processing
systems, nuclear reactor systems, and electrical networks
[1]. Since the existence of time delays may lead to oscilla-
tion, divergence, or instability, considerable effort has been
devoted to this area. As an important system performance
index, BIBO stability means that any bounded input yields
a bounded output and can be considered in many aspects,
such as the free system dynamics, the basic single or double
loop modulators, and the issues connected with bilinear
input/output maps. Consequently, bounded-input bounded-
output (BIBO) stability analysis of dynamical systems has
attracted many scholars’ attention. For instance, in [2], BIBO
stability criterion is derived for a three-dimensional fuzzy
two-term control system, in [3], the problem on BIBO stabi-
lization for a system with nonlinear perturbations is studied
by discussing the existence of the positive definite solution
to an auxiliary algebraic Riccati matrix equation, in [4],

based on linearmatrix inequality techniques, the stabilization
criterion for uncertain time-delay system is presented to
guarantee that bounded input can lead to bounded output,
and in [5], BIBO stability for feedback control systems with
time delay is studied through investigating the boundedness
of the solutions for a class of nonlinear Volterra integral
equations.

Recently, switched system becomes a research hotspot.
Its motivation comes from the fact that many practical
systems are inherently multimodal and the fact that some
of intelligent control methods are based on the idea of
switching between different controllers. Up till now, many
investigations about stability of multiform switched systems
have been carried out; see, for instance, [6–19] and refer-
ences therein. Hence, it is our intention in this paper to
tackle such an important yet challenging problem for BIBO
stability analysis of delay switched systems. In addition,
perturbations [20–26] and time delays [27–29] exist in
many kinds of systems, and this makes the practical control
problem complicated and has received much attention from
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scholars. Hence, in this paper, the BIBO stability for delay
switched system with mixed time-varying discrete and con-
stant neutral delays and nonlinear perturbation is concerned,
and some original BIBO stability criteria are established in
terms of linear matrix inequalities (LMIs). Finally, some
simulation results are given to illustrate the effectiveness
of our results. The main contributions of the paper are
of two folds: (1) a delay-dependent technique is applied
successfully into the analysis results process; (2) a Lyapunov-
Krasovskii functional is constructed to derive a new form
of the bounded real lemma (BRL) for the system under
consideration.

The remainder of this paper is organized as follows.
The model under consideration and some preliminaries
are provided in Section 2. Section 3 presents the results on
stability analysis. Section 4 gives an illustrative example. At
last we conclude the paper in Section 5.

Notations used in this paper are fairly standard. Let
𝑅
𝑛 be the 𝑛-dimensional Euclidean space, 𝑅𝑛×𝑚 represents

the set of 𝑛 × 𝑚 real matrices, the symbol ∗ denotes the
elements below the main diagonal of a symmetric block
matrix, 𝐴 > 0 means that 𝐴 is a real symmetric pos-
itive definitive matrix, and 𝐼 denotes the identity matrix
with appropriate dimensions. diag{⋅ ⋅ ⋅ } denotes the diagonal
matrix. 𝐸{⋅} refers to the expectation operator with respect
to some probability measure 𝑃. ‖ ⋅ ‖ refers to the Euclidean
vector norm or the induced matrix 2-norm. The superscript
𝑇 stands for matrix transposition. 𝐿

𝑛,ℎ
= 𝐿([−ℎ, 0], 𝑅𝑛)

denotes the Banach space of continuous functions mapping
the interval [−ℎ, 0] into 𝑅

𝑛 with the topology of uniform
convergence.

2. Model Description and Preliminaries

First, consider the following delay switched system with
nonlinear perturbation:

�̇� (𝑡) − 𝐶
𝜎(𝑡)

�̇� (𝑡 − 𝑑) = 𝐴
𝜎(𝑡)

𝑥 (𝑡) + 𝐵
𝜎(𝑡)

𝑥 (𝑡 − 𝜏 (𝑡))

+ 𝑓
𝜎(𝑡)

(𝑡, 𝑥 (𝑡)) + 𝐻
𝜎(𝑡)

𝑢 (𝑡) ,

𝑢 (𝑡) = 𝐿
𝜎(𝑡)

𝑥 (𝑡) + 𝑟 (𝑡) ,

𝑌 (𝑡) = 𝐽𝑥 (𝑡) ,

𝑥 (𝑡
0
+ 𝜃) = 𝜑 (𝜃) , 𝜃 ∈ [−ℎ 0] ,

(1)

where 𝑥(𝑡) ∈ 𝑅𝑛 is the state vector, 𝑑 is the neutral delay,
0 ≤ 𝜏(𝑡) ≤ ℎ is the time-varying discrete delay, 𝜑(𝜃) ∈ 𝐿

𝑛,ℎ
is

the initial condition, 𝜎(𝑡) : [0, +∞) → 𝑀 = {1, 2, . . . , 𝑚} is
the switching signal, 𝑢(𝑡) ∈ 𝑅

𝑙 is the control input, 𝑌(𝑡) ∈

𝑅𝑚 is the system output, 𝑟(𝑡) ∈ 𝑅𝑙 is the reference input,
and 𝑓(𝑡) ∈ 𝑅𝑛 is the nonlinear time-varying perturbation,
which satisfies ‖𝑓(𝑡, 𝑥(𝑡))‖ ≤ 𝛽‖𝑥(𝑡)‖, where 𝛽 is a positive
scalar.

Model (1) can be represented as follows:

�̇� (𝑡) = 𝑦 (𝑡) ,

𝑦 (𝑡) − 𝐶
𝜎(𝑡)

𝑦 (𝑡 − 𝑑) = 𝐴
𝜎(𝑡)

𝑥 (𝑡) + 𝐵
𝜎(𝑡)

𝑥 (𝑡 − 𝜏 (𝑡))

+ 𝑓
𝜎(𝑡)

(𝑡) + 𝐻
𝜎(𝑡)

𝑢 (𝑡) .

(2)

In this paper, the following well-known lemmas and defini-
tions are needed.

Lemma 1 (see [30]). For any constant matrices E, G, and F
with appropriate dimensions with 𝐹𝑇𝐹 ≤ 𝑘𝐼, then

2𝑥
𝑇

𝐸𝐹𝐺𝑦 ≤ 𝑐𝑥𝐸𝐸
𝑇

𝑥 +
𝑘

𝑐
𝑦
𝑇

𝐺
𝑇

𝐺𝑦, (3)

where 𝑥 ∈ 𝑅𝑛 and 𝑦 ∈ 𝑅𝑛and 𝑐 and 𝑘 are positive scalars.

Lemma2 (see [31]). For any positive definitematrixΦ ∈ 𝑅𝑛×𝑛,
a positive scalar 𝛾, and the vector function 𝑤 : [0, 𝛾] → 𝑅𝑛

such that the integrations concerned are well defined, then

(∫
𝛾

0

𝑤(𝑠) 𝑑𝑠)

𝑇

Φ(∫
𝛾

0

𝑤(𝑠) 𝑑𝑠) ≤ 𝛾∫
𝛾

0

𝑤
𝑇

(𝑠) Φ𝑤(𝑠) 𝑑𝑠. (4)

Definition 3 (see [32]). A real-valued vector 𝑟(𝑡) ∈ 𝐿
𝑛

∞
, if

‖𝑟‖
∞

= sup
𝑡0≤𝑡<∞

‖𝑟(𝑡)‖ < +∞.

Definition 4 (see [32]). The control system with reference
input 𝑟(𝑡) is BIBO stable, if there exist some positive constants
𝜃
1
, 𝜃
2
, satisfying

‖𝑌(𝑡)‖ ≤ 𝜃
1
‖𝑟(𝑡)‖

∞
+ 𝜃
2

(5)

for any reference input 𝑟(𝑡) ∈ 𝐿𝑛
∞
.

Assumption 5. We assume that for system (1) there exist
Hurwitz linear convex combinations of 𝐴

𝑖
; that is,

𝛾
𝛼1,𝛼2,...,𝛼𝑚

(𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑚
)

= {𝛼
1
𝐴
1
+ 𝛼
2
𝐴
2
+ ⋅ ⋅ ⋅ + 𝛼

𝑚
𝐴
𝑚

: 𝛼
1
, 𝛼
2
, . . . 𝛼
𝑚

∈ [0, 1] ,

𝛼
1
+ 𝛼
2
+ ⋅ ⋅ ⋅ + 𝛼

𝑚
= 1} .

(6)

3. Main Results

In this section, we will establish some BIBO stability crite-
ria using Lyapunov-Krasovskii functional theory and linear
matrix inequalities.

Theorem 6. For given positive scalars h and k,
switched system (1) is BIBO stable, if there exist 𝐴 ∈

𝛾
𝛼1,𝛼2,...,𝛼𝑚

(𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑚
), 𝐵 ∈ 𝛾

𝛼1,𝛼2,...,𝛼𝑚
(𝐵
1
, 𝐵
2
, . . . , 𝐵

𝑚
),

𝐶 ∈ 𝛾
𝛼1,𝛼2,...,𝛼𝑚

(𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑚
),𝑓 ∈ 𝛾

𝛼1,𝛼2,...,𝛼𝑚
(𝑓
1
, 𝑓
2
, . . . , 𝑓

𝑚
),

𝐻 ∈ 𝛾
𝛼1,𝛼2,...,𝛼𝑚

(𝐻
1
, 𝐻
2
, . . . , 𝐻

𝑚
), 𝐿 ∈ 𝛾

𝛼1,𝛼2,...,𝛼𝑚
(𝐿
1
,

𝐿
2
, . . . , 𝐿

𝑚
), positive scalars 𝜀, 𝜎, matrices 𝑃

2
, 𝑃
3
, 𝑈, 𝑉, 𝑊,



Abstract and Applied Analysis 3

and symmetric positive definite matrices 𝑃, 𝑅, 𝑀, 𝑆, 𝑄,
satisfying

Σ + Ξ + Ξ
𝑇

+ ℎ𝑒
𝑘ℎ

𝑊 < 0,

[
𝑊 𝑈

∗ 𝑆 − 𝑅
22

] > 0,

[
𝑊 𝑉

∗ 𝑆
] > 0,

(7)

where

Σ =

[
[
[
[
[
[
[
[
[

[

Σ
1,1

Σ
1,2

Σ
1,3

Σ
1,4

Σ
1,5

Σ
1,6

Σ
1,7

∗ Σ
2,2

Σ
2,3

Σ
2,4

Σ
2,5

Σ
2,6

Σ
2,7

∗ ∗ Σ
3,3

0 0 0 0

∗ ∗ ∗ Σ
4,4

0 0 0

∗ ∗ ∗ ∗ Σ
5,5

0 0

∗ ∗ ∗ ∗ ∗ Σ
6,6

0

∗ ∗ ∗ ∗ ∗ ∗ Σ
7,7

]
]
]
]
]
]
]
]
]

]

,

Σ
1,1

= 𝑃
2
𝐴 + 𝐴

𝑇

𝑃
𝑇

2
+ 𝑃
2
𝐻𝐿 + 𝐿

𝑇

𝐻
𝑇

𝑃
𝑇

2

+ 𝑄 + 𝜀𝛽
2

+ 𝑘𝑃 + ℎ
2

𝑒
𝑘ℎ

𝑁,

Σ
1,2

= 𝑃 − 𝑃
2
+ 𝐴
𝑇

𝑃
𝑇

3
+ 𝐿
𝑇

𝐻
𝑇

𝑃
𝑇

3
,

Σ
1,3

= 𝑃
2
𝐵 + 𝑅

𝑇

12
,

Σ
2,2

= ℎ𝑒
𝑘ℎ

𝑆 − 𝑃
3
− 𝑃
𝑇

3
+ 𝑀,

Σ
2,3

= 𝑃
3
𝐵,

Σ
3,3

= ℎ𝑅
11

− 𝑅
12

− 𝑅
𝑇

12
,

Σ
1,4

= 𝑃
2
𝐶,

Σ
2,4

= 𝑃
3
𝐶,

Σ
4,4

= −𝑒
−𝑘𝑑

𝑀,

Σ
1,5

= 𝑃
2
,

Σ
2,5

= 𝑃
3
,

Σ
5,5

= −𝜀𝐼,

Σ
1,6

= 0,

Σ
2,6

= 0,

Σ
6,6

= −𝑒
−𝑘ℎ

𝑄,

Σ
1,7

= 𝑃
2
𝐻,

Σ
2,7

= 𝑃
3
𝐻,

Σ
7,7

= −𝜎𝐼,

Ξ = [𝑈 0 −𝑈 + 𝑉 0 0 −𝑉 0] .

(8)

Proof. Since

𝐴 ∈ 𝛾
𝛼1,𝛼2,...,𝛼𝑚

(𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑚
) ,

𝐵 ∈ 𝛾
𝛼1,𝛼2,...,𝛼𝑚

(𝐵
1
, 𝐵
2
, . . . , 𝐵

𝑚
) ,

𝐶 ∈ 𝛾
𝛼1,𝛼2,...,𝛼𝑚

(𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑚
) ,

𝐿 ∈ 𝛾
𝛼1,𝛼2,...,𝛼𝑚

(𝐿
1
, 𝐿
2
, . . . , 𝐿

𝑚
) ,

𝐻 ∈ 𝛾
𝛼1,𝛼2,...,𝛼𝑚

(𝐻
1
, 𝐻
2
, . . . , 𝐻

𝑚
) ,

𝑓 ∈ 𝛾
𝛼1,𝛼2,...,𝛼𝑚

(𝑓
1
, 𝑓
2
, . . . , 𝑓

𝑚
) ,

(9)

there exist 𝛼
𝑖
∈ [0, 1], 𝑖 = 1, . . . , 𝑚, satisfing

𝑚

∑
𝑖=1

𝛼
𝑖
= 1, 𝐴 =

𝑚

∑
𝑖=1

𝛼
𝑖
𝐴
𝑖
, 𝐵 =

𝑚

∑
𝑖=1

𝛼
𝑖
𝐵
𝑖
,

𝐶 =

𝑚

∑
𝑖=1

𝛼
𝑖
𝐶
𝑖
, 𝐿 =

𝑚

∑
𝑖=1

𝛼
𝑖
𝐿
𝑖
,

𝐻 =

𝑚

∑
𝑖=1

𝛼
𝑖
𝐻
𝑖
, 𝑓 =

𝑚

∑
𝑖=1

𝛼
𝑖
𝑓
𝑖
.

(10)

From (7), we can obtain

𝑚

∑
𝑖=1

𝛼
𝑖
(Σ
𝑖
+ Ξ + Ξ

𝑇

+ ℎ𝑒
𝑘ℎ

𝑊) < 0, (11)

where

Σ
𝑖
=

[
[
[
[
[
[
[
[
[
[

[

Σ
𝑖,1,1

Σ
𝑖,1,2

Σ
𝑖,1,3

Σ
𝑖,1,4

Σ
𝑖,1,5

Σ
𝑖,1,6

Σ
𝑖,1,7

∗ Σ
𝑖,2,2

Σ
𝑖,2,3

Σ
𝑖,2,4

Σ
𝑖,2,5

Σ
𝑖,2,6

Σ
𝑖,2,7

∗ ∗ Σ
𝑖,3,3

0 0 0 0

∗ ∗ ∗ Σ
𝑖,4,4

0 0 0

∗ ∗ ∗ ∗ Σ
𝑖,5,5

0 0

∗ ∗ ∗ ∗ ∗ Σ
𝑖,6,6

0

∗ ∗ ∗ ∗ ∗ ∗ Σ
𝑖,7,7

]
]
]
]
]
]
]
]
]
]

]

,
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Σ
𝑖,1,1

= 𝑃
2
𝐴
𝑖
+ 𝐴
𝑇

𝑖
𝑃
𝑇

2
+ 𝑃
2
𝐻
𝑖
𝐿
𝑖

+ 𝐿
𝑇

𝑖
𝐻
𝑇

𝑖
𝑃
𝑇

2
+ 𝑄 + 𝜀𝛽

2

+ 𝑘𝑃 + ℎ
2

𝑒
𝑘ℎ

𝑁,

Σ
𝑖,1,2

= 𝑃 − 𝑃
2
+ 𝐴
𝑇

𝑖
𝑃
𝑇

3
+ 𝐿
𝑇

𝑖
𝐻
𝑇

𝑖
𝑃
𝑇

3
,

Σ
𝑖,1,3

= 𝑃
2
𝐵
𝑖
+ 𝑅
𝑇

12
,

Σ
𝑖,2,2

= ℎ𝑒
𝑘ℎ

𝑆 − 𝑃
3
− 𝑃
𝑇

3
+ 𝑀,

Σ
𝑖,2,3

= 𝑃
3
𝐵
𝑖
,

Σ
𝑖,3,3

= ℎ𝑅
11

− 𝑅
12

− 𝑅
𝑇

12
,

Σ
𝑖,1,4

= 𝑃
2
𝐶
𝑖
,

Σ
𝑖,2,4

= 𝑃
3
𝐶
𝑖
,

Σ
𝑖,4,4

= −𝑒
𝑘𝑑

𝑀,

Σ
𝑖,1,5

= 𝑃
2
,

Σ
𝑖,2,5

= 𝑃
3
,

Σ
𝑖,5,5

= −𝜀𝐼,

Σ
𝑖,1,6

= 0,

Σ
𝑖,2,6

= 0,

Σ
𝑖,6,6

= −𝑒
−𝑘ℎ

𝑄,

Σ
𝑖,1,7

= 𝑃
2
𝐻
𝑖
,

Σ
𝑖,2,7

= 𝑃
3
𝐻
𝑖
,

Σ
𝑖,7,7

= −𝜎𝐼.

(12)

Let

Ω
𝑖
= {𝑞
𝑇

| 𝑞
𝑇

(Σ
𝑖
+ Ξ + Ξ

𝑇

+ ℎ𝑊) 𝑞 < 0,

𝑞 (𝑡) = [𝑞
𝑇

1
, . . . , 𝑞

𝑇

𝑖
, . . . , 𝑞

𝑇

7
]
𝑇

, 𝑞
𝑖
∈ 𝑅
𝑛

} .

(13)

We obtain
𝑚

⋃
𝑖=1

Ω
𝑖
=

𝑅7𝑛

{0}
. (14)

Construct a set as

Ω̃
1
= Ω
1
,

Ω̃
2
= Ω
2
− Ω̃
1
, . . . ,

Ω̃
𝑖
= Ω
𝑖
−

𝑖−1

⋃
𝑗=1

Ω̃
𝑗
, . . . ,

Ω̃
𝑚

= Ω
𝑚

−

𝑚−1

⋃
𝑗=1

Ω̃
𝑗
.

(15)

We get

𝑚

⋃
𝑖=1

Ω̃
𝑖
=

𝑅6𝑛

{0}
, Ω̃
𝑖
∩ Ω̃
𝑗
= 𝜙, 𝑖 ̸= 𝑗. (16)

Construct the switching rule (SR): 𝜎 = 𝑖, for all 𝑞 ∈

Ω̃
𝑖
, 𝑖 = 1, . . . , 𝑚. The ith subsystem is activated when 𝑞 ∈

Ω̃
𝑖
, 𝑖 = 1, . . . , 𝑚. Choose the following Lyapunov-Krasovskii

functional candidate:

𝑉 (𝑡) = 𝑉
1
(𝑡) + 𝑉

2
(𝑡) + 𝑉

3
(𝑡)

+ 𝑉
4
(𝑡) + 𝑉

5
(𝑡) + 𝑉

6
(𝑡) ,

(17)

with

𝑉
1
(𝑡) = (𝑥𝑇(𝑡) 𝑦𝑇(𝑡)) [

𝐼 0

0 0
] [

𝑃 0

𝑃
𝑇

2
𝑃𝑇
3

] (𝑥𝑇(𝑡) 𝑦𝑇(𝑡))
𝑇

,

𝑉
2
(𝑡) = ∫

0

−ℎ

∫
𝑡

𝑡+𝛽

𝑦
𝑇

(𝛼) 𝑒
𝑘(𝛼−𝑡+ℎ)

𝑆𝑦 (𝛼) 𝑑𝛼 𝑑𝛽,

𝑉
3
(𝑡) = ∫

𝑡

−ℎ

∫
𝛽

𝛽−𝜏(𝛽)
𝜂
𝑇

𝑒
𝑘(𝛽−𝑡)

𝑅𝜂𝑑𝛼𝑑𝛽,

𝑉
4
(𝑡) = ∫

𝑡

𝑡−𝑑

𝑦
𝑇

(𝑠) 𝑒
𝑘(𝑠−𝑡)

𝑀𝑦(𝑠) 𝑑𝑠,

𝑉
5
(𝑡) = ∫

0

−ℎ

∫
𝑡

𝑡+𝛽

𝜉
𝑇

(𝛼) 𝑒
𝑘(𝛼−𝑡+ℎ)

𝑊𝜉 (𝛼) 𝑑𝛼 𝑑𝛽,

𝑉
6
(𝑡) = ∫

𝑡

𝑡−ℎ

𝑥
𝑇

(𝑠) 𝑒
𝑘(𝑠−𝑡)

𝑄𝑥 (𝑠) 𝑑𝑠,

(18)

where

𝜂 = [𝑥 (𝛽 − 𝜏 (𝛽)) 𝑦 (𝛼)]
𝑇

,

𝜉 = [𝑥𝑇(𝑡) 𝑦𝑇(𝑡) 𝑥𝑇(𝑡 − 𝜏 (𝑡)) 𝑦𝑇(𝑡 − 𝑑) 𝑓𝑇(𝑡) 𝑥 (𝑡 − ℎ) 𝑟 (𝑡)]
𝑇

.

(19)

The derivative of 𝑉(𝑡) along the trajectory of the ith subsys-
tem is given by

�̇� (𝑡) = �̇�
1
(𝑡) + �̇�

2
(𝑡) + �̇�

3
(𝑡)

+ �̇�
4
(𝑡) + �̇�

5
(𝑡) + �̇�

6
(𝑡) ,

(20)
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where

�̇�
1
(𝑡) = 2 [𝑥

𝑇

(𝑡) 𝑦
𝑇

(𝑡)] [
𝑃 𝑃
2

0 𝑃
3

] [
𝑦 (𝑡)

0
]

= 2𝑥
𝑇

(𝑡) 𝑃𝑦 (𝑡) + 2 (𝑥
𝑇

(𝑡) 𝑃
2
+ 𝑦
𝑇

(𝑡) 𝑃
3
)

× (− 𝑦 (𝑡) + (𝐴
𝑖
+ 𝐻
𝑖
𝐿
𝑖
) 𝑥 (𝑡)

+ 𝐵
𝑖
𝑥 (𝑡 − 𝜏 (𝑡)) + 𝐶

𝑖
𝑦 (𝑡 − 𝑑)

+ 𝑓
𝑖
(𝑡) + 𝐻

𝑖
𝑟 (𝑡)) ,

(21)

�̇�
2
(𝑡) = ℎ𝑦

𝑇

(𝑡) 𝑒
𝑘ℎ

𝑆𝑦 (𝑡)

− ∫
𝑡

𝑡−𝜏(𝑡)

𝑦
𝑇

(𝑠) 𝑒
𝑘(𝑠−𝑡+ℎ)

𝑆𝑦 (𝑠) 𝑑𝑠

− ∫
𝑡−𝜏(𝑡)

𝑡−ℎ

𝑦
𝑇

(𝑠) 𝑒
𝑘(𝑠−𝑡+ℎ)

𝑆𝑦 (𝑠) 𝑑𝑠 − 𝑘𝑉
2
(𝑡)

≤ ℎ𝑦
𝑇

(𝑡) 𝑒
𝑘ℎ

𝑆𝑦 (𝑡)

− ∫
𝑡

𝑡−𝜏(𝑡)

𝑦
𝑇

(𝑠) 𝑆𝑦 (𝑠) 𝑑𝑠

− ∫
𝑡−𝜏(𝑡)

𝑡−ℎ

𝑦
𝑇

(𝑠) 𝑆𝑦 (𝑠) 𝑑𝑠 − 𝑘𝑉
2
(𝑡) ,

(22)

�̇�
3
(𝑡) = 𝜏 (𝑡) 𝑥

𝑇

(𝑡 − 𝜏 (𝑡)) 𝑅
11
𝑥 (𝑡 − 𝜏 (𝑡))

+ 2𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑅
12
𝑥 (𝑡)

− 2𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑅
12
𝑥 (𝑡 − 𝜏 (𝑡))

+ ∫
𝑡

𝑡−𝜏(𝑡)

𝑦 (𝑠) 𝑅
22
𝑦 (𝑠) 𝑑𝑠 − 𝑘𝑉

3
(𝑡)

≤ ℎ𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑅
11
𝑥 (𝑡 − 𝜏 (𝑡))

+ 2𝑥
𝑇

(𝑡) 𝑅
𝑇

12
𝑥 (𝑡 − 𝜏 (𝑡))

− 2𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑅
12
𝑥 (𝑡 − 𝜏 (𝑡))

+ ∫
𝑡

𝑡−𝜏(𝑡)

𝑦 (𝑠) 𝑅
22
𝑦 (𝑠) 𝑑𝑠 − 𝑘𝑉

3
(𝑡) ,

(23)

�̇�
4
(𝑡) = 𝑦

𝑇

(𝑡)𝑀𝑦 (𝑡) − 𝑦
𝑇

(𝑡 − 𝑑) 𝑒
−𝑘𝑑

𝑀𝑦(𝑡 − 𝑑) − 𝑘𝑉
4
(𝑡) ,

(24)

�̇�
5
(𝑡) = ℎ𝜉

𝑇

(𝑡) 𝑒
𝑘ℎ

𝑊𝜉 (𝑡) − ∫
𝑡

𝑡−𝜏(𝑡)

𝜉
𝑇

(𝑠) 𝑒
𝑘(𝑠−𝑡+ℎ)

𝑊𝜉 (𝑠) 𝑑𝑠

− ∫
𝑡−𝜏(𝑡)

𝑡−ℎ

𝜉
𝑇

(𝑠) 𝑒
𝑘(𝑠−𝑡+ℎ)

𝑊𝜉 (𝑠) 𝑑𝑠 − 𝑘𝑉
5
(𝑡)

≤ ℎ𝜉
𝑇

(𝑡) 𝑒
𝑘ℎ

𝑊𝜉 (𝑡) − ∫
𝑡

𝑡−𝜏(𝑡)

𝜉
𝑇

(𝑠)𝑊𝜉 (𝑠) 𝑑𝑠

− ∫
𝑡−𝜏(𝑡)

𝑡−ℎ

𝜉
𝑇

(𝑠)𝑊𝜉 (𝑠) 𝑑𝑠 − 𝑘𝑉
5
(𝑡) ,

(25)

�̇�
6
(𝑡) = 𝑥

𝑇

(𝑡) 𝑄𝑥 (𝑡) − 𝑥
𝑇

(𝑡 − ℎ) 𝑒
−𝑘ℎ

𝑄𝑥 (𝑡 − ℎ) − 𝑘𝑉
6
(𝑡) .

(26)
According to Leibniz-Newton formula, we have

2𝜉
𝑇

𝑈[𝑥 (𝑡) − 𝑥 (𝑡 − 𝜏 (𝑡)) − ∫
𝑡

𝑡−𝜏(𝑡)

𝑦
𝑇

(𝑠) 𝑑𝑠] = 0,

2𝜉𝑇𝑉[𝑥 (𝑡 − 𝜏 (𝑡)) − 𝑥 (𝑡 − ℎ) − ∫
𝑡−𝜏(𝑡)

𝑡−ℎ

𝑦
𝑇

(𝑠) 𝑑𝑠] = 0.

(27)
From the obtained derivative terms in (21)–(26) and adding
the left-hand side of (27) into (20), we obtain the following
result:

�̇� (𝑡) ≤ 𝜉
𝑇

(Σ
𝑖
+ Ω + Ω

𝑇

+ ℎ𝑒
𝑘ℎ

𝑊)𝜉

− ∫
𝑡

𝑡−𝜏(𝑡)

𝜁
𝑇

Φ
1
𝜁 𝑑𝑠 − ∫

𝑡−𝜏(𝑡)

𝑡−ℎ

𝜁
𝑇

Φ
2
𝜁 𝑑𝑠

− 𝑘𝑉 (𝑡) + 𝜎‖𝑟 (𝑡)‖
2

∞
,

(28)

where

𝜁 = [𝜉
𝑇

𝑦
𝑇

(𝑠)]
𝑇

,

Φ
1
= [

𝑊 𝑈

∗ 𝑆 − 𝑅
22

] , Φ
2
= [

𝑊 𝑉

∗ 𝑆
] .

(29)

When 𝜉 ∈ ⋃
𝑚

𝑖=1
Ω̃
𝑖
, 𝑖 = 1, . . . , 𝑚, we can obtain

�̇� (𝑡) ≤

𝑚

∑
𝑖=1

𝑎
𝑖
(𝜉
𝑇

(Σ
𝑖
+ Ω + Ω

𝑇

+ ℎ𝑒
𝑘ℎ

𝑊)𝜉

− ∫
𝑡

𝑡−𝜏(𝑡)

𝑞
𝑇

Φ
1
𝑞 𝑑𝑠 − ∫

𝑡−𝜏(𝑡)

𝑡−ℎ

𝑞
𝑇

Φ
2
𝑞 𝑑𝑠)

= 𝜉
𝑇

(Σ + Ξ + Ξ
𝑇

+ ℎ𝑒
𝑘ℎ

𝑊)𝜉

− ∫
𝑡

𝑡−𝜏(𝑡)

𝑞
𝑇

Φ
1
𝑞 𝑑𝑠 − ∫

𝑡−𝜏(𝑡)

𝑡−ℎ

𝑞
𝑇

Φ
2
𝑞 𝑑𝑠.

(30)

According to (7), we have

�̇� (𝑡) ≤ −𝑘𝑉 (𝑡) + 𝜎‖𝑟 (𝑡)‖
2

∞
. (31)

Hence,

(𝑉(𝑡)𝑒
𝑘𝑡

)


≤ (�̇� (𝑡) + 𝑘𝑉 (𝑡)) 𝑒
𝑘𝑡

≤ 𝜎‖𝑟 (𝑡)‖
2

∞
𝑒
𝑘𝑡

. (32)

Integrating the previous inequality from 𝑡
0
to t yields

𝑉 (𝑡) 𝑒
𝑘𝑡

≤ 𝑉 (𝑡
0
) 𝑒
𝑘𝑡0 + 𝜎‖𝑟(𝑡)‖

2

∞
∫
𝑡

𝑡0

𝑒
𝑘𝑠

𝑑𝑠. (33)

Then, we have

𝜆min (𝑃) ‖𝑥 (𝑡)‖
2

≤ 𝑉 (𝑡) ≤ 𝑉 (𝑡
0
) 𝑒
−𝑘(𝑡−𝑡0)

+ 𝜎‖𝑟 (𝑡)‖
2

∞
∫
𝑡

𝑡0

𝑒
−𝑘(𝑡−𝑠)

𝑑𝑠

≤ 𝑉 (𝑡
0
) 𝑒
−𝑘(𝑡−𝑡0) +

𝜎‖𝑟 (𝑡)‖
2

∞

𝑘
.

(34)
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Define

𝜓 = max{ sup
ℎ≤𝜃≤0

𝜑 (𝑡
0
+ 𝜃)

 , sup
ℎ≤𝜃≤0


𝜑


(𝑡
0
+ 𝜃)


} . (35)

According to (17), we have

𝑉 (𝑡
0
) ≤ [𝜆max (𝑃) + ℎ

2

𝑒
𝑘ℎ

𝜆max (𝑆) + ℎ
2

𝜆max (𝑅)

+ℎ
2

𝑒
𝑘ℎ

𝜆max (𝑊) + ℎ𝜆max (𝑄) + ℎ𝜆max (𝑀)] 𝜓
2

.

(36)

Hence, the following inequality can be concluded:

‖𝑥 (𝑡)‖
2

≤
𝑎

𝜆min (𝑃)
𝜓
2

+
𝜎

𝑘𝜆min (𝑃)
‖𝑟 (𝑡)‖

2

∞

≤ (√
𝑎

𝜆min (𝑃)
𝜓 + √

𝜎

𝑘𝜆min (𝑃)
‖𝑟 (𝑡)‖

∞
)

2

,

(37)

where

𝑎 = 𝜆max (𝑃) + ℎ
2

𝑒
𝑘ℎ

𝜆max (𝑆) + ℎ
2

𝜆max (𝑅)

+ ℎ
2

𝑒
𝑘ℎ

𝜆max (𝑊) + ℎ𝜆max (𝑄) + ℎ𝜆max (𝑀) .

(38)

Then,

‖𝑌‖ ≤ ‖𝐽‖ ‖𝑥‖ ≤ 𝜃
1
+ 𝜃
2
‖𝑟 (𝑡)‖

∞
, (39)

with

𝜃
1
= ‖𝐽‖√

𝑎

𝜆min (𝑃)
𝜓, 𝜃

2
= ‖𝐽‖√

𝜎

𝑘𝜆min (𝑃)
. (40)

Therefore, switched system (1) is BIBO stable.This completes
the proof.

4. Simulation Results

As an example, let us consider system (1) with the following
parameters:

𝐴
1
= [

−1.5 0.5

0 −1.5
] , 𝐵

1
= [

−0.2 0.3

0 −0.4
] ,

𝐶
1
= [

0.3 0.2

0 −0.2
] , 𝐻

1
= [

0.4 0

0 0.4
] ,

𝐿
1
= [

0.2 0

0 0.2
] , 𝐴

2
= [

−1 0.5

0.5 −2
] ,

𝐵
2
= [

−0.4 0

0.3 −0.4
] , 𝐶

2
= [

−0.4 0.3

0 −0.3
] ,

𝐻
2
= [

−0.3 0

0 −0.3
] , 𝐿

2
= [

0.3 0

0 0.3
] ,

𝐽 = [
1 0

0 1
] , 𝑑 = 1.5.

(41)

0

0

5 10 15 20 25 30 35 40 45 50

1

2

−2

−1

𝑟
1

𝑡 (s)

(a)

0
0.5
1

1.5

0 5 10 15 20 25 30 35 40 45 50

−0.5

−1

−1.5

𝑟
2

𝑡 (s)

(b)

Figure 1: Time response of the reference input variable 𝑟(𝑡).

Remark 7. When the BIBO parameter 𝑘 and the constant
parameter 𝛽 are given, the upper bound of time delay ℎ

of system (1) can be determined by solving the following
optimization problem:

max ℎ

when (7) is satisfied, 𝑘 and 𝛽 are fixed.
(42)

Now we consider the influence of parameters k and 𝛽 on
the maximal allowable delay in Tables 1 and 2.

Remark 8. From Tables 1 and 2, it can be seen that the
maximal allowable delay decreases with the rise of the
parameter k and increases as the parameter 𝛽 is reduced.

Then, we carry out some numerical simulation to verify
the proposedmethodology.The numerical simulation is with
initial value 𝜑(𝜃) = [−1.5; 1]

𝑇

, 𝑡 ∈ (−1.5, 0), and following
parameters

𝜏 (𝑡) = 1.1 + 0.4cos2 (5𝑡) ,

𝑓 (𝑡, 𝑥 (𝑡)) =
𝛽 [|𝑥 (𝑡) + 1| + |𝑥 (𝑡) − 1|]

2
,

𝑟 (𝑡) = [1.5 sin (2𝑡) cos (𝑒𝑡) , cos (2𝑡) sin(
𝑒
𝑡

𝑡 + 1
)]

𝑇

,

𝑘 = 0.1, 𝛽 = 0.1.

(43)

The switching signals are produced randomly with switching
interval 0.2 seconds.

Remark 9. Figure 1 depicts the time response of system
reference input variable 𝑟(𝑡), and Figure 2 depicts the time
response of switching signals. 𝑠𝑤

1
denotes the switching
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0 5 10 15 20 25 30 35 40 45 50
0

0.4
0.2

0.6
0.8
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𝑠
𝑤
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𝑠
𝑤
2

0

0.4
0.2

0.6
0.8
1

0 5 10 15 20 25 30 35 40 45 50
𝑡 (s)

(b)

Figure 2: Time response of the switching variables 𝑠𝑤
1
and 𝑠𝑤

2
.

0 5 10 15 20 25 30 35 40 45 50
−1.5

−1

−0.5

0

0.5

𝑌
1

𝑡 (s)

Figure 3: Time response of the output variable 𝑌
1
(𝑡).

Table 1: The maximal allowable delay for different parameters 𝑘

when 𝛽 is 0.1.

𝑘 = 0 𝑘 = 0.1 𝑘 = 0.2 𝑘 = 0.5

ℎmax = 3.3395 ℎmax = 2.5482 ℎmax = 2.1313 ℎmax = 1.5197

Table 2: The maximal allowable delay for different nonlinear
parameters 𝛽 when 𝑘 is 0.1.

𝛽 = 0 𝛽 = 0.1 𝛽 = 0.2 𝛽 = 0.5

ℎmax = 2.6608 ℎmax = 2.5482 ℎmax = 2.4370 ℎmax = 2.1385

signal added to the system for the first time, and 𝑠𝑤
2
denotes

the switching signal added to the system for the second time;
Figure 3 depicts the time response of system output variable
𝑌
1
(𝑡), and Figure 4 depicts the time response of systemoutput

−0.2

0

0.2

0.4

0.6

0.8

𝑌
2

0 5 10 15 20 25 30 35 40 45 50
𝑡 (s)

Figure 4: Time response of the output variable 𝑌
2
(𝑡).

variable 𝑌
2
(𝑡). The solid line denotes the output variable

of the switched system with the switching signal 𝑠𝑤
1
, and

the dashed line denotes the output variable of the switched
system with the switching signal 𝑠𝑤

2
. From the figures it can

be seen that the system output jitters in a range with a given
bounded input after a period of time, which means that the
system is BIBO stable and demonstrates the effectiveness of
our theoretical results.

5. Conclusions

Wehave studied bounded-input bounded-output stability for
a class of delay switched systemswith nonlinear perturbation.
Based on the Lyapunov-Krasovskii functional theory, new
BIBO stabilization criteria were established in terms of delay-
dependent linear matrix inequalities. Some numerical simu-
lations have been conducted to demonstrate the effectiveness
of the theoretical results obtained in this paper. Future work
will investigate fault detection for delay switched systems.
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