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This paper deals with a new class of reflected backward stochastic differential equations driven by countable Brownian motions.
The existence and uniqueness of the RBSDEs are obtained via Snell envelope and fixed point theorem.

1. Introduction

The nonlinear backward stochastic differential equations
(BSDEs in short) were introduced by Pardoux and Peng [1],
who proved the existence and uniqueness of the solution
under the Lipschitz conditions for giving the probabilistic
interpretation of semilinear parabolic partial differential
equations. Since then,many authorswere devoted to studying
the BSDEs (see, e.g., [2–8] and the references therein).
At present, the theory of BSDEs becomes a powerful tool
to solve practical matters. In 1994, Pardoux and Peng [9]
firstly studied the backward doubly stochastic differential
equations (BDSDEs in short), which are driven by two kinds
of Brownian motions. Later, Boufoussi et al. [10] established
the connection between a class of generalized BDSDEs and
semilinear stochastic partial differential equations with a
Neumann boundary condition.

Reflected backward differential equations (RBSDEs in
short) were introduced by El Karoui et al. [11]. Later, many
researchers discussed various kinds of RBSDEs for their deep
application in mathematical finance and partial differential
equations. Ren and Hu [12] proposed the RBSDEs, driven
by Teugels martingales and Brownian motion, and derived
the existence and uniqueness of the solution by means of
the Snell envelope and the fixed point theorem when the
barrier was right continuous with left limits. Ren and El
Otmani [13] discussed the generalized reflectedBSDEs driven
by Lévy process. Recently, Ren et al. [14] studied a new class

of reflected backward doubly stochastic differential equations
driven by Lévy process and Brownian motion.

As in all the previous works, the equations are driven
by finite Brownian motions. To the best of our knowledge,
there are no papers on the reflected backward stochastic
differential equations driven by countable Brownianmotions.
In this paper, we aim to derive the existence and uniqueness
of the solution for the RBSDEs driven by countable Brownian
motions.

The structure of the paper is organized as follows. In
Section 2, we give some notations. Section 3 is devoted to the
main result.

2. Notations

Let 𝑇 be a positive constant. Throughout the paper (Ω,F,P)

is a complete probability space equipped with the natural
filtration {F

𝑡
}
𝑡≥0

satisfying the usual conditions. {𝛽
𝑗
(𝑡)}
∞

𝑗=1

aremutual independent one-dimensional standard Brownian
motions on the probability space.𝑊(𝑡) is a standard Brown-
ianmotion onR𝑑 which is independent of 𝛽

𝑗
(𝑡). Assume that

F
𝑡
= (

∞

⋁

𝑗=1

F
𝛽𝑗

𝑡,𝑇
)⋁F

𝑊

𝑡
⋁N, (1)

where for any process {𝜂
𝑡
}, F𝜂
𝑠,𝑡

= 𝜎{𝜂
𝑟
− 𝜂
𝑠
: 𝑠 ≤ 𝑟 ≤ 𝑡},

F
𝜂

𝑡
= F
𝜂

0,𝑡
, andN denotes the class of P-null sets ofF.
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For the convenience, let us introduce some spaces:

(i) H2 = {(𝜑
𝑡
)
0≤𝑡≤𝑇

: anF
𝑡
-progressively measurable,R-

valued process such that 𝐸∫𝑇
0
|𝜑
𝑡
|
2d𝑡 < ∞};

(ii) S2 = {(𝜓
𝑡
)
0≤𝑡≤𝑇

: an F
𝑡
-progressively measurable,

R𝑑-valued continuous process such that
𝐸(sup

0≤𝑡≤𝑇
|𝜓
𝑡
|
2
) < ∞};

(iii) A2 = {(𝐾
𝑡
)
0≤𝑡≤𝑇

: anF
𝑡
-adapted, continuous, increas-

ing process such that𝐾
0
= 0, 𝐸|𝐾

𝑡
|
2
< ∞}.

With the previous preparations, we consider the following
RBSDEs:

𝑌
𝑡
= 𝜉 + ∫

𝑇

𝑡

𝑓 (𝑠, 𝑌
𝑠
, 𝑍
𝑠
) d𝑠

+

∞

∑

𝑗=1

∫

𝑇

𝑡

𝑔
𝑗
(𝑠, 𝑌
𝑠
, 𝑍
𝑠
) d𝛽
𝑗
(𝑠)

− ∫

𝑇

𝑡

𝑍
𝑠
d𝑊(𝑠) + 𝐾

𝑇
− 𝐾
𝑡
, 0 ≤ 𝑡 ≤ 𝑇,

(2)

where 𝑓 : Ω × [0, 𝑇] × R × R𝑑 → R and 𝑔
𝑗
: Ω × [0, 𝑇] ×

R ×R𝑑 → R.

Definition 1. A solution of (2) is a triple ofR×R𝑑 ×R
+
value

process (𝑌
𝑡
, 𝑍
𝑡
, 𝐾
𝑡
)
0≤𝑡≤𝑇

, which satisfies (2), and

(i) (𝑌
𝑡
, 𝑍
𝑡
, 𝐾
𝑡
)
0≤𝑡≤𝑇

∈ S2 ×H2 ×A2;
(ii) 𝑌
𝑡
≥ 𝑆
𝑡
;

(iii) 𝐾
𝑡
is a continuous and increasing process with𝐾

0
= 0

and ∫𝑇
0
(𝑌
𝑡
− 𝑆
𝑡
)d𝐾
𝑡
= 0.

In order to get the solution of (2), we propose the
following assumptions:

(H1) 𝜉 is an F
𝑇
measurable square integrable random

variable;
(H2) the obstacle {𝑆

𝑡
: 0 ≤ 𝑡 ≤ 𝑇} is an F

𝑡
-progressive

measurable continuous real valued process which
satisfies 𝐸 sup

0≤𝑡≤𝑇
(𝑆
𝑡
)
2
< ∞. We always assume that

𝑆
𝑇
≤ 𝜉, a.s.;

(H3) 𝑓(⋅, 𝑦, 𝑧) and 𝑔
𝑗
(⋅, 𝑦, 𝑧) are two progressive measur-

able functions such that, for any 𝑡 ∈ [0, 𝑇], 𝑦
1
, 𝑦
2
∈ R,

𝑧
1
, 𝑧
2
∈ R𝑑,

(3a) 𝑓(𝑠, ⋅, ⋅) is continuous and |𝑓(𝑠, 𝑦, 𝑧)| ≤ 𝑀(1 +

|𝑦| + |𝑧|);
(3b) 𝐸∫𝑇

0
|𝑓(𝑡, 0, 0)|

2dt < ∞,
∑
∞

𝑗=1
𝐸∫
𝑇

0
|𝑔
𝑗
(𝑡, 0, 0)|

2dt < ∞;
(3c) |𝑓(𝑠, 𝑦

1
, 𝑧
1
) − 𝑓(𝑠, 𝑦

2
, 𝑧
2
)|
2

≤ 𝐶(|𝑦
1
− 𝑦
2
|
2
+

|𝑧
1
− 𝑧
2
|
2
), |𝑔

𝑗
(𝑠, 𝑦
1
, 𝑧
1
) − 𝑔
𝑗
(𝑠, 𝑦
2
, 𝑧
2
)|
2

≤

𝐶
𝑗
|𝑦
1
− 𝑦
2
|
2

+ 𝛼
𝑗
|𝑧
1
− 𝑧
2
|
2, where 𝑀, 𝐶,

𝐶
𝑗
, and 𝛼

𝑗
are nonnegative constants with

∑
∞

𝑗=1
𝐶
𝑗
< ∞ and 𝛼 = ∑∞

𝑗=1
𝛼
𝑗
< 1.

3. Main Result

In order to get the solution of (2), we consider the following
RBSDEs driven by finite Brownian motions:

𝑌
𝑡
= 𝜉 + ∫

𝑇

𝑡

𝑓 (𝑠, 𝑌
𝑠
, 𝑍
𝑠
) d𝑠

+

𝑛

∑

𝑗=1

∫

𝑇

𝑡

𝑔
𝑗
(𝑠, 𝑌
𝑠
, 𝑍
𝑠
) d𝛽
𝑗
(𝑠)

− ∫

𝑇

𝑡

𝑍
𝑠
d𝑊(𝑠) + 𝐾

𝑇
− 𝐾
𝑡
, 0 ≤ 𝑡 ≤ 𝑇.

(3)

Firstly, we consider a special case of (3); that is, the
functions 𝑓 and 𝑔 do not depend on (𝑌, 𝑍):

𝑌
𝑡
= 𝜉 + ∫

𝑇

𝑡

𝑓 (𝑠) d𝑠

+

𝑛

∑

𝑗=1

∫

𝑇

𝑡

𝑔
𝑗
(𝑠) d𝛽

𝑗
(𝑠) − ∫

𝑇

𝑡

𝑍
𝑠
d𝑊(𝑠)

+ 𝐾
𝑇
− 𝐾
𝑡
, 0 ≤ 𝑡 ≤ 𝑇, 𝑛 ≥ 1.

(4)

Wewill get the existence and uniqueness of the solution of
(4) bymeans of Snell envelope andmartingale representation
theorem.

Theorem 2. Assume that (H1)-(H2), 𝑓 ∈ H2, 𝑔 ∈ H2. Then,
there exists a triple (𝑌

𝑡
, 𝑍
𝑡
, 𝐾
𝑡
)
0≤𝑡≤𝑇

∈ S2 ×H2 ×A2 which is
a solution of (4).

Proof. Let

C
𝑡
= F
𝑊

𝑡
⋁(

𝑛

⋁

𝑗=1

F
𝛽𝑗

𝑡,𝑇
) , (5)

and we define 𝜂 = {𝜂
𝑡
}
0≤𝑡≤𝑇

as

𝜂
𝑡
= 𝜉1
{𝑡=𝑇}

+ 𝑆
𝑡
1
{𝑡<𝑇}

+ ∫

𝑡

0

𝑓 (𝑠) d𝑠

+

𝑛

∑

𝑗=1

∫

𝑡

0

𝑔
𝑗
(𝑠) d𝛽

𝑗
(𝑠) .

(6)

Then, 𝜂 isC
𝑡
-adapted continuous process; furthermore;

sup
0≤𝑡≤𝑇

󵄨󵄨󵄨󵄨𝜂𝑡
󵄨󵄨󵄨󵄨 ∈ 𝐿
2
(Ω) . (7)

So, the Snell envelope of 𝜂 is given by

𝑆
𝑡
(𝜂) = ess sup

]∈T
𝐸 [𝜂] | C𝑡] , (8)

whereT is the set of allC
𝑡
stopping time such that 0 ≤ ] ≤ 𝑇.
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By the definition of 𝜂, we can deduce that

𝐸[ sup
0≤𝑡≤𝑇

󵄨󵄨󵄨󵄨𝑆𝑡 (𝜂)
󵄨󵄨󵄨󵄨

2

] < ∞. (9)

Due to the Doob-Meyer decomposition, we have

𝑆
𝑡
(𝜂) = 𝐸[

[

𝜉 + ∫

𝑇

0

𝑓 (𝑠) d𝑠

+

𝑛

∑

𝑗=1

∫

𝑇

0

𝑔
𝑗
(𝑠) d𝛽

𝑗
(𝑠) + 𝐾

𝑇
| C
𝑡
]

]

− 𝐾
𝑡
,

(10)

where {𝐾
𝑡
}
0≤𝑡≤𝑇

is a C
𝑡
-adapted, continuous, and nonde-

creasing process such that 𝐾
0
= 0 and 𝐸𝐾

2

𝑇
< ∞. So, we

have

𝐸
[
[

[

sup
0≤𝑡≤𝑇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐸[

[

𝜉 + ∫

𝑇

0

𝑓 (𝑠) d𝑠

+

𝑛

∑

𝑗=1

∫

𝑇

0

𝑔
𝑗
(𝑠)d𝛽
𝑗
(𝑠) + 𝐾

𝑇
| C
𝑡
]

]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

]
]

]

< ∞.

(11)

Martingale representation theoremyields that there exists
C
𝑡
-progressive measurable process {𝑍

𝑡
} ∈ R𝑑 such that

𝑀
𝑡
≜ 𝐸[

[

𝜉 + ∫

𝑇

0

𝑓 (𝑠) d𝑠 +
𝑛

∑

𝑗=1

∫

𝑇

0

𝑔
𝑗
(𝑠) d𝛽

𝑗
(𝑠) + 𝐾

𝑇
| C
𝑡
]

]

= 𝑀
0
+ ∫

𝑡

0

𝑍
𝑠
d𝑊(𝑠) , 0 ≤ 𝑡 ≤ 𝑇.

(12)

Let 𝑌
𝑡
= ess sup]∈T𝐸[𝜉1{]=𝑇} + 𝑆]1{]<𝑇} + ∫

]

𝑡
𝑓(𝑠)d𝑠 +

∑
𝑛

𝑗=1
∫
]

𝑡
𝑔
𝑗
(𝑠)d𝛽
𝑗
(𝑠) | C

𝑡
]; then,

𝑌
𝑡
+ ∫

𝑡

0

𝑓 (𝑠) d𝑠 +
𝑛

∑

𝑗=1

∫

𝑡

0

𝑔
𝑗
(𝑠) d𝛽

𝑗
(𝑠)

= 𝑆
𝑡
(𝜂) = 𝑀

𝑡
− 𝐾
𝑡

= 𝑀
0
+ ∫

𝑡

0

𝑍
𝑠
d𝑊(𝑠) − 𝐾

𝑡
, 0 ≤ 𝑡 ≤ 𝑇.

(13)

Therefore,

𝑌
𝑡
= 𝜉 + ∫

𝑇

𝑡

𝑓 (𝑠) d𝑠 +
𝑛

∑

𝑗=1

∫

𝑇

𝑡

𝑔
𝑗
(𝑠) d𝛽

𝑗
(𝑠)

− ∫

𝑇

𝑡

𝑍
𝑠
d𝑊(𝑠) + 𝐾

𝑇
− 𝐾
𝑡
.

(14)

By the definitions of 𝑌
𝑡
and 𝑆
𝑡
(𝜂), 𝜉 ≥ 𝑆

𝑇
,

𝑌
𝑡
+ ∫

𝑡

0

𝑓 (𝑠) d𝑠 +
𝑛

∑

𝑗=1

∫

𝑡

0

𝑔
𝑗
(𝑠) d𝛽

𝑗
(𝑠)

= 𝑆
𝑡
(𝜂) ≥ 𝜂

𝑡

= 𝜉1
{𝑡=𝑇}

+ 𝑆
𝑡
1
{𝑡<𝑇}

+ ∫

𝑡

0

𝑓 (𝑠) d𝑠

+

𝑛

∑

𝑗=1

∫

𝑡

0

𝑔
𝑗
(𝑠) d𝛽

𝑗
(𝑠)

≥ 𝑆
𝑇
1
{𝑡=𝑇}

+ 𝑆
𝑡
1
{𝑡<𝑇}

+ ∫

𝑡

0

𝑓 (𝑠) d𝑠

+

𝑛

∑

𝑗=1

∫

𝑡

0

𝑔
𝑗
(𝑠) d𝛽

𝑗
(𝑠) .

(15)

So, we have 𝑌
𝑡
≥ 𝑆
𝑡
.

Finally, fromHamadène [15], we get∫𝑇
0
(𝑆
𝑡
(𝜂)−𝜂

𝑡
)d𝐾
𝑡
= 0;

that is,

∫

𝑇

0

(𝑌
𝑡
− 𝑆
𝑡
) d𝐾
𝑡
= 0. (16)

It shows that the process (𝑌
𝑡
, 𝑍
𝑡
, 𝐾
𝑡
)
0≤𝑡≤𝑇

is a solution of (4).

Theorem 3. Under the assumptions of (H1)–(H3), there exists
a unique solution (𝑌

𝑡
, 𝑍
𝑡
, 𝐾
𝑡
)
0≤𝑡≤𝑇

of (3).

Proof. LetP = S2 ×H2 be endowed with the norm

‖(𝑌, 𝑍)‖
𝛽
= (𝐸[∫

𝑇

0

𝑒
𝛽𝑠
(
󵄨󵄨󵄨󵄨𝑌𝑠
󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨𝑍𝑠

󵄨󵄨󵄨󵄨

2

) d𝑠])
1/2

(17)

for a suitable constant 𝛽 > 0. We define the map
Φ from P into itself and (𝑌̃, 𝑍) and (𝑌󸀠, 𝑍󸀠) are two
elements of P. Define (𝑌, 𝑍) = Φ(𝑌̃, 𝑍), (𝑌󸀠, 𝑍󸀠) =

Φ(𝑌󸀠, 𝑍󸀠), where (𝑌, 𝑍,𝐾) and (𝑌󸀠, 𝑍󸀠, 𝐾󸀠) are solutions of (4)
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associated with (𝜉, 𝑓(𝑡, 𝑌̃, 𝑍), 𝑔
𝑗
(𝑡, 𝑌̃, 𝑍), 𝑆), and (𝜉, 𝑓(𝑡, 𝑌󸀠,

𝑍󸀠), 𝑔
𝑗
(𝑡, 𝑌󸀠, 𝑍󸀠), 𝑆

󸀠
), respectively. Set (𝑌, 𝑍) = (𝑌

𝑡
− 𝑌
󸀠

𝑡
, 𝑍
𝑡
−

𝑍
󸀠

𝑡
) and

Ψ
𝑀
(𝑥) = 𝑥

21
{−𝑀≤𝑥≤𝑀}

+𝑀(2𝑥 −𝑀) 1
{𝑥>𝑀}

−𝑀(2𝑥 +𝑀) 1
{𝑥<−𝑀}

.

(18)

If we defineΨ󸀠
𝑀
(𝑥)/𝑥 = 2, when𝑥 = 0, then, 0 ≤ Ψ󸀠

𝑀
(𝑌
𝑠
)/𝑌
𝑠
≤

2. Applying Itô formula to 𝑒𝛽𝑡Ψ
𝑀
(𝑌
𝑠
), we have

𝑒
𝛽𝑡
Ψ
𝑀
(𝑌
𝑡
) + 𝛽∫

𝑇

𝑡

𝑒
𝛽𝑠
Ψ
𝑀
(𝑌
𝑠
) d𝑠

+ ∫

𝑇

𝑡

𝑒
𝛽𝑠1
{−𝑀≤𝑌𝑠≤𝑀}

󵄨󵄨󵄨󵄨󵄨
𝑍
𝑠

󵄨󵄨󵄨󵄨󵄨

2

d𝑠

= ∫

𝑇

𝑡

𝑒
𝛽𝑠
Ψ
󸀠

𝑀
(𝑌
𝑠
) (𝑓 (𝑠, 𝑌

𝑠
, 𝑍
𝑠
) − 𝑓 (𝑠, 𝑌󸀠

𝑠
, 𝑍󸀠
𝑠
)) d𝑠

+

𝑛

∑

𝑗=1

∫

𝑇

𝑡

𝑒
𝛽𝑠1
{−𝑀≤𝑌𝑠≤𝑀}

󵄨󵄨󵄨󵄨󵄨
𝑔
𝑗
(𝑠, 𝑌
𝑠
, 𝑍
𝑠
)

−𝑔
𝑗
(𝑠, 𝑌󸀠
𝑠
, 𝑍󸀠
𝑠
)
󵄨󵄨󵄨󵄨󵄨

2

d𝑠

−

𝑛

∑

𝑗=1

∫

𝑇

𝑡

𝑒
𝛽𝑠
Ψ
󸀠

𝑀
(𝑌
𝑠
) (𝑔
𝑗
(𝑠, 𝑌
𝑠
, 𝑍
𝑠
)

−𝑔
𝑗
(𝑠, 𝑌󸀠
𝑠
, 𝑍󸀠
𝑠
)) d𝛽
𝑗
(𝑠)

− ∫

𝑇

𝑡

𝑒
𝛽𝑠
Ψ
󸀠

𝑀
(𝑌
𝑠
)𝑍
𝑠
d𝑊(𝑠)

+ ∫

𝑇

𝑡

𝑒
𝛽𝑠
Ψ
󸀠

𝑀
(𝑌
𝑠
) (d𝐾

𝑠
− d𝐾󸀠
𝑠
) .

(19)

Taking expectation on both sides of (19) and noticing that
∫
𝑇

𝑡
𝑒
𝛽𝑠
Ψ
󸀠

𝑀
(𝑌
𝑠
)(d𝐾
𝑠
− d𝐾󸀠
𝑠
) ≤ 0, we have

𝐸𝑒
𝛽𝑡
Ψ
𝑀
(𝑌
𝑡
) + 𝐸𝛽∫

𝑇

𝑡

𝑒
𝛽𝑠
Ψ
𝑀
(𝑌
𝑠
) d𝑠

+ 𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠1
{−𝑀≤𝑌𝑠≤𝑀}

󵄨󵄨󵄨󵄨󵄨
𝑍
𝑠

󵄨󵄨󵄨󵄨󵄨

2

d𝑠

≤ 𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠
Ψ
󸀠

𝑀
(𝑌
𝑠
) (𝑓 (𝑠, 𝑌

𝑠
, 𝑍
𝑠
) − 𝑓 (𝑠, 𝑌󸀠

𝑠
, 𝑍󸀠
𝑠
)) d𝑠

+

𝑛

∑

𝑗=1

𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠1
{−𝑀≤𝑌𝑠≤𝑀}

󵄨󵄨󵄨󵄨󵄨
𝑔
𝑗
(𝑠, 𝑌
𝑠
, 𝑍
𝑠
)

−𝑔
𝑗
(𝑠, 𝑌󸀠
𝑠
, 𝑍󸀠
𝑠
)
󵄨󵄨󵄨󵄨󵄨

2

d𝑠

≤ 2𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠
𝑌
𝑠
(𝑓 (𝑠, 𝑌

𝑠
, 𝑍
𝑠
) − 𝑓 (𝑠, 𝑌󸀠

𝑠
, 𝑍󸀠
𝑠
)) d𝑠

+

𝑛

∑

𝑗=1

𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠󵄨󵄨󵄨󵄨󵄨
𝑔
𝑗
(𝑠, 𝑌
𝑠
, 𝑍
𝑠
) − 𝑔
𝑗
(𝑠, 𝑌󸀠
𝑠
, 𝑍󸀠
𝑠
)
󵄨󵄨󵄨󵄨󵄨

2

d𝑠

≤
2𝐶

1 − 𝛼
𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠󵄨󵄨󵄨󵄨󵄨
𝑌
𝑠

󵄨󵄨󵄨󵄨󵄨

2

d𝑠

+ (

∞

∑

𝑗=1

𝐶
𝑗
+
1 − 𝛼

2
)𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠󵄨󵄨󵄨󵄨󵄨
𝑌
𝑠
− 𝑌󸀠
𝑠

󵄨󵄨󵄨󵄨󵄨

2

d𝑠

+
1 + 𝛼

2
𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠󵄨󵄨󵄨󵄨󵄨
𝑍
𝑠
− 𝑍󸀠
𝑠

󵄨󵄨󵄨󵄨󵄨

2

d𝑠.

(20)

Let 𝛾 = 2𝐶/(1 − 𝛼), 𝐶 = 2(∑
∞

𝑗=1
𝐶
𝑗
+ ((1 − 𝛼)/2))/(1 + 𝛼),

𝛽 = 𝛾 + 𝐶, and𝑀 → ∞; we have

𝐶𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠󵄨󵄨󵄨󵄨󵄨
𝑌
𝑠
− 𝑌
󸀠

𝑠

󵄨󵄨󵄨󵄨󵄨

2

d𝑠 + 𝐸∫
𝑇

𝑡

𝑒
𝛽𝑠󵄨󵄨󵄨󵄨󵄨
𝑍
𝑠
− 𝑍
󸀠

𝑠

󵄨󵄨󵄨󵄨󵄨

2

d𝑠

≤
1 + 𝛼

2
𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠
(𝐶

󵄨󵄨󵄨󵄨󵄨
𝑌
𝑠
− 𝑌󸀠
𝑠

󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑠
− 𝑍󸀠
𝑠

󵄨󵄨󵄨󵄨󵄨

2

) ;

(21)

that is,

󵄩󵄩󵄩󵄩(𝑌𝑠, 𝑍𝑠)
󵄩󵄩󵄩󵄩

2

𝛽
≤
1 + 𝛼

2

󵄩󵄩󵄩󵄩󵄩
(𝑌
󸀠

𝑠
, 𝑍
󸀠

𝑠
)
󵄩󵄩󵄩󵄩󵄩

2

𝛽
. (22)

It follows that Φ is a strict contraction on P with the
norm ‖ ⋅ ‖

𝛽
, where 𝛽 is defined as above. Then, Φ has a fixed

point (𝑌, 𝑍,𝐾) which is the unique solution of (4) from the
Burkholder-Davis-Gundy inequality.

With all the preparations, we will give the main result of
this paper as follows.

Theorem 4. Under the conditions of (H1)–(H3), there exists a
unique solution (𝑌

𝑡
, 𝑍
𝑡
, 𝐾
𝑡
)
0≤𝑡≤𝑇

∈ S2 ×H2 ×A2 of (2).

Proof (existence). By Theorem 3, for any 𝑛 ≥ 1, there exists a
unique solution of (3), denoted by (𝑌𝑛

𝑡
, 𝑍
𝑛

𝑡
, 𝐾
𝑛

𝑡
),

𝑌
𝑛

𝑡
= 𝜉 + ∫

𝑇

𝑡

𝑓 (𝑠, 𝑌
𝑛

𝑠
, 𝑍
𝑛

𝑠
) d𝑠

+

𝑛

∑

𝑗=1

∫

𝑇

𝑡

𝑔
𝑗
(𝑠, 𝑌
𝑛

𝑠
, 𝑍
𝑛

𝑠
) d𝛽
𝑗
(𝑠)

− ∫

𝑇

𝑡

𝑍
𝑛

𝑠
d𝑊(𝑠) + 𝐾

𝑛

𝑇
− 𝐾
𝑛

𝑡
.

(23)

In the following parts, we will claim that (𝑌𝑛
𝑡
, 𝑍
𝑛

𝑡
, 𝐾
𝑛

𝑡
) is a

Cauchy sequence inS2×H2×A2. Without loss of generality,
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we let 𝑛 < 𝑚. Applying general Itô formula to |𝑌𝑛
𝑡
− 𝑌
𝑚

𝑡
|
2, we

have.

󵄨󵄨󵄨󵄨𝑌
𝑛

𝑡
− 𝑌
𝑚

𝑡

󵄨󵄨󵄨󵄨

2

+ ∫

𝑇

𝑡

󵄨󵄨󵄨󵄨𝑍
𝑛

𝑠
− 𝑍
𝑚

𝑠

󵄨󵄨󵄨󵄨

2d𝑠

= 2∫

𝑇

𝑡

(𝑌
𝑛

𝑠
− 𝑌
𝑚

𝑠
) (𝑓 (𝑠, 𝑌

𝑛

𝑠
, 𝑍
𝑛

𝑠
)

−𝑓 (𝑠, 𝑌
𝑚

𝑠
, 𝑍
𝑚

𝑠
)) d𝑠

+

𝑚

∑

𝑗=𝑛+1

∫

𝑇

𝑡

󵄨󵄨󵄨󵄨󵄨
𝑔
𝑗
(𝑠, 𝑌
𝑛

𝑠
, 𝑍
𝑛

𝑠
) − 𝑔
𝑗
(𝑠, 𝑌
𝑚

𝑠
, 𝑍
𝑚

𝑠
)
󵄨󵄨󵄨󵄨󵄨

2

d𝑠

− 2

𝑚

∑

𝑗=𝑛+1

∫

𝑇

𝑡

(𝑌
𝑛

𝑠
− 𝑌
𝑚

𝑠
) (𝑔
𝑗
(𝑠, 𝑌
𝑛

𝑠
, 𝑍
𝑛

𝑠
)

−𝑔
𝑗
(𝑠, 𝑌
𝑚

𝑠
, 𝑍
𝑚

𝑠
)) d𝛽
𝑗
(𝑠)

− 2∫

𝑇

𝑡

(𝑌
𝑛

𝑠
− 𝑌
𝑚

𝑠
) (𝑍
𝑛

𝑠
− 𝑍
𝑚

𝑠
) d𝑊(𝑠)

+ 2∫

𝑇

𝑡

(𝑌
𝑛

𝑠
− 𝑌
𝑚

𝑠
) (d𝐾𝑛
𝑠
− d𝐾𝑚
𝑠
) .

(24)

Taking expectation on both sides of (24) and noting that
∫
𝑇

𝑡
(𝑌
𝑛

𝑠
− 𝑌
𝑚

𝑠
)(d𝐾𝑛
𝑠
− d𝐾𝑚
𝑠
) ≤ 0, we obtain

𝐸
󵄨󵄨󵄨󵄨𝑌
𝑛

𝑡
− 𝑌
𝑚

𝑡

󵄨󵄨󵄨󵄨

2

+ 𝐸∫

𝑇

𝑡

󵄨󵄨󵄨󵄨𝑍
𝑛

𝑠
− 𝑍
𝑚

𝑠

󵄨󵄨󵄨󵄨

2d𝑠

≤ 2𝐸∫

𝑇

𝑡

(𝑌
𝑛

𝑠
− 𝑌
𝑚

𝑠
) (𝑓 (𝑠, 𝑌

𝑛

𝑠
, 𝑍
𝑛

𝑠
)

−𝑓 (𝑠, 𝑌
𝑚

𝑠
, 𝑍
𝑚

𝑠
)) d𝑠

+

𝑚

∑

𝑗=𝑛+1

𝐸∫

𝑇

𝑡

󵄨󵄨󵄨󵄨󵄨
𝑔
𝑗
(𝑠, 𝑌
𝑛

𝑠
, 𝑍
𝑛

𝑠
) − 𝑔
𝑗
(𝑠, 𝑌
𝑚

𝑠
, 𝑍
𝑚

𝑠
)
󵄨󵄨󵄨󵄨󵄨

2

d𝑠.

(25)

By (H3) and elementary inequality 2𝑎𝑏 ≤ 𝛽𝑎2 + (1/𝛽)𝑏2, 𝛽 >
0, we obtain

𝐸
󵄨󵄨󵄨󵄨𝑌
𝑛

𝑡
− 𝑌
𝑚

𝑡

󵄨󵄨󵄨󵄨

2

+ 𝐸∫

𝑇

𝑡

󵄨󵄨󵄨󵄨𝑍
𝑛

𝑠
− 𝑍
𝑚

𝑠

󵄨󵄨󵄨󵄨

2d𝑠

≤
2𝐶

1 − 𝛼
𝐸∫

𝑇

𝑡

󵄨󵄨󵄨󵄨𝑌
𝑛

𝑠
− 𝑌
𝑚

𝑠

󵄨󵄨󵄨󵄨

2d𝑠 + 1 − 𝛼

2
𝐸∫

𝑇

𝑡

󵄨󵄨󵄨󵄨𝑌
𝑛

𝑠
− 𝑌
𝑚

𝑠

󵄨󵄨󵄨󵄨

2d𝑠

+
1 − 𝛼

2
𝐸∫

𝑇

𝑡

󵄨󵄨󵄨󵄨𝑍
𝑛

𝑠
− 𝑍
𝑚

𝑠

󵄨󵄨󵄨󵄨

2d𝑠 + 𝛼𝐸∫
𝑇

𝑡

󵄨󵄨󵄨󵄨𝑍
𝑛

𝑠
− 𝑍
𝑚

𝑠

󵄨󵄨󵄨󵄨

2d𝑠

+ [

[

𝑚

∑

𝑗=𝑛+1

𝐶
𝑗
]

]

𝐸∫

𝑇

𝑡

󵄨󵄨󵄨󵄨𝑌
𝑛

𝑠
− 𝑌
𝑚

𝑠

󵄨󵄨󵄨󵄨

2d𝑠.

(26)

Furthermore,

𝐸
󵄨󵄨󵄨󵄨𝑌
𝑛

𝑡
− 𝑌
𝑚

𝑡

󵄨󵄨󵄨󵄨

2

+
1 − 𝛼

2
𝐸∫

𝑇

𝑡

󵄨󵄨󵄨󵄨𝑍
𝑛

𝑠
− 𝑍
𝑚

𝑠

󵄨󵄨󵄨󵄨

2d𝑠

≤ 𝐶
𝑝
𝐸∫

𝑇

𝑡

󵄨󵄨󵄨󵄨𝑌
𝑛

𝑠
− 𝑌
𝑚

𝑠

󵄨󵄨󵄨󵄨

2d𝑠,

(27)

where 𝐶
𝑝
= (2𝐶/(1 − 𝛼)) + ((1 − 𝛼)/2) + ∑

𝑚

𝑗=𝑛+1
𝐶
𝑗
.

By Gronwall’s inequality and Burkholder-Davis-Gundy
inequality, we have

𝐸[ sup
0≤𝑡≤𝑇

∫

𝑇

𝑡

󵄨󵄨󵄨󵄨𝑌
𝑛

𝑠
− 𝑌
𝑚

𝑠

󵄨󵄨󵄨󵄨

2d𝑠] 󳨀→ 0. (28)

Denote the limit of (𝑌𝑛
𝑡
, 𝑍
𝑛

𝑡
, 𝐾
𝑛

𝑡
) by (𝑌

𝑡
, 𝑍
𝑡
, 𝐾
𝑡
); we will

show that (𝑌
𝑡
, 𝑍
𝑡
, 𝐾
𝑡
) satisfies (2). If it is necessary, we can

choose a subsequence of (3). By Hölder’s inequality,

𝐸

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑇

𝑡

(𝑓 (𝑠, 𝑌
𝑠
, 𝑍
𝑠
) − 𝑓 (𝑠, 𝑌

𝑛

𝑠
, 𝑍
𝑛

𝑠
)) d𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

≤ 𝑇𝐸∫

𝑇

𝑡

󵄨󵄨󵄨󵄨(𝑓 (𝑠, 𝑌𝑠, 𝑍𝑠) − 𝑓 (𝑠, 𝑌
𝑛

𝑠
, 𝑍
𝑛

𝑠
))
󵄨󵄨󵄨󵄨

2d𝑠 󳨀→ 0.

(29)

From (27), we know

𝐸∫

𝑇

0

󵄨󵄨󵄨󵄨𝑌
𝑛

𝑡
− 𝑌
𝑡

󵄨󵄨󵄨󵄨

2d𝑡 󳨀→ 0, (30)

and 𝑌𝑛
𝑡
→ 𝑌
𝑡
, a.e., so

√𝐸∫

𝑇

0

󵄨󵄨󵄨󵄨𝑌
𝑛+1

𝑡
− 𝑌
𝑛

𝑡

󵄨󵄨󵄨󵄨

2d𝑡 ≤ 1

2𝑛
. (31)

For any 𝑛,

󵄨󵄨󵄨󵄨𝑌
𝑛

𝑡

󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨󵄨
𝑌
1

𝑡

󵄨󵄨󵄨󵄨󵄨
+

𝑛−1

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝑌
𝑖+1

𝑡
− 𝑌
𝑖

𝑡

󵄨󵄨󵄨󵄨󵄨
≤
󵄨󵄨󵄨󵄨󵄨
𝑌
1

𝑡

󵄨󵄨󵄨󵄨󵄨
+

∞

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝑌
𝑖+1

𝑡
− 𝑌
𝑖

𝑡

󵄨󵄨󵄨󵄨󵄨
. (32)

Then, we have

√𝐸∫

𝑇

0

sup
𝑛

󵄨󵄨󵄨󵄨𝑌
𝑛

𝑡

󵄨󵄨󵄨󵄨

2d𝑡

≤ √𝐸∫

𝑇

0

(
󵄨󵄨󵄨󵄨𝑌
1

𝑡

󵄨󵄨󵄨󵄨 +

∞

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑌
𝑖+1

𝑡
− 𝑌
𝑖

𝑡

󵄨󵄨󵄨󵄨)

2

d𝑡

≤ √𝐸∫

𝑇

0

󵄨󵄨󵄨󵄨𝑌
1

𝑡

󵄨󵄨󵄨󵄨

2d𝑡 +
∞

∑

𝑖=1

√𝐸∫

𝑇

0

󵄨󵄨󵄨󵄨𝑌
𝑖+1

𝑡
− 𝑌
𝑖

𝑡

󵄨󵄨󵄨󵄨

2d𝑡

≤ √𝐸∫

𝑇

0

󵄨󵄨󵄨󵄨𝑌
1

𝑡

󵄨󵄨󵄨󵄨

2d𝑡 +
∞

∑

𝑖=1

1

2𝑖
.

(33)

From (H4), it follows

𝐸∫

𝑇

0

sup
𝑛

󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑌𝑠, 𝑍𝑠) − 𝑓 (𝑠, 𝑌
𝑛

𝑠
, 𝑍
𝑛

𝑠
)
󵄨󵄨󵄨󵄨

2d𝑠

≤ 2𝐶𝐸∫

𝑇

0

(sup
𝑛

󵄨󵄨󵄨󵄨𝑌
𝑛

𝑠

󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨𝑌𝑠
󵄨󵄨󵄨󵄨

2

+ sup
𝑛

󵄨󵄨󵄨󵄨𝑍
𝑛

𝑠

󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨𝑍𝑠

󵄨󵄨󵄨󵄨

2

) d𝑠 < ∞.

(34)
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Applying Lebesgue dominated convergence theorem, we
deduce that (𝑌

𝑡
, 𝑍
𝑡
, 𝐾
𝑡
) is the solution of (2) by continuity of

the functions 𝑓 and 𝑔.

Uniqueness. Let (𝑌𝑖
𝑡
, 𝑍
𝑖

𝑡
, 𝐾
𝑖

𝑡
) (𝑖 = 1, 2) be two solutions of

(2), 𝑌
𝑡
= 𝑌
1

𝑡
− 𝑌
2

𝑡
, 𝑍
𝑡
= 𝑍
1

𝑡
− 𝑍
2

𝑡
. We apply Itô formula to

𝑒
𝛽𝑡
Ψ
𝑀
(𝑌
𝑡
), for any 𝛽 ∈ R,

𝑒
𝛽𝑡
Ψ
𝑀
(𝑌
𝑡
) + 𝛽∫

𝑇

𝑡

𝑒
𝛽𝑠
Ψ
𝑀
(𝑌
𝑠
) d𝑠

+ ∫

𝑇

𝑡

𝑒
𝛽𝑠1
{−𝑀≤𝑌𝑠≤𝑀}

󵄨󵄨󵄨󵄨󵄨
𝑍
𝑠

󵄨󵄨󵄨󵄨󵄨

2

d𝑠

= ∫

𝑇

𝑡

𝑒
𝛽𝑠
Ψ
󸀠

𝑀
(𝑌
𝑠
) (𝑓 (𝑠, 𝑌

1

𝑠
, 𝑍
1

𝑠
) − 𝑓 (𝑠, 𝑌

2

𝑠
, 𝑍
2

𝑠
)) d𝑠

+

∞

∑

𝑗=1

∫

𝑇

𝑡

𝑒
𝛽𝑠1
{−𝑀≤𝑌𝑠≤𝑀}

󵄨󵄨󵄨󵄨󵄨
𝑔
𝑗
(𝑠, 𝑌
1

𝑠
, 𝑍
1

𝑠
)

−𝑔
𝑗
(𝑠, 𝑌
2

𝑠
, 𝑍
2

𝑠
)
󵄨󵄨󵄨󵄨󵄨

2

d𝑠

−

∞

∑

𝑗=1

∫

𝑇

𝑡

𝑒
𝛽𝑠
Ψ
󸀠

𝑀
(𝑌
𝑠
)

× (𝑔
𝑗
(𝑠, 𝑌
1

𝑠
, 𝑍
1

𝑠
) − 𝑔
𝑗
(𝑠, 𝑌
2

𝑠
, 𝑍
2

𝑠
)) d𝛽
𝑗
(𝑠)

− ∫

𝑇

𝑡

𝑒
𝛽𝑠
Ψ
󸀠

𝑀
(𝑌
𝑠
)𝑍
𝑠
d𝑊
𝑠

+ ∫

𝑇

𝑡

𝑒
𝛽𝑠
Ψ
󸀠

𝑀
(𝑌
𝑠
) (d𝐾1

𝑠
− d𝐾2
𝑠
) .

(35)

Taking expectation on both sides of (35),

𝐸𝑒
𝛽𝑡
Ψ
𝑀
(𝑌
𝑡
) + 𝛽𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠
Ψ
𝑀
(𝑌
𝑠
) d𝑠

+ 𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠1
{−𝑀≤𝑌𝑠≤𝑀}

󵄨󵄨󵄨󵄨󵄨
𝑍
𝑠

󵄨󵄨󵄨󵄨󵄨

2

d𝑠

≤ 2𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠
𝑌
𝑠
(𝑓 (𝑠, 𝑌

1

𝑠
, 𝑍
1

𝑠
) − 𝑓 (𝑠, 𝑌

2

𝑠
, 𝑍
2

𝑠
)) d𝑠

+

∞

∑

𝑗=1

𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠1
{−𝑀≤𝑌𝑠≤𝑀}

󵄨󵄨󵄨󵄨󵄨
𝑔
𝑗
(𝑠, 𝑌
1

𝑠
, 𝑍
1

𝑠
)

−𝑔
𝑗
(𝑠, 𝑌
2

𝑠
, 𝑍
2

𝑠
)
󵄨󵄨󵄨󵄨󵄨

2

d𝑠

≤ (
2𝐶

1 − ∑
∞

𝑗=1
𝛼
𝑗

+

∞

∑

𝑗=1

𝐶
𝑗
+

1 − ∑
∞

𝑗=1
𝛼
𝑗

2
)𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠󵄨󵄨󵄨󵄨󵄨
𝑌
𝑠

󵄨󵄨󵄨󵄨󵄨

2

d𝑠

+

1 + ∑
∞

𝑗=1
𝛼
𝑗

2
𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠󵄨󵄨󵄨󵄨󵄨
𝑍
𝑡

󵄨󵄨󵄨󵄨󵄨

2

d𝑠.

(36)

Let𝑀 → ∞, and applyingmonotone convergence theorem,
we have

𝐸𝑒
𝛽𝑡󵄨󵄨󵄨󵄨󵄨
𝑌
𝑡

󵄨󵄨󵄨󵄨󵄨

2

+ (𝛽 −
2𝐶

1 − 𝛼
−

∞

∑

𝑗=1

𝐶
𝑗
−
1 − 𝛼

2
)

× 𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠󵄨󵄨󵄨󵄨󵄨
𝑌
𝑠

󵄨󵄨󵄨󵄨󵄨

2

d𝑠

+
1 − 𝛼

2
𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠󵄨󵄨󵄨󵄨󵄨
𝑍
𝑠

󵄨󵄨󵄨󵄨󵄨

2

d𝑠 ≤ 0.

(37)

When 𝛽 is taken sufficiently large, we have 𝑌
𝑡
= 0, a.e.,

for all 𝑠 ∈ [𝑡, 𝑇]. So, we have 𝑍
𝑡
= 0, a.e. Then, we complete

the proof.
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