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In theory, a scheduling problem can be formulated as a mathematical programming problem. In practice, dispatching rules are
considered to be a more practical method of scheduling. However, the combination of mathematical programming and fuzzy
dispatching rule has rarely been discussed in the literature. In this study, a fuzzy nonlinear programming (FNLP) approach is
proposed for optimizing the scheduling performance of a four-factor fluctuation smoothing rule in a wafer fabrication factory.
The proposed methodology considers the uncertainty in the remaining cycle time of a job and optimizes a fuzzy four-factor
fluctuation-smoothing rule to sequence the jobs in front of each machine. The fuzzy four-factor fluctuation-smoothing rule has
five adjustable parameters, the optimization of which results in an FNLP problem. The FNLP problem can be converted into an
equivalent nonlinear programming (NLP) problem to be solved.The performance of the proposedmethodology has been evaluated
with a series of production simulation experiments; these experiments provide sufficient evidence to support the advantages of the
proposed method over some existing scheduling methods.

1. Introduction

In complex manufacturing systems, such as wafer fabrication
factories, job scheduling is subject to many sources of uncer-
tainty or randomness [1]. Such uncertainty or randomness
is partly due to manual operations, including the loading
and unloading of jobs, the setup or repair of machines, and
visual inspections. The other two sources of uncertainty,
the unexpected releases of emergency orders and machine
breakdowns, are beyond the control of a wafer fabrication
factory. The literature provides probabilistic (stochastic) and
fuzzy methods that can consider uncertainty or randomness.
However, it is difficult to identify the probability distribution
of each parameter, which means that a probabilistic (stochas-
tic) method is not easy to use. In addition, fuzzy methods are
advantageous because subjective factors can be considered,
such as human interpretations of the scheduling performance

and the tradeoffs of different scheduling objectives. For
example, a job 3months late and a job 3 days late are both late.
However, the first job is difficult to accept, while the second is
still acceptable. In other words, there are different degrees of
acceptance, even if both jobs have been delayed. Second, to
one scheduler, one objective may be much more important
than the other, but to another scheduler, the two objectives
may be equally important. The concepts of “acceptability”
and “relative importance” can both be suitably modeled by a
fuzzymethod. For example,Murata et al. [2] used trapezoidal
fuzzy numbers (TrFNs) to represent the satisfaction levels of
due dates. In the literature, due dates, processing times, and
precedence relations have been fuzzified [2–4].

Many existing fuzzy scheduling methods take the form of
fuzzy inference rules, such as “if the release time is early and
the number of operations is large, then the job priority is high”
[5, 6]. A fuzzy scheduling system usually uses a number of
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fuzzy inference rules and can be divided into two types:Mam-
dani [7] and Takagi-Sugeno-Kang (TSK). For example, Xiong
et al. [5] scheduled a flexible manufacturing system (FMS)
using two fuzzy dispatching rules of the TSK type. Murata
et al. [2] used six fuzzy rules to move jobs between different
priority classes. Lee et al. [8] established two fuzzy inference
rules to select a combination of some existing dispatching
rules for scheduling a flexible manufacturing system. Tan
and Tang [9] applied Taguchi’s design of experiment (DOE)
techniques to improve the design of some fuzzy dispatching
rules for a test facility. In Benincasa et al. [6], up to 27 fuzzy
inference rules (each with three inputs and one output) were
established to schedule automated guided vehicles. Dong
and Liu [3] built an adaptive neurofuzzy inference system
(ANFIS) to schedule a job shop. For any two jobs, the inputs
to the ANFIS were the differences between the two jobs,
and the output from the ANFIS determined the sequence of
the two jobs. If the output was greater than zero, then the
first job was to be processed before the second job. Murata
et al. [2] considered a job shop with 10 machines and jobs
with different priorities. A fuzzy linear programming (FLP)
problem was solved to optimize the total reward. However,
the fuzziness came from the satisfaction level of the due
date rather than from the parameters. A good review of
the literature on fuzzy scheduling methods can be found in
Dubois et al. [10].

On the other hand, a scheduling problem can be formu-
lated as a mathematical programming problem. For example,
Biggs and Laughton [11] optimized a nonlinear programming
(NLP) model for electric power scheduling. A recursive
quadratic programming approach was proposed to solve the
NLP problem. In Pedro [12], the 𝐹

𝑚
|𝑝𝑟𝑚𝑢|𝐶max problem was

formulated as a mixed integer programming (MIP) model.
The optimal solution of the mathematical programming
problem gives the optimal schedule for the manufacturing
system.However, sometimes themathematical programming
problem is not easy to solve, and some soft computing meth-
ods can be applied to search for the optimal solution of the
mathematical programming problem [13–15]. For example,
Chiang and Fu [16] minimized the number of tardy jobs for a
job shop in which machines have sequence-dependent setup
times. An NLP problem with a linear objective function and
some quadratic constraints was solved by the application of
a genetic algorithm (GA). Ishibuchi and Murata [13] applied
a similar approach for multiobjective flow shop scheduling.
In the NLP model of Connors et al. [17], the inventory level
was estimatedwith a nonlinear equation and then the holding
costs were minimized. Chen and Yao applied a deterministic
fluid network [18] in order to find an optimal solution. Both
Murata et al. [2] and Ishibuchi et al. [19] built FLP models
to solve scheduling problems and maximized the satisfaction
levels of the due dates. Murata et al. applied GA to solve
the FLP problem. For the same purpose, Ishibuchi et al. [19]
applied a hybrid GA with neighborhood search. Xia and
Wu [15] combined particle swarm optimization (PSO) and
simulated annealing (SA) for flexible job shop scheduling.

A summary of existing fuzzy scheduling methods is
shown in Table 1. The existing approaches have the following
problems.

Table 1: Some fuzzy scheduling methods.

References Fuzziness Model Soft computing
method

Xiong et al. [5] Fuzzy rule MIP TSK
Lee et al. [8] Fuzzy rule MIP single-rule-based
Benincasa et al. [6] Fuzzy rule MIP Mamdani

Ishibuchi et al. [19] Fuzzified
objective FLP Hybrid GA

Tan and Tang [9] Fuzzy rule MIP Mamdani

Murata et al. [2] Fuzzified
objective FLP GA

Dong and Liu [3] Fuzzy rule MIP ANFIS

(1) Dubois et al. [10] distinguished two categories of
fuzzy scheduling methods: methods that represent
preference profiles and methods that model uncer-
tainty distributions. However, inmost studies that use
fuzzy methods, the fuzziness comes from the fuzzi-
fication of the scheduling objective (which belongs
to the first category) or from the fuzzy rules that
are subjectively chosen by the scheduler rather than
from fuzzy parameters (which belong to the second
category). In other words, processing time, due date,
and precedence relations are all free from uncertainty
in these studies.

(2) Although anNLP problem is not easy to solve, the soft
computing method applied to solve the NLP problem
may also pose a considerable challenge.

(3) The combination of NLP with fuzziness results in
a FNLP approach that considers the uncertainty of
parameters and does not need to make simplifying
assumptions, and therefore has the potential to solve
realistic scheduling problems effectively. However,
very few studies applied FNLPmethods.Most of them
are used for scheduling small manufacturing systems
[20].

To tackle these problems, an FNLP approach is pro-
posed in this study to optimize the performance of a job
dispatching rule in awafer fabrication factory. In otherwords,
this study is not going to optimize the performance of a
schedule for a wafer fabrication factory, which is known to
be an NP-hard problem but to optimize the performance
of a dispatching rule in a wafer fabrication factory. The
use of some special types of fuzzy numbers establishes the
corresponding subcategories for these FNLP models, such as
the type-2 FNLP (with type-2 fuzzy numbers), the interval-
valued FNLP (with interval fuzzy numbers), the intuitionistic
FNLP (with intuitionistic fuzzy numbers), and the interval-
valued intuitionistic FNLP [21], which has been of interest to
researchers in recent years. Fares and Kaminska [22] solved
two multiple-objective FNLP problems to find the optimal
sets of circuit parameter values for a bipolar emitter follower
circuit and an unbuffered two-stage complementary metal-
oxide semiconductor (CMOS) op-amp. Chen and Wang
[23] defined the yield competitiveness of a semiconductor
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product, which is uncertain and can be enhanced by allo-
cating more capacity to the product; this functions in a
nonlinear way. They therefore constructed an FNLP model
to optimize the effects of capacity reallocation on the yield
competitiveness of a semiconductor product, which was then
converted to an NLP problem to be solved.

In the proposed methodology, the fuzziness comes from
the uncertainty of the remaining cycle time, that is, the time
still needed to complete a job; this time is highly uncertain
[24]. In the proposed methodology, the remaining cycle time
of a job is estimated with a triangular fuzzy number (TFN).
There are various types of fuzzy numbers with different
shapes. Among them, a TFN is easily implemented and
has been used for numerous applications (e.g., [23–25]).
Subsequently, the remaining cycle time estimate is fed into
a four-factor fluctuation smoothing rule [25] to sequence
the jobs in front of a machine. The four-factor fluctuation
smoothing rule is fuzzified in this way, and the slack of
a job is also expressed by a TFN. The fuzzy fluctuation-
smoothing dispatching rule has five adjustable parameters,
the optimization of which constitutes an FNLP problem. To
convert the FNLP problem into a more tractable form, 𝛼-cut
operations are also applied.

Theunique features of the proposedmethodology include
the following.

(1) Combining fuzziness and NLP: scheduling decisions
represented in terms of fuzzy sets are flexible in their
implementations. NLP relaxes the strict assumptions
and constraints of linear programming (LP) and is
highly practicable.

(2) Considering the uncertainty in the remaining cycle
time: dispatching rules that consider dynamic infor-
mation, such as the remaining cycle time, are more
effective for highly complex manufacturing systems
[26]. To this end, an effective fuzzy back propagation
network (FBPN) approach is applied.

(3) Establishing a fuzzy dispatching rule directly from the
existing rules: a fuzzy dispatching rule is deduced by
fuzzifying the four-objective fluctuation-smoothing
dispatching rule [25] and diversifying the slack. This
rule accepts the fuzzy remaining cycle time as an input
and uses a fuzzy value to represent the slack of each
job.

(4) Diversifying the slack by solving an FNLP model: the
emergence of ties may lead to incorrect scheduling
results. In the proposed methodology, to reduce the
number of ties, the slacks of jobs are diversified by
maximizing the standard deviation [27], which leads
to a FNLP problem. The FNLP problem is not easy
to solve; therefore, this study applies 𝛼-cut operations
[28].

(5) Optimizing four objectives simultaneously: the pro-
posed fuzzy rule fuses four dispatching rules in a
nonlinear way. In contrast, most existing methods
optimize the weighted sum of multiple objectives
(e.g., [13, 15]).

Fuzzify the four-objective 
fluctuation-smoothing rule

Diversify the slack with a FNLP 
model

the FNLP

Use the fuzzy four-factor  
fluctuation smoothing rule to  

sequence jobs

Estimate the remaining cycle time 
using the effective FBPN 

approach

Feed the remaining cycle time 
estimate to the fuzzy four-factor  

fluctuation smoothing rule 

Apply 𝛼-operations to help solve

Figure 1: The flowchart of the proposed methodology.

The rest of this paper is organized as follows. Section 2
is divided into four parts: 𝛼-cut operations, effective FBPN,
fuzzified dispatching, and FNLP. First, the concepts of 𝛼 cuts
and 𝛼-cut operations are introduced. The next part explains
the effective FBPN approach that estimates the remaining
cycle time of a job with a fuzzy number. The next part shows
that the four-objective fluctuation smoothing rule is fuzzified
so that it can accept the remaining cycle time estimate as
an input. The final part of Section 2 explains the role of
the FNLP. To obtain the best values of the parameters in
the fuzzy four-objective fluctuation smoothing rule, and to
diversify the slack, an FNLPmodel is built. To solve the FNLP
problem, 𝛼-cut operations are applied. Section 3 details how
a series of production simulation experiments are carried out
to assess the advantages and disadvantages of the proposed
methodology. Finally, the conclusions of this study are made
in Section 4.

2. Methodology

The flow chart of Figure 1 illustrates the steps of the proposed
methodology.

Subsequently, the variables and parameters that will be
used in the proposed methodology are defined as follows.

(1) CT
𝑗
: the cycle time of job 𝑗.

(2) C̃TE
𝑗
: the estimated cycle time of job 𝑗; C̃TE

𝑗
=

(CTE
𝑗1
,CTE

𝑗2
,CTE

𝑗3
).

(3) DD
𝑗
: the due date of job 𝑗.
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(4) 𝑅
𝑗
: the release time of job 𝑗; 𝑗 = 1 ∼ 𝑛.

(5) RCT
𝑗𝑢
: the remaining cycle time of job 𝑗 from step 𝑢.

(6) R̃CTE
𝑗𝑢
: the estimated remaining cycle time of job

𝑗 from step 𝑢; R̃CTE
𝑗𝑢

= (RCTE
𝑗𝑢1

,RCTE
𝑗𝑢2

,

RCTE
𝑗𝑢3

).

(7) RPT
𝑗𝑢
: the remaining processing time of job 𝑗 from

step 𝑢.

(8) SCT
𝑗𝑢
: the step cycle time of job 𝑗 until step 𝑢.

(9) SK
𝑗𝑢
or S̃K
𝑗𝑢
: the slack of job 𝑗 at step 𝑢.

(10) 𝑡: the current time.

(11) TPT
𝑗
: the total processing time of job 𝑗.

(12) 𝜆: mean release rate.

(13) 𝑥
𝑗𝑝
: the inputs to the three-layer BPN of job 𝑗, 𝑝 =

1 ∼ 𝑃.

(14) ℎ
𝑙
: the output from hidden-layer node 𝑙, 𝑙 = 1 ∼ 𝐿.

(15) 𝑤
𝑜

𝑙
: the connection weight between hidden-layer

node 𝑙 and the output node.

(16) 𝑤
ℎ

𝑝𝑙
: the connection weight between input node 𝑝 and

hidden-layer node 𝑙, 𝑃 = 1 ∼ 𝑃; 𝑙 = 1 ∼ 𝐿.

(17) 𝜃
ℎ

𝑙
: the threshold on hidden-layer node 𝑙.

(18) 𝜃
𝑜: the threshold on the output node; 𝜃𝑜 = (𝜃

𝑜

1
, 𝜃
𝑜

2
, 𝜃
𝑜

3
).

All fuzzy parameters in the proposed methodology are given
in TFNs

2.1. 𝛼 Cuts and 𝛼-Cut Operations. The 𝛼-cut operations are
applied to solve the FNLP problem. For this reason, the
concepts of 𝛼 cuts and 𝛼-cut operations are introduced as
follows.

Definition 1 (𝛼 cuts). 𝐴 is a fuzzy number. The 𝛼 cut of 𝐴 is
an interval number given by

𝐴 (𝛼) = {𝑥 | 𝑥 ∈ 𝑅, 𝜇̃
𝐴
(𝑥) ≥ 𝛼} = [𝐴

𝐿
(𝛼) , 𝐴

𝑅
(𝛼)] . (1)

Definition 2 (arithmetic of fuzzy numbers based on 𝛼-cut
operations). Given two fuzzy numbers 𝐴 and 𝐵, and their

𝛼 cuts 𝐴(𝛼) and 𝐵(𝛼), the arithmetic operations of 𝐴 and 𝐵

based on their 𝛼 cuts are as follows:

𝐴 (𝛼) (+) 𝐵 (𝛼)

= [𝐴
𝐿
(𝛼) , 𝐴

𝑅
(𝛼)] (+) [𝐵

𝐿
(𝛼) , 𝐵

𝑅
(𝛼)]

= [𝐴
𝐿
(𝛼) + 𝐵

𝐿
(𝛼) , 𝐴

𝑅
(𝛼) + 𝐵

𝑅
(𝛼)] ,

(2)

𝐴 (𝛼) (−) 𝐵 (𝛼)

= [𝐴
𝐿
(𝛼) , 𝐴

𝑅
(𝛼)] (−) [𝐵

𝐿
(𝛼) , 𝐵

𝑅
(𝛼)]

= [𝐴
𝐿
(𝛼) − 𝐵

𝑅
(𝛼) , 𝐴

𝑅
(𝛼) − 𝐵

𝐿
(𝛼)] ,

(3)

𝐴 (𝛼) (×) 𝐵 (𝛼)

= [𝐴
𝐿
(𝛼) , 𝐴

𝑅
(𝛼)] (×) [𝐵

𝐿
(𝛼) , 𝐵

𝑅
(𝛼)]

= [min (𝐴
𝐿
(𝛼) 𝐵
𝐿
(𝛼) , 𝐴

𝐿
(𝛼) 𝐵
𝑅
(𝛼) ,

𝐴
𝑅
(𝛼) 𝐵
𝐿
(𝛼) , 𝐴

𝑅
(𝛼) 𝐵
𝑅
(𝛼)) ,

max (𝐴
𝐿
(𝛼) 𝐵
𝐿
(𝛼) , 𝐴

𝐿
(𝛼) 𝐵
𝑅
(𝛼) ,

𝐴
𝑅
(𝛼) 𝐵
𝐿
(𝛼) , 𝐴

𝑅
(𝛼) 𝐵
𝑅
(𝛼))] ,

(4)

𝑘𝐴 (𝛼) = [𝑘𝐴
𝐿
(𝛼) , 𝑘𝐴

𝑅
(𝛼)] , 𝑘 ≥ 0, (5)

𝐴
2

(𝛼) =

{{

{{

{

[0,max (𝐴
2

𝐿
(𝛼) , 𝐴

2

𝑅
(𝛼))] , If 𝐴

𝐿
≤ 0 ≤ 𝐴

𝑅
,

[min (𝐴
2

𝐿
(𝛼) , 𝐴

2

𝑅
(𝛼)) ,

max (𝐴
2

𝐿
(𝛼) , 𝐴

2

𝑅
(𝛼))] , otherwise.

(6)

𝐴 (𝛼) (/) 𝐵 (𝛼)

= [𝐴
𝐿
(𝛼) , 𝐴

𝑅
(𝛼)] (/) [𝐵

𝐿
(𝛼) , 𝐵

𝑅
(𝛼)]

= [
𝐴
𝐿
(𝛼)

𝐵
𝑅
(𝛼)

,
𝐴
𝑅
(𝛼)

𝐵
𝐿
(𝛼)

]

𝐴
𝐿
(𝛼) ≥ 0, 𝐵

𝐿
(𝛼) > 0,

(7)

where (+), (−), (×), and (/) denote fuzzy addition, subtrac-
tion, multiplication, and division, respectively. Equation (5)
is equivalent to

𝐴
2

(𝛼) = [max (𝐴
𝐿
(𝛼) 𝐴
𝑅
(𝛼) , 0)

⋅ min(
𝐴
𝐿
(𝛼)

𝐴
𝑅
(𝛼)

,
𝐴
𝑅
(𝛼)

𝐴
𝐿
(𝛼)

) ,

max (𝐴
2

𝐿
(𝛼) , 𝐴

2

𝑅
(𝛼))]

(8)

if 𝐴
𝐿
(𝛼), 𝐴

𝑅
(𝛼) ̸= 0. The min( ) and max( ) function can be

replaced by

𝑥 = min (𝑎, 𝑏) ⇐⇒ 𝑥 ≤ 𝑎; 𝑥 ≤ 𝑏; (𝑥 − 𝑎) (𝑥 − 𝑏) = 0,

𝑥 = max (𝑎, 𝑏) ⇐⇒ 𝑥 ≥ 𝑎; 𝑥 ≥ 𝑏; (𝑥 − 𝑎) (𝑥 − 𝑏) = 0.

(9)
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Theorem 3 (average of fuzzy numbers based on 𝛼 cuts).
Given 𝑛 fuzzy numbers 𝐴

𝑗
= [𝐴
𝑗𝐿
(𝛼), 𝐴

𝑗𝑅
(𝛼)], 𝑗 = 1 ∼ 𝑛,

the average of these fuzzy numbers can be derived as

𝐴 (𝛼) = [𝐴
𝐿
(𝛼) , 𝐴

𝑅
(𝛼)] = [

∑
𝑛

𝑗=1
𝐴
𝑗𝐿

(𝛼)

𝑛
,

∑
𝑛

𝑗=1
𝐴
𝑗𝑅

(𝛼)

𝑛
] .

(10)

Proof. Theorem 3 can be directly derived from (2) and (5).

2.2. The Effective FBPN Approach for Estimating the Remain-
ing Cycle Time. Before any job is scheduled, the remaining
cycle time of each job needs to be estimated. In this work, the
effective FBPN approach is applied and the remaining cycle
time is estimated with a fuzzy value.

In the effective FBPN approach, jobs are classified into 𝐾

categories using fuzzy c-means (FCM). First, in order to facil-
itate the subsequent calculations and problem solving, all raw
data are normalized [29]. Then, we place the (normalized)
attributes of job𝑗 in vector x

𝑗
= [𝑥
𝑗𝑝
].

FCM classifies jobs byminimizing the following objective
function:

Min
𝐾

∑

𝑘=1

𝑛

∑

𝑗=1

𝜇
𝑚

𝑗(𝑘)
𝑒
2

𝑗(𝑘)
, (11)

where𝐾 is the required number of categories; 𝑛 is the number
of jobs; 𝜇

𝑗(𝑘)
indicates that job 𝑗 belongs to category 𝑘; 𝑒

𝑗(𝑘)

measures the distance from job 𝑗 to the centroid of category
𝑘; 𝑚 ∈ [1,∞) is a parameter to adjust the fuzziness and is
usually set to 2. The procedure of FCM is as follows

(1) Produce a preliminary clustering result: the perfor-
mance of FCM is sensitive to the initial conditions.

(2) (Iterations) calculate the centroid of each category as

𝑥
(𝑘)

= {𝑥
(𝑘)𝑝

} ; 𝑝 = 1 ∼ 𝑃,

𝑥
(𝑘)𝑝

=

∑
𝑛

𝑗=1
𝜇
𝑚

𝑗(𝑘)
𝑥
𝑗𝑝

∑
𝑛

𝑗=1
𝜇
𝑚

𝑗(𝑘)

,

𝜇
𝑗(𝑘)

=
1

∑
𝐾

𝑞=1
(𝑒
𝑗(𝑘)

/𝑒
𝑗(𝑞)

)
2/(𝑚−1)

,

𝑒
𝑗(𝑘)

= √∑

all 𝑝
(𝑥
𝑗𝑝

− 𝑥
(𝑘)𝑝

)
2

,

(12)

where 𝑥
(𝑘)

is the centroid of category 𝑘. 𝜇(𝑡)
𝑗(𝑘)

is the
membership function that indicates job 𝑖 belongs to
category 𝑘 after the 𝑡th iteration.

(3) Remeasure the distance from each job to the centroid
of each category, and then recalculate the correspond-
ing membership.

(4) Stop if the following condition is met. Otherwise,
return to step (2):

max
𝑘

max
𝑗


𝜇
(𝑡)

𝑗(𝑘)
− 𝜇
(𝑡−1)

𝑗(𝑘)


< 𝑑, (13)

where 𝑑 is a real number representing the threshold
for the convergence of membership.

Finally, the separate distance test (𝑆 test) proposed by
Xie and Beni [30] can be applied to determine the optimal
number of categories 𝐾:

Min 𝑆

subject to 𝐽
𝑚

=

𝐾

∑

𝑘=1

𝑛

∑

𝑗=1

𝜇
𝑚

𝑗(𝑘)
𝑒
2

𝑗(𝑘)

𝑒
2

min = min
𝑘1 ̸= 𝑘2

(∑

all𝑝
(𝑥
(𝑘1)𝑝

− 𝑥
(𝑘2)𝑝

)
2

)

𝑆 =
𝐽
𝑚

𝑛 × 𝑒
2

min

𝐾 ∈ 𝑍
+

.

(14)

The𝐾 value thatminimizes 𝑆 determines the optimal number
of categories.

After clustering, a three-layer FBPN is used to estimate
the cycle times of jobs for each category. The configuration
of the three-layer FBPN is as follows. First, the inputs are
the 𝑃 parameters associated with the 𝑗th job. Subsequently,
there is only a single hidden layer; the hidden layer has
twice as many neurons as the input layer. In addition, Chen
and Wang [31] and Chen and Lin [32] have described how
an NLP model can be constructed to adjust the connection
weights and thresholds in an FBPN; this problem is not easy
to solve. In the proposed methodology, only the threshold
on the output node (𝜃𝑜) will be adjusted. This way is much
simpler and can also achieve good results. In other words,
only 𝜃

𝑜 is fuzzy, while the other parameters are crisp. In this
way, the fuzzy remaining cycle time estimate is generated
with minimal effort. This makes the FBPN approach an
effective one. The output from the three-layer FBPN is the
(normalized) estimated remaining cycle time (𝑁(R̃CTE

𝑗𝑢
))

of the training examples, where 𝑁( ) is the normalization
function.

The procedure for determining the parameter values
is now described. First, to determine the value of each
parameter and 𝜃

𝑜

2
, the FBPN is treated as a crisp network.

Some algorithms are applicable for this purpose, such as
gradient descent algorithms, conjugate gradient algorithms,
the Levenberg-Marquardt algorithm, and others. In this
study, the Levenberg-Marquardt algorithm is applied. The
Levenberg-Marquardt algorithm was designed for training
with second-order speed without having to compute theHes-
sian matrix. It uses approximation and updates the network
parameters in a Newton-like way [33].

Subsequently, 𝜃𝑜
3
is to be determined, so that the actual

value will be less than the upper bound of the network output.
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Figure 2: The estimation results by the effective FBPN approach.

Assume that the adjustment made to the threshold on the
output node is denoted as Δ𝜃

𝑜

= 𝜃
𝑜

3
− 𝜃
𝑜

2
. The optimal value

of Δ𝜃
𝑜 should be set as follows:

Δ𝜃
𝑜∗

= min
𝑗

(ln(
1

𝑁(RCT
𝑗𝑢
)

− 1) − ln(
1

𝑜
𝑗2

− 1)) .

(15)

In a similar way, 𝜃𝑜
1
can be determined so that each actual

value will be greater than the appropriate lower bound. The
optimal value of Δ𝜃

𝑜 can be obtained as:

Δ𝜃
𝑜∗

= max
𝑗

(ln(
1

𝑁(RCT
𝑗𝑢
)

− 1) − ln(
1

𝑜
𝑗2

− 1)) .

(16)

This FBPN approach can generate a very precise interval
of the remaining cycle time for each job, thereby reducing
the risk of misscheduling. An instance has been analyzed
in Figure 2 to evaluate the performance of this method. To
provide a comparison, a statistical analysis method is also
applied to this instance, in which the relationship between
the remaining cycle time and job attributes is fitted with
a multiple regression equation. The results are shown in
Figure 3. Compared with the effective FBPN approach, the
statistical analysis method is not only inaccurate but also not
precise enough. The remaining cycle time estimated by the
statistical analysis method is therefore prone to errors, which
may result in incorrect scheduling.

2.3. The Fuzzy Four-Objective Dispatching Rule. Lu et al. [26]
proposed two fluctuation smoothing rules—the fluctuation
smoothing policy for mean cycle time (FSMCT) and the
fluctuation smoothing policy for variation of cycle time
(FSVCT). FSMCT is aimed at minimizing the mean cycle
time, while FSVCT is aimed at minimizing the variance of
cycle time:
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Figure 3:The estimation results by the statistical analysis approach.

(FSMCT)

SK
𝑗𝑢

(FSMCT) =
𝑗

𝜆
− RCTE

𝑗𝑢
, (17)

(FSVCT)

SK
𝑗𝑢

(FSVCT) = 𝑅
𝑗
− RCTE

𝑗𝑢
. (18)

Jobs with the smallest slack values are given the highest
priorities.

If the remaining cycle time is estimated with a TFN, then
we have two fuzzy fluctuation smoothing rules as

(fuzzy FSMCT)

S̃K
𝑗𝑢

(FSMCT) =
𝑗

𝜆
− R̃CTE

𝑗𝑢
, (19)

(fuzzy FSVCT)

S̃K
𝑗𝑢

(FSVCT) = 𝑅
𝑗
− R̃CTE

𝑗𝑢
. (20)

To determine the sequence of jobs, the fuzzy slacks
must be compared. To this end, various methods have been
proposed in the literature, such as a method based on the
probability measure [34], a coefficient of variance (CV) index
[35], a method that uses the area between the centroid point
and the original point [36], and a method based on the
fuzzy mean and standard deviation [37]. For a comparison
of these methods, refer to Zhu and Xu [37]. In this study, the
method based on the fuzzy mean and standard deviation is
applied because it is relatively simple and can yield reasonable
comparison results. To put this in context, the following
theorem is introduced.
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Table 2: An example (𝜆 = 1.18).

Number 𝑅
𝑗

𝑗 R̃CTE
𝑗𝑢

S̃K
𝑗𝑢
(FFSMCT) S̃K

𝑗𝑢
(FFSVCT)

1 102 159 (1200, 1399, 1458) (−1324, −1265, −1066) (−1357, −1297, −1099)
2 756 37 (976, 1127, 1176) (−1145, −1096, −945) (−421, −371, −221)
3 826 37 (1086, 1223, 1299) (−1269, −1192, −1055) (−474, −397, −261)
4 652 86 (1618, 1822, 1976) (−1904, −1750, −1546) (−1325, −1170, −967)
5 208 55 (455, 530, 557) (−511, −484, −410) (−350, −322, −248)
6 783 84 (1742, 2040, 2158) (−2088, −1969, −1671) (−1376, −1257, −960)
7 800 96 (2039, 2366, 2549) (−2468, −2285, −1959) (−1750, −1566, −1240)
8 478 52 (848, 942, 992) (−949, −898, −805) (−515, −464, −371)
9 469 65 (992, 1116, 1176) (−1122, −1061, −938) (−708, −647, −524)
10 699 32 (853, 995, 1031) (−1005, −968, −827) (−333, −296, −155)
11 836 85 (1830, 2151, 2311) (−2240, −2079, −1759) (−1476, −1315, −995)
12 497 45 (794, 883, 918) (−881, −845, −757) (−422, −386, −298)
13 596 101 (1700, 2047, 2170) (−2086, −1962, −1615) (−1575, −1451, −1105)
14 798 34 (975, 1146, 1256) (−1228, −1118, −948) (−459, −348, −178)
15 197 79 (659, 743, 800) (−734, −677, −593) (−604, −546, −463)
16 804 85 (1819, 2092, 2318) (−2247, −2020, −1748) (−1515, −1288, −1016)
17 163 78 (560, 647, 708) (−643, −581, −495) (−546, −484, −398)
18 457 44 (685, 810, 839) (−803, −773, −649) (−383, −353, −229)
19 523 100 (1547, 1851, 2042) (−1958, −1767, −1463) (−1520, −1328, −1025)

Theorem 4. The fuzzy mean and standard deviation of a
triangular fuzzy number𝐴 = (𝑥

0
−𝑎, 𝑥
0
, 𝑥
0
+𝑏) can be derived

as

𝜇̃
𝐴

= 𝑥
0
+

𝑏 − 𝑎

3
,

𝜎̃
𝐴

= √
𝑎
2

+ 𝑎𝑏 + 𝑏
2

18
.

(21)

Proof. Refer to Zhu and Xu [37]. It is, in fact, the center-of-
gravity (COG) method.

The following definition details a method based on the
fuzzy mean and standard deviation.

Definition 5. For any two fuzzy numbers𝐴 and 𝐵 ∈ 𝐹(𝑅), the
sequence of 𝐴 and 𝐵 can be determined according to their
fuzzy means and standard deviations as follows.

(1) 𝜇̃
𝐴

> 𝜇
𝐵
if and only if 𝐴 ≻ 𝐵.

(2) 𝜇̃
𝐴

< 𝜇
𝐵
if and only if 𝐴 ≺ 𝐵.

(3) If 𝜇̃
𝐴

= 𝜇
𝐵
, then

(i) 𝜎̃
𝐴

> 𝜎
𝐵
if and only if 𝐴 ≺ 𝐵.

(ii) 𝜎̃
𝐴

< 𝜎
𝐵
if and only if 𝐴 ≻ 𝐵.

(iii) 𝜎̃
𝐴

= 𝜎
𝐵
if and only if 𝐴 = 𝐵.

Consider the example in Table 2. The sequencing results
by the two fuzzified rules are

Fuzzy FSMCT: 7 → 11 → 16 → 6 → 13 → 4 →

19 → 1 → 3 → 14 → 2 → 9 → 10 → 8 → 12 →

18 → 15 → 17 → 5.

Fuzzy FSVCT: 7 → 13 → 19 → 16 → 11 → 1 →

6 → 4 → 9 → 15 → 17 → 8 → 3 → 12 → 2 →

14 → 18 → 5 → 10.

Chen [25] combined four traditional dispatching rules—
EDD, critical ratio (CR), the fluctuation smoothing policy for
mean cycle time (FSMCT)—and the fluctuation smoothing
policy for variation of cycle time (FSVCT), and proposed
the four-objective dispatching rule. In the four-objective
dispatching rule, the slack of job 𝑗 at processing step 𝑢 is
defined as

SK
𝑗𝑢

= (
𝑗 − 1

𝑛 − 1
)

𝛼

⋅ (

RPT
𝑗𝑢

− min
𝑗
RPT
𝑗𝑢

max
𝑗
RPT
𝑗𝑢

− min
𝑗
RPT
𝑗𝑢

)

𝛽

⋅ (

𝑅
𝑗
− min

𝑗
𝑅
𝑗

max
𝑗
𝑅
𝑗
− min

𝑗
𝑅
𝑗

)

𝛾

⋅ (

RCTE
𝑗𝑢

− min
𝑗
RCTE

𝑗𝑢

max
𝑗
RCTE

𝑗𝑢
− min

𝑗
RCTE

𝑗𝑢

)

𝜂

⋅ (

SCT
𝑗𝑢

− min
𝑗
SCT
𝑗𝑢

max
𝑗
SCT
𝑗𝑢

− min
𝑗
SCT
𝑗𝑢

)

𝜗

,

(22)

where 𝛼, 𝛽, 𝛾, and 𝜂 and are positive real numbers that satisfy
the following constraints:

If 𝛼 = 1 then 𝛽, 𝛾, 𝜗 = 0; 𝜂 = −1, and vice versa,

If 𝛽 = 1 then 𝛼 = 0; 𝛾, 𝜂, 𝜗 = −1, and vice versa,

If 𝜂 = 1 then 𝛼, 𝛽 = 0; 𝛾, 𝜗 = 1, and vice versa.
(23)
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Jobs with the smallest slack values will be given the highest
priorities. There are many possible models that can form the
combinations of 𝛼, 𝛽, 𝛾, 𝜂, and 𝜗. For example,

(Linear model) 𝛼 = 1 − 2𝛽 − 𝛾; 𝛾 = 𝜗 = 𝜂 + 𝛼,

(Nonlinear model) 𝛼 = (1 − 2𝛽 − 𝛾)
𝑢

, 𝑢 ∈ 𝑍
+

;

𝛾 = 𝜗 = (𝜂 + 𝛼)
V
, V = 1, 3, 5, . . . ,

(Logarithmic model 1) 𝛼 =
ln (2 − 2𝛽 − 𝛾)

ln 2
;

𝛾 = 𝜗 =
ln (1.5𝜂 + 𝛼 + 2.5)

ln 2
− 1.

(24)

The values of 𝛼 and 𝛽 are within [0 1].
If the remaining cycle time is estimated with a triangular

fuzzy number, then (22) becomes

S̃K
𝑗𝑢

= (
𝑗 − 1

𝑛 − 1
)

𝛼

⋅ (

RPT
𝑗𝑢

− min
𝑗
RPT
𝑗𝑢

max
𝑗
RPT
𝑗𝑢

− min
𝑗
RPT
𝑗𝑢

)

𝛽

⋅ (

𝑅
𝑗
− min

𝑗
𝑅
𝑗

max
𝑗
𝑅
𝑗
− min

𝑗
𝑅
𝑗

)

𝛾

⋅ (

R̃CTE
𝑗𝑢

− min
𝑗
R̃CTE

𝑗𝑢

max
𝑗
R̃CTE

𝑗𝑢
− min

𝑗
R̃CTE

𝑗𝑢

)

𝜂

⋅ (

SCT
𝑗𝑢

− min
𝑗
SCT
𝑗𝑢

max
𝑗
SCT
𝑗𝑢

− min
𝑗
SCT
𝑗𝑢

)

𝜗

.

(25)

Job 𝑗 is processed before job 𝑘 if S̃K
𝑗𝑢

< S̃K
𝑘𝑢
. In Wang et al.

[27], to diversify the slack, the standard deviation of the slack
was maximized:

𝜎SK𝑗𝑢 =
√

∑
𝑛

𝑗=1
(SK
𝑗𝑢

− SK
𝑢
)
2

𝑛 − 1
.

(26)

When the job slack is a fuzzy value,

𝜎S̃K𝑗𝑢 =
√

∑
𝑛

𝑗=1
(S̃K
𝑗𝑢

− S̃K
𝑢
)

2

𝑛 − 1
.

(27)

Maximizing 𝜎S̃K𝑗𝑢 is equivalent to maximizing

∑
𝑛

𝑗=1
(S̃K
𝑗𝑢

− S̃K
𝑢
)

2

. Finally, the following FNLP problem is
to be solved:

Max 𝑍
1
=

𝑛

∑

𝑗=1

(𝑆𝐾
𝑗𝑢

− S̃K
𝑢
)

2

subject to S̃K
𝑗𝑢

= (
𝑗 − 1

𝑛 − 1
)

𝛼

⋅ (

RPT
𝑗𝑢

− min
𝑗
RPT
𝑗𝑢

max
𝑗
RPT
𝑗𝑢

− min
𝑗
RPT
𝑗𝑢

)

𝛽

⋅ (

𝑅
𝑗
− min

𝑗
𝑅
𝑗

max
𝑗
𝑅
𝑗
− min

𝑗
𝑅
𝑗

)

𝛾

⋅ (

R̃CTE
𝑗𝑢

− min
𝑗
R̃CTE

𝑗𝑢

max
𝑗
R̃CTE

𝑗𝑢
− min

𝑗
R̃CTE

𝑗𝑢

)

𝜂

⋅ (

SCT
𝑗𝑢

− min
𝑗
SCT
𝑗𝑢

max
𝑗
SCT
𝑗𝑢

− min
𝑗
SCT
𝑗𝑢

)

𝜗

𝑗 = 1 ∼ 𝑛

𝛼 = 1 − 2𝛽 − 𝛾; 𝛾 = 𝜗 = 𝜂 + 𝛼

(or) 𝛼 = (1 − 2𝛽 − 𝛾)
𝑢

, 𝑢 ∈ 𝑍
+

;

𝛾 = 𝜗 = (𝜂 + 𝛼)
V
, V = 1, 3, 5, . . .

(or) 𝛼 =
ln (2 − 2𝛽 − 𝛾)

ln 2
;

𝛾 = 𝜗 =
ln (1.5𝜂 + 𝛼 + 2.5)

ln 2
− 1

0 ≤ 𝛼, 𝛽 ≤ 1.

(28)

The proposed FNLP problem is intractable and may need to
be converted into an equivalent NLP problem to be solved.
First, (27) can be decomposed to

S̃K
𝑗𝑢

= (SK
𝑗𝑢1

, SK
𝑗𝑢2

, SK
𝑗𝑢3

) ,
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SK
𝑗𝑢1

= (
𝑗 − 1

𝑛 − 1
)

𝛼

⋅ (

RPT
𝑗𝑢

− min
𝑗
RPT
𝑗𝑢

max
𝑗
RPT
𝑗𝑢

− min
𝑗
RPT
𝑗𝑢

)

𝛽

,

⋅ (

𝑅
𝑗
− min

𝑗
𝑅
𝑗

max
𝑗
𝑅
𝑗
− min

𝑗
𝑅
𝑗

)

𝛾

⋅ (

RCTE
𝑗𝑢1

− min
𝑗
RCTE

𝑗𝑢1

max
𝑗
RCTE

𝑗𝑢3
− min

𝑗
RCTE

𝑗𝑢1

)

𝜂

⋅ (

SCT
𝑗𝑢

− min
𝑗
SCT
𝑗𝑢

max
𝑗
SCT
𝑗𝑢

− min
𝑗
SCT
𝑗𝑢

)

𝜗

,

SK
𝑗𝑢2

= (
𝑗 − 1

𝑛 − 1
)

𝛼

⋅ (

RPT
𝑗𝑢

− min
𝑗
RPT
𝑗𝑢

max
𝑗
RPT
𝑗𝑢

− min
𝑗
RPT
𝑗𝑢

)

𝛽

⋅ (

𝑅
𝑗
− min

𝑗
𝑅
𝑗

max
𝑗
𝑅
𝑗
− min

𝑗
𝑅
𝑗

)

𝛾

⋅ (

RCTE
𝑗𝑢2

− min
𝑗
RCTE

𝑗𝑢2

max
𝑗
RCTE

𝑗𝑢2
− min

𝑗
RCTE

𝑗𝑢2

)

𝜂

⋅ (

SCT
𝑗𝑢

− min
𝑗
SCT
𝑗𝑢

max
𝑗
SCT
𝑗𝑢

− min
𝑗
SCT
𝑗𝑢

)

𝜗

,

SK
𝑗𝑢3

= (
𝑗 − 1

𝑛 − 1
)

𝛼

⋅ (

RPT
𝑗𝑢

− min
𝑗
RPT
𝑗𝑢

max
𝑗
RPT
𝑗𝑢

− min
𝑗
RPT
𝑗𝑢

)

𝛽

⋅ (

𝑅
𝑗
− min

𝑗
𝑅
𝑗

max
𝑗
𝑅
𝑗
− min

𝑗
𝑅
𝑗

)

𝛾

⋅ (

RCTE
𝑗𝑢3

− min
𝑗
RCTE

𝑗𝑢1

max
𝑗
RCTE

𝑗𝑢3
− min

𝑗
RCTE

𝑗𝑢1

)

𝜂

⋅ (

SCT
𝑗𝑢

− min
𝑗
SCT
𝑗𝑢

max
𝑗
SCT
𝑗𝑢

− min
𝑗
SCT
𝑗𝑢

)

𝜗

.

(29)

The 𝛼-cut of 𝑆𝐾
𝑗𝑢
is

SK
𝑗𝑢

(𝛼) = [SK
𝑗𝑢𝐿

(𝛼) , SK
𝑗𝑢𝑅

(𝛼)]

= [SK
𝑗𝑢1

+ 𝛼 (SK
𝑗𝑢2

− SK
𝑗𝑢1

) ,

SK
𝑗𝑢3

+𝛼 (SK
𝑗𝑢2

− SK
𝑗𝑢3

)] .

(30)

Subsequently, the objective function is equal to

𝑍
1
=

𝑛

∑

𝑗=1

(S̃K
𝑗𝑢

− S̃K
𝑢
)

2

=

𝑛

∑

𝑗=1

(S̃K
𝑗𝑢

−
∑
𝑛

𝑘=1
S̃K
𝑘𝑢

𝑛
)

2

=
1

𝑛2

𝑛

∑

𝑗=1

((𝑛 − 1) S̃K
𝑗𝑢

−

𝑗−1

∑

𝑘=1

S̃K
𝑘𝑢

−

𝑛

∑

𝑘=𝑗+1

S̃K
𝑘𝑢

)

2

.

(31)

The 𝛼-cut of 𝑍
1
is

[𝑍
1𝐿

(𝛼) , 𝑍
1𝑅

(𝛼)]

=
1

𝑛2

𝑛

∑

𝑗=1

[

[

(𝑛 − 1) SK
𝑗𝑢𝐿

(𝛼) −

𝑗−1

∑

𝑘=1

SK
𝑘𝑢𝑅

(𝛼)

−

𝑛

∑

𝑘=𝑗+1

SK
𝑘𝑢𝑅

(𝛼) , (𝑛 − 1) SK
𝑗𝑢𝑅

(𝛼)

−

𝑗−1

∑

𝑘=1

SK
𝑘𝑢𝐿

(𝛼) −

𝑛

∑

𝑘=𝑗+1

SK
𝑘𝑢𝐿

(𝛼)]

]

2

.

(32)

Applying (8) to (32) gives

𝑍
1𝐿

(𝛼) =
1

𝑛2

𝑛

∑

𝑗=1

max (𝜉 (𝛼) 𝜁 (𝛼) , 0)

⋅ min(
𝜉 (𝛼)

𝜁 (𝛼)
,
𝜁 (𝛼)

𝜉 (𝛼)
) ,

(33)

𝑍
1𝑅

(𝛼) =
1

𝑛2

𝑛

∑

𝑗=1

max (𝜉
2

(𝛼) , 𝜁
2

(𝛼)) , (34)

where

𝜉 (𝛼) = (𝑛 − 1) SK
𝑗𝑢𝐿

(𝛼) −

𝑗−1

∑

𝑘=1

SK
𝑘𝑢𝑅

(𝛼)

−

𝑛

∑

𝑘=𝑗+1

SK
𝑘𝑢𝑅

(𝛼) ,

𝜁 (𝛼) = (𝑛 − 1) SK
𝑗𝑢𝑅

(𝛼) −

𝑗−1

∑

𝑘=1

SK
𝑘𝑢𝐿

(𝛼)

−

𝑛

∑

𝑘=𝑗+1

SK
𝑘𝑢𝐿

(𝛼) .

(35)
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Equation (33) is equivalent to

𝑍
1𝐿

(𝛼) =
1

𝑛2

𝑛

∑

𝑗=1

Ξ (𝛼) ⋅ Θ (𝛼) ,

Ξ (𝛼) ≥= 𝜉 (𝛼) 𝜁 (𝛼) ,

Ξ (𝛼) ≥= 0,

Ξ (𝛼) (Ξ (𝛼) − (𝛼) 𝜁 (𝛼)) = 0,

Θ (𝛼) ≤
𝜉 (𝛼)

𝜁 (𝛼)
,

Θ (𝛼) ≤
𝜁 (𝛼)

𝜉 (𝛼)
,

(Θ (𝛼) −
𝜁 (𝛼)

𝜉 (𝛼)
)(Θ (𝛼) −

𝜉 (𝛼)

𝜁 (𝛼)
) = 0.

(36)

Similarly, (34) can be replaced by

𝑍
1𝑅

(𝛼) =
1

𝑛2

𝑛

∑

𝑗=1

Υ (𝛼) ,

Υ (𝛼) ≥= 𝜉
2

(𝛼) ,

Υ (𝛼) ≥= 𝜁
2

(𝛼) ,

(Υ (𝛼) − 𝜉
2

(𝛼)) (Υ (𝛼) − 𝜁
2

(𝛼)) = 0.

(37)

In order to facilitate the solving of the problem, the usual
practice is to defuzzify the fuzzy objective function 𝑍

1
, using

the center-of-gravity defuzzification [28]:

𝐷(𝑍
1
) =

∑
1

𝛼=0
𝛼𝑍
1𝐿

(𝛼) + ∑
1

𝛼=0
𝛼𝑍
1𝑅

(𝛼)

∑
1

𝛼=0
𝛼 + ∑

1

𝛼=0
𝛼

=
∑
1

𝛼=0
𝛼𝑍
1𝐿

(𝛼) + ∑
1

𝛼=0
𝛼𝑍
1𝑅

(𝛼)

11
,

(38)

where𝐷( ) is the defuzzification function. Finally, the follow-
ing NLP model is optimized instead of the original FNLP
problem:

Max 𝑍
2
=

∑
1

𝛼=0
𝛼𝑍
1𝐿

(𝛼) + ∑
1

𝛼=0
𝛼𝑍
1𝑅

(𝛼)

11

subject to 𝑍
1𝐿
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1

𝑛2

𝑛
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𝑗=1

Ξ (𝛼) ⋅ Θ (𝛼)

Ξ (𝛼) ≥= 𝜉 (𝛼) 𝜁 (𝛼)

Ξ (𝛼) ≥= 0

Ξ (𝛼) (Ξ (𝛼) − (𝛼) 𝜁 (𝛼)) = 0

Θ (𝛼) ≤
𝜉 (𝛼)
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Θ (𝛼) ≤
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𝜉 (𝛼)

(Θ (𝛼) −
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𝜉 (𝛼)

𝜁 (𝛼)
) = 0

𝑍
1𝑅

(𝛼) =
1

𝑛2

𝑛

∑

𝑗=1

Υ (𝛼)

Υ (𝛼) ≥= 𝜉
2

(𝛼)

Υ (𝛼) ≥= 𝜁
2

(𝛼)

(Υ (𝛼) − 𝜉
2

(𝛼)) (Υ (𝛼) − 𝜁
2

(𝛼)) = 0

𝜉 (𝛼) = (𝑛 − 1) SK
𝑗𝑢𝐿

(𝛼)

−

𝑗−1

∑

𝑘=1

SK
𝑘𝑢𝑅

(𝛼) −

𝑛

∑

𝑘=𝑗+1

SK
𝑘𝑢𝑅

(𝛼)

𝜁 (𝛼) = (𝑛 − 1) SK
𝑗𝑢𝑅

(𝛼)

−

𝑗−1

∑

𝑘=1

SK
𝑘𝑢𝐿

(𝛼) −

𝑛

∑

𝑘=𝑗+1

SK
𝑘𝑢𝐿

(𝛼)

SK
𝑗𝑢𝐿

(𝛼) = SK
𝑗𝑢1

+ 𝛼 (SK
𝑗𝑢2

− SK
𝑗𝑢1

)

SK
𝑗𝑢𝑅

(𝛼) = SK
𝑗𝑢3

+ 𝛼 (SK
𝑗𝑢2

− SK
𝑗𝑢3

)

SK
𝑗𝑢1

=(
𝑗 − 1

𝑛 − 1
)

𝛼

⋅ (

RPT
𝑗𝑢

− min
𝑗
RPT
𝑗𝑢

max
𝑗
RPT
𝑗𝑢

− min
𝑗
RPT
𝑗𝑢

)

𝛽

⋅ (

𝑅
𝑗
− min

𝑗
𝑅
𝑗

max
𝑗
𝑅
𝑗
− min

𝑗
𝑅
𝑗

)

𝛾

⋅ (

RCTE
𝑗𝑢1

− min
𝑗
RCTE

𝑗𝑢1

max
𝑗
RCTE

𝑗𝑢3
− min

𝑗
RCTE

𝑗𝑢1

)

𝜂

⋅ (

SCT
𝑗𝑢

− min
𝑗
SCT
𝑗𝑢

max
𝑗
SCT
𝑗𝑢

− min
𝑗
SCT
𝑗𝑢

)

𝜗

SK
𝑗𝑢2

=(
𝑗 − 1

𝑛 − 1
)

𝛼

⋅ (

RPT
𝑗𝑢

− min
𝑗
RPT
𝑗𝑢

max
𝑗
RPT
𝑗𝑢

− min
𝑗
RPT
𝑗𝑢

)

𝛽

⋅ (

𝑅
𝑗
− min

𝑗
𝑅
𝑗

max
𝑗
𝑅
𝑗
− min

𝑗
𝑅
𝑗

)

𝛾

⋅ (

RCTE
𝑗𝑢2

− min
𝑗
RCTE

𝑗𝑢2

max
𝑗
RCTE

𝑗𝑢2
− min

𝑗
RCTE

𝑗𝑢2

)

𝜂

⋅(

SCT
𝑗𝑢

− min
𝑗
SCT
𝑗𝑢

max
𝑗
SCT
𝑗𝑢

− min
𝑗
SCT
𝑗𝑢

)

𝜗

SK
𝑗𝑢3

= (
𝑗 − 1

𝑛 − 1
)

𝛼

⋅ (

RPT
𝑗𝑢

− min
𝑗
RPT
𝑗𝑢

max
𝑗
RPT
𝑗𝑢

− min
𝑗
RPT
𝑗𝑢

)

𝛽



Journal of Applied Mathematics 11

⋅ (

𝑅
𝑗
− min

𝑗
𝑅
𝑗

max
𝑗
𝑅
𝑗
− min

𝑗
𝑅
𝑗

)

𝛾

⋅ (

RCTE
𝑗𝑢3

− min
𝑗
RCTE

𝑗𝑢1

max
𝑗
RCTE

𝑗𝑢3
− min

𝑗
RCTE

𝑗𝑢1

)

𝜂

⋅ (

SCT
𝑗𝑢

− min
𝑗
SCT
𝑗𝑢

max
𝑗
SCT
𝑗𝑢

− min
𝑗
SCT
𝑗𝑢

)

𝜗

𝑗 = 1 ∼ 𝑛

(Linear model) 𝛼 = 1 − 2𝛽 − 𝛾;

𝛾 = 𝜗 = 𝜂 + 𝛼

0 ≤ 𝛼, 𝛽 ≤ 1

(39)

Consider the example in Table 3. Both the proposed
methodology and Wang et al.’s method are applied to this
example. In the proposedmethodology, the optimal objective
function value 𝑍

∗

2
is 187272 when the parameters 𝛼, 𝛽, 𝛾, 𝜂,

and 𝜗 are equal to 0.980, 0.560, −1.100, −1.100, and −2.082,
respectively. The slacks of the jobs are shown in Figure 4.
Please note that in this figure the 𝑥-axis is converted to
logarithmic values for clarity. In contrast to this, Wang et
al.’s method cannot consider the uncertainty in the remain-
ing cycle time, and therefore only the center value of the
remaining cycle time is considered. The slacks obtained by
using Wang et al.’s method are shown in Figure 5, in which
𝜎
∗

SK𝑗𝑢 = 93. The optimal values of the parameters 𝛼, 𝛽, 𝛾, 𝜂,
and 𝜗 are equal to 0.938, 0.587, −1.112, −1.112, and −2.050,
respectively. Obviously, one has the following.

(1) After considering the uncertainty of the remaining
cycle time, the best values of the five parameters
changed, and the slacks of jobs became different.This
might result in different sequencing results.

(2) There were 14 ties inWang et al.’s method. Conversely,
after considering the uncertainty in the remaining
cycle time, the proposed methodology successfully
diversified the slacks of the jobs and reduced the
number of ties to 11. In this regard, the advantage
of the proposed methodology over Wang et al.’s
approach is 21%.

(3) In the method of Wang et al., if there is a long tail in
the remaining cycle time of a job on the right-hand
side, then the slack of the job will be underestimated.
Conversely, the slack will be overestimated if there is
a long tail on the left-hand side.

3. Simulation Experiment

A real wafer fabrication factory mainly used for the pro-
duction of dynamic random access memory (DRAM) was
simulated.The wafer fabrication factory is located in Taiwan’s
Taichung Science Park and has a monthly capacity of about
25,000 wafers. However, the following assumptions were
made to generate data that are less noisy than real-world data.

Table 3: An example.

Number 𝑅
𝑗

𝑗 R̃CTE
𝑗𝑢

SCT
𝑗𝑢

RPT
𝑗𝑢

1 102 159 (1200, 1399, 1458) 881 560
2 756 37 (976, 1127, 1176) 227 451
3 826 37 (1086, 1223, 1299) 157 489
4 652 86 (1618, 1822, 1976) 331 729
5 208 55 (455, 530, 557) 775 212
6 783 84 (1742, 2040, 2158) 200 816
7 800 96 (2039, 2366, 2549) 183 946
8 478 52 (848, 942, 992) 505 377
9 469 65 (992, 1116, 1176) 514 446
10 699 32 (853, 995, 1031) 284 398
11 836 85 (1830, 2151, 2311) 147 860
12 497 45 (794, 883, 918) 486 353
13 596 101 (1700, 2047, 2170) 387 819
14 798 34 (975, 1146, 1256) 185 458
15 197 79 (659, 743, 800) 786 297
16 804 85 (1819, 2092, 2318) 179 837
17 163 78 (560, 647, 708) 820 259
18 457 44 (685, 810, 839) 526 324
19 523 100 (1547, 1851, 2042) 460 740
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Figure 4: The fuzzy slacks obtained by the proposed methodology.

(1) The distributions of the times between machine
breakdowns are exponential.

(2) The distribution of the time required to repair a
machine is uniform.

(3) The percentages of jobs with different priorities
released into the wafer fabrication factory are con-
trolled.

(4) A job has equal chances to be processed on each
alternative machine or head that is available at a step.

(5) A job cannot proceed to the next step until the
processing of every wafer in the job has been finished.

(6) No preemption is allowed.

In the simulated wafer fabrication factory, there are more
than 10 types of memory products and more than 500
workstations for performing single-wafer or batch operations
using 58 nm∼110 nm technologies. Jobs released into the
fabrication factory are assigned three types of priorities, that
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Figure 5: The fuzzy slacks obtained by using Wang et al.’s method.

is, “normal,” “hot,” and “super hot.” Usually, a job will only
be “super hot” if it is part of an emergency order; “super hot”
jobs will be processed first. The large scale and the reentrant
process flows of this wafer fabrication factory exacerbate the
difficulties of job dispatching. Currently, the longest average
cycle time exceeds threemonthswith a variation ofmore than
300 hours. The managers of this wafer fabrication factory are
therefore seeking better dispatching rules to replace FIFO and
EDD, in order to shorten the average cycle times and ensure
on-time delivery to customers.

One hundred replications of the simulation were succes-
sively run. The simulation horizon of each replication was
twenty-four months. The warm-up period was the first four
months. The time required for each simulation replication
was about 45 minutes using a PC with Intel Dual E2200
2.2GHz CPUs and 1.99G RAM.

To make comparisons with some existing approaches,
eight methods were tested. FIFO, EDD, shortest remaining
processing time (SRPT), CR, FSVCT, FSMCT, the nonlinear
fluctuation smoothing rule (NFS), and the four-objective
slack-diversifying rule (4o-SDR) [25] were applied to sched-
ule the simulated wafer fabrication factory. The data of 1000
jobs were collected and separated by product types and
priorities.

For FIFO, jobs were sequenced on each machine first by
their priorities, then by their arrival times at themachine. For
EDD, jobs were also sequenced first by their priorities, then
by their due dates.The performance of EDD depends on how
jobs’ due dates are determined. In the experiment, the due
date of each job was determined as follows:

DD
𝑗
= 𝑅
𝑗
+ (Ψ − 1.5 ∗ priority) ∗ TPT

𝑗
, (40)

where Ψ indicates the cycle time multiplier.
FSVCT and FSMCT consisted of two stages. First, jobs

were scheduled based on FIFO, in which the remaining cycle
times of all jobs were recorded and averaged at each step.
Then, FSVCT/FSMCT policy was applied to schedule the
jobs based on the average remaining cycle times obtained
earlier. In other words, jobs were sequenced on eachmachine
first by their priorities, and then by their slack values, which
were determined by (17) and (18). With SRPT, the remaining
processing time of each job was calculated. Then, jobs were
sequenced first by their priorities, then by their remaining

processing times.With CR, jobs were sequenced first by their
priorities, then by their critical ratios. NFS is a nonlinear
fusion of FSMCT and FSVCT. In the simulation experiment,
a weight of 0.8 was given to FSMCT. With 4o-SDR, the
remaining cycle time of a job was estimated using the fuzzy c-
means and back propagation network (FCM-BPN) approach
[31]; it was a crisp value. The five adjustable parameters were
set to (𝛼, 𝛽, 𝛾, 𝜂, 𝜗) = (0.6, 0.2, 0, −0.6, 0) after initial scenarios
had been examined.

In the proposed methodology, the remaining cycle time
of a job was estimated using the effective FBPN approach; it
was a fuzzy value. After the fuzzy remaining cycle time esti-
mate had been fed into the fuzzy four-objective fluctuation
smoothing rule, an FNLP problem was solved to determine
the values of the five parameters in the rule, so as to optimize
the scheduling performance.

The average cycle time, cycle time standard deviation, the
number of tardy jobs, and the maximum lateness of all cases
were calculated to assess the scheduling performance. The
results are summarized in Tables 4, 5, 6, and 7.

According to the experimental results, the following
points can be made.

(1) In various respects, the proposed methodology was
obviously superior to the existing dispatching rules.
For example, the fuzzy four-objective fluctuation
smoothing rule was the best at reducing the average
cycle time for all cases. Its advantage over the current
rule FIFOwas 26% on average.The average cycle time
is one of the most important scheduling goals of a
wafer fabrication factory; such experimental results
are very valuable. Of the traditional scheduling rules,
SRPT performed well for reducing the average cycle
times but posed the risk of high cycle time variation.

(2) On-time delivery is another important scheduling
objective. The maximum lateness is often used to
assess this.The proposedmethodology can effectively
reduce the maximum lateness and so can enhance
on-time delivery. This tends to improve the firm’s
customer relationships.The performance levels of the
two traditional methods in this field, EDD and CR,
were not as good as expected.

(3) Through reduced cycle time variability, we can more
accurately estimate the cycle time and promise our
customer a more reliable due date. The fuzzy four-
objective fluctuation smoothing rule has very good
performance in this respect, with an average advan-
tage of 28% over the existing scheduling rules.

(4) The number of tardy jobs is another indicator by
which one can assess on-time delivery. The proposed
methodology outperformed the existing methods in
most cases.

In order to confirm the advantages of the proposed
methodology over the existing methods, a Wilcoxon signed-
rank test [38] was used to test the following hypotheses.

𝐻
𝑎0
: When shortening the average cycle time, the schedul-
ing performance of the proposed methodology is the
same as that of the existing approach being compared.
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Table 4: The performance levels of various approaches for average
cycle time.

Average cycle
time (hrs)

A
(normal)

A
(hot)

A
(super hot)

B
(normal)

B
(hot)

FIFO 1254 400 317 1278 426
EDD 1094 345 305 1433 438
SRPT 948 350 308 1737 457
CR 1148 355 300 1497 440
FSMCT 1313 347 293 1851 470
FSVCT 1014 382 315 1672 475
NFS 1456 407 321 1452 421
4o-SDR 1183 347 271 1160 339
The proposed
methodology 932 274 265 810 269

Table 5: The performance levels of various approaches for maxi-
mum lateness.

The
maximum
lateness (hrs)

A
(normal)

A
(hot)

A
(super hot)

B
(normal)

B
(hot)

FIFO 401 −122 164 221 172
EDD 295 −181 144 336 185
SRPT 584 −142 174 718 194
CR 302 −159 138 423 192
FSMCT 875 −165 125 856 171
FSVCT 706 −112 174 686 260
NFS 627 10 161 331 151
4o-SDR 360 −152 118 21 94
The proposed
methodology 287 −145 112 25 106

Table 6:Theperformance levels of various approaches for cycle time
standard deviation.

Cycle time
standard
deviation (hrs)

A
(normal)

A
(hot)

A
(super hot)

B
(normal)

B
(hot)

FIFO 55 24 25 87 51
EDD 129 25 22 50 63
SRPT 248 31 22 106 53
CR 69 29 18 58 53
FSMCT 419 33 16 129 104
FSVCT 280 37 27 201 77
NFS 64 40 19 37 26
4o-SDR 71 41 22 30 29
The proposed
methodology 68 20 23 27 34

𝐻
𝑎1
: When shortening the average cycle time, the schedul-
ing performance of the proposedmethodology is bet-
ter than that of the existing approach being compared.

Table 7: The performance levels of various approaches for number
of tardy jobs.

Number of
tardy jobs

A
(normal)

A
(hot)

A
(super hot)

B
(normal)

B
(hot)

FIFO 79 0 12 16 5
EDD 71 0 12 19 5
SRPT 37 0 12 19 5
CR 79 0 12 19 5
FSMCT 58 0 12 19 5
FSVCT 56 0 12 18 5
NFS 58 0 12 19 5
4o-SDR 79 0 12 19 5
The proposed
methodology 37 0 12 19 5

𝐻
𝑏0
: When reducing the maximum lateness, the schedul-
ing performance of the proposed methodology is the
same as that of the existing approach being compared.

𝐻
𝑏1
: When reducing the maximum lateness, the schedul-
ing performance of the proposedmethodology is bet-
ter than that of the existing approach being compared.

𝐻
𝑐0
: When reducing the cycle time standard deviation, the
scheduling performance of the proposed methodol-
ogy is the same as that of the existing approach being
compared.

𝐻
𝑐1
: When reducing the cycle time standard deviation, the
scheduling performance of the proposed methodol-
ogy is better than that of the existing approach being
compared.

𝐻
𝑑0
: When reducing the number of tardy jobs, the schedul-
ing performance of the proposed methodology is the
same as that of the existing approach being compared.

𝐻
𝑑1
: When reducing the number of tardy jobs, the schedul-
ing performance of the proposedmethodology is bet-
ter than that of the existing approach being compared.

The results are summarized in Table 8. The null hypothe-
sis𝐻
𝑎0
was rejected at𝛼 = 0.025, which showed that the fuzzy

slack-diversifying fluctuation-smoothing rule was superior
to seven existing approaches at reducing the average cycle
time. With regard to maximum lateness, the advantage of
the fuzzy slack-diversifying fluctuation-smoothing rule over
FIFO, SRPT, and FSVCTwas significant. Similar results could
be observed with cycle time standard deviation. However,
the advantage of the fuzzy slack-diversifying fluctuation-
smoothing rule was not statistically significant for the num-
ber of tardy jobs.

4. Conclusions and Directions for
Future Research

Multiobjective scheduling is an important task in a wafer
fabrication factory. It is also a difficult task owing to the
uncertainty and complexity of the wafer fabrication system.
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Table 8: Results of the Wilcoxon sign-rank test.

𝐻
𝑎0

(the average
cycle time)

𝐻
𝑏0

(the
maximum
lateness)

𝐻
𝑐0

(cycle time
standard
deviation)

𝐻
𝑑0

(the number
of tardy jobs)

FIFO 2.02∗∗ 2.02∗∗ 1.21 0.54
EDD 2.02∗∗ 1.21 1.75∗ 1.21
SRPT 2.02∗∗ 2.02∗∗ 1.75∗ 0.67
CR 2.02∗∗ 1.75∗ 1.48 1.21
FSMCT 2.02∗∗ 1.48 1.75∗ 1.21
FSVCT 2.02∗∗ 2.02∗∗ 2.02∗∗ 0.54
NFS 2.02∗∗ 2.02∗∗ 0.54 1.21
4o-SDR 2.02∗∗ −0.08 0.34 0.76
∗P < 0.05.
∗∗P < 0.025.
∗∗∗P < 0.01.

This study demonstrates that an FNLP approach can consider
such uncertainties and optimize the performance of multiob-
jective scheduling in a wafer fabrication factory.

The proposed methodology starts from the estimation
of the remaining cycle time for each job. To this end, an
effective FBPN approach has been proposed. The estimated
remaining cycle time from the FBPN is a fuzzy number. After
the fuzzy remaining cycle time estimate is fed to the four-
factor fluctuation smoothing rule, the rule is fuzzified, and
the slack of each job is expressed by a fuzzy number. To reduce
the number of ties, the slacks of jobs need to be diversified,
which results in an FNLPproblem. Since the FNLPproblem is
not easy to solve, some𝛼-cut operations are applied to convert
it into an equivalent NLP problem.

After a simulation study, the following points are con-
cluded

(1) The simulation experiment results showed that the
proposed method indeed enhanced the scheduling
performance of the wafer fabrication factory in four
respects—average cycle time, maximum lateness,
cycle time standard deviation, and number of tardy
jobs.

(2) Consideration of the uncertainty in the remaining
cycle time has a considerable degree of influence
on scheduling performance. The proposed FBPN
approach not only enhances the accuracy of estimat-
ing the remaining cycle time but can also generate
a precise range for the remaining cycle time. This
effectively avoids incorrect scheduling.

(3) The experimental results in this study also confirmed
that the scheduling performance of a complex pro-
duction system can be significantly improved by opti-
mizing the existing dispatching rule with an FNLP
model.

However, the proposed methodology only optimizes the
performance of a dispatching rule in a wafer fabrication
factory; this does not optimize every aspect of scheduling
for a wafer fabrication factory. Although slack diversification

optimizes the four-objective fluctuation smoothing rule,
there are other approaches that can achieve the same effect.
Further, some soft computing techniques can be applied
to solve the FNLP problem. All of these issues constitute
directions for future research.
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4o-SDR: Four-objective slackdiversifying
ANFIS: Adaptive neurofuzzy inference system
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CR: Critical ratio
CV: Coefficient of variance
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FLP: Fuzzy linear programming
FMS: Flexible manufacturing system
FNLP: Fuzzy nonlinear programming
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time variation
GA: Genetic algorithm
LP: Linear programming
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