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Nonlinear elastic model and elastoplastic model are two main kinds of constitutive models of soil, which are widely used in the
numerical analyses of soil structure. In this study, Duncan and Chang’s EB model and the generalized plasticity model proposed
by Pastor, Zienkiewicz, and Chan was discussed and applied to describe the stress-strain relationship of rockfill materials. The
two models were validated using the results of triaxial shear tests under different confining pressures. The comparisons between
the fittings of models and test data showed that the modified generalized plasticity model is capable of simulating the mechanical
behaviours of rockfill materials. Themodified generalized plasticity model was implemented into a finite element code to carry out
static analyses of a high earth-rockfill dam in China. Nonlinear elastic analyses were also performed with Duncan and Chang’s EB
model in the same program framework. The comparisons of FEM results and in situ monitoring data showed that the modified
PZ-III model can give a better description of deformation of the earth-rockfill dam than Duncan and Chang’s EB model.

1. Introduction

The constitutive model of soil is the keystone in the finite
element analyses of geotechnical structures. A suitable con-
stitutive model can simulate the stress-strain relationships of
soils under static or dynamic conditions. Numerical analysis,
especially for finite element method incorporated with soil
constitutive models, has played a very important role in
geotechnical analyses which always include complex bound-
ary conditions, nonlinearity of material, and geometry [1].

Biot presented the famous three-dimensional consolida-
tion theory based on the effective stress theory, equilibrium
equation, and continuity condition [2]. However, it is quite
difficult to give the theoretical solution of Biot’s consolidation
theory except for few simple problems. Up to the 1960s,
with the rapid development of electronic computer and
constitutive models of soils, Biot’s consolidation theory was
successfully implemented in finite element codes to study the
behavior of geotechnical structures [3, 4]. So far, thousands
of constitutive models have been proposed, which can be

mainly grouped in two categories: nonlinear elastic models
and elastoplastic models.

For nonlinear elastic model, the nonlinear characteristic
of soil stress-strain relationship is considered by sectionalized
linearization. A typical nonlinear elastic model is Duncan
and Chang’s Model [5, 6], which has been widely used in
the numerical analyses of earth-rockfill dams, as the model
parameters are quite easy to be determined from conven-
tional triaxial tests. And, a lot of experience of application has
been accumulated for this model. However, nonlinear elastic
models also have some inherent limitations to represent the
stress-strain characteristics of soils, such as shear-induced
dilatancy and stress path dependency.

Elastoplastic models would be very adequate in describ-
ing many key features of soils. Classical elastoplastic models
are based on the plastic incremental theory composed of yield
condition, flow rule, and hardening law. In the 1950s, Drucker
et al. (1957) [7] suggested a cap yield surface controlled by
volumetric strain. Roscoe et al. [8, 9] proposed the concepts
of critical state line and state boundary surface, and then
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they built the Original Cam Clay Model based on triaxial
tests. Burland [10] suggested a different energy equation
and then established the Modified Cam Clay Model. Since
the establishment of Cam Clay Model, some other types
of elastoplastic constitutive models have also achieved great
development [11–18]. Among these models, the generalized
plasticity model [16, 19, 20] can simulate the static and
dynamicmechanical behaviors of clays and sands.Thismodel
is very flexible and convenient to extend, as the complicated
yield or plastic potential surfaces need not to be specified
explicitly. And the model has been used successfully in the
static or dynamic analyses of some geotechnical structures
[21–24]. Furthermore, based on the framework of generalized
plasticity theory [16], some limitations of the original model
have been solved [25–28], such as pressure dependency, den-
sification under cyclic loading. The details of the generalized
plasticity theory and the original and proposed modified
Pastor-Zienkiewicz-Chan’s models will be introduced in the
sections below.

However, little experience has as yet been accumulated in
applying the generalized plasticity model to the simulation
of rockfill materials. And we know that rockfill material is
quite different from sands in mechanical properties [29–31].
The rockfill material has large particle size and sharp edges
and corners, which can result in remarkable particle breakage
and change the shear-induced dilation [32, 33]. On the other
hand, though the generalized plasticity model has gained
great success in the modeling of soils, the application of this
model in the large-scale finite element analyses of earth dams
was less reported.

In this study, the original generalized plasticitymodel was
modified to consider the stress-strain relationships of rockfill
materials, as most of previous studies focused on sands
and clays. Then, based on conventional triaxial test data,
the model parameters for dam materials of the Nuozhadu
high earth-rockfill dam in Southwest China are determined.
Finally, the static simulation of this dam is carried out by
using a finite element code incorporating with Duncan and
Chang’s EB model and the modified generalize plasticity
model.The comparison of numerical results and in situmon-
itoring data illustrates the advantages ofmodified generalized
plasticity model in the simulation of earth-rockfill dams.

2. Constitutive Model Descriptions

Two constitutive models of soils were used in the finite
element analyses. One is the Duncan and Chang’s EB model
belonging to nonlinear elastic model, the other one is the
generalized plasticity model.

2.1. Duncan and Chang’s Model. Duncan and Chang’s model
[5] is a nonlinear elastic model, which has been widely used
in the geotechnical engineering, especially in the numerical
analyses of earth dams. It is attributed to Kondner [34]
who proposed the hyperbolic stress-strain function below to
describe the deviatoric stress-axial strain curve obtained from
triaxial tests.

Consider
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where 𝑃
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is the atmospheric pressure,𝐾 and𝐾

𝑏
are modulus

numbers, 𝑛 and 𝑚 are exponents determining the rate of
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In the unloading and reloading stage, the tangential
Young’s modulus is defined as
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So far, the model has 8 parameters, 𝑐, 𝜑, 𝐾, 𝐾
𝑢𝑟
, 𝑛, 𝑅
𝑓
,

𝐾
𝑏
, 𝑚. These parameters can be determined with a set of

conventional triaxial tests.
In general, a curved Mohr-Coulomb failure envelop is

adopted by setting 𝑐 = 0 and letting 𝜑 vary with confining
pressure according to
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Then parameters 𝑐 and 𝜑 are replaced by 𝜑
0
and Δ𝜑.

Although Duncan and Chang’s EB constitutive model is
quite simple, it has gained significant success in geotechnical
engineering. On one hand, it is easy to obtain the model
parameters; on the other hand, much experience has been
accumulated. Nevertheless, it cannot incorporate dilatancy
which has an important influence in themechanical behavior
of soils. And furthermore, it can only consider unloading
process in a crude way.

2.2. Generalized Plasticity Theory and Its Original
Constitutive Model

2.2.1. Basic Theory. The generalized plasticity theory was
proposed by Zienkiewicz and Mroz (1984) [16] to model the
behaviors of sand under monotonic and cyclic loading. The
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key futures of this theory are that neither yield surface nor
plastic potential surface needs to be defined explicitly, and
consistency law is not required to determine plastic modulus.
In the theory, the total strain increment is divided into elastic
and plastic components.

Consider
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where 𝑑𝜀𝑒 and 𝑑𝜀𝑝 = elastic and plastic strain increments,
respectively.

The relationship between strain and stress increments is
expressed as
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Then, the elastoplastic stiffness tensor D𝑒𝑝 can be
obtained corresponding to the loading and unloading con-
ditions.

In the framework of generalized plasticity theory, all the
components of the elastoplastic constitutive matrix are deter-
mined by the current state of stress and loading/unloading
condition.

2.2.2. Pastor-Zienkiewicz-Chan Model. This model was pre-
sented by Pastor et al. [19]. The relationships between elastic
volumetric and shear strain increments and stress increments
are defined as
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The loading plastic modulus𝐻
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is proposed as
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Figure 1: Simulation of stress-strain relationships for Original PZ-III model.

2.2.3. Modified Model. The Pastor-Zienkiewicz-Chan model
(PZ-III for short) has gained considerable success in describ-
ing the behavior of sands and clays under monotonic and
cyclic loadings. But it still has some shortcomings to predict
the static or dynamic responds of sands, especially for rockfill
materials which are widely used in earth-rockfill dams. The
Original PZ-III model has serious limitation in reflecting
pressure dependency of soils.

Figure 1 shows the stress-strain relationships of a rockfill
material under drained conventional triaxial tests using a
set of parameters under different confining pressures, but
PZ-III model gives the same 𝜀

1
-𝜀V curve, where 𝜀

1
, 𝜀V are

axial strain and volumetric strain, respectively. As confining
pressure ranges from 0 kPa to several MPa for a rockfill dam
with height of 200–300m, the original PZ-III model cannot
be used to describe the mechanical behavior of rockfill dams.

Some relations of the original model are modified to take
into account the influence of confining pressure as
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where 𝐾
𝑒0
and 𝐺
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are elastic constants, 𝑚 and 𝑛 are model

parameters to consider the effect of pressure dependency.
As sand behavior is dependent on densities or void ratio,

a state pressure index, 𝐼
𝑝
, proposed by Wang et al. [35] was

introduced in the PZ-III model and (13) was modified as
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3. Nuozhadu Hydropower Project

Nuozhadu hydropower project is located in the Lancang
River which is also named Mekong River in the down-
stream in Yunnan Province, Southwest China, as shown in
Figure 2(a). The installed capacity of the powerstation is
5850MW.Themost important part ofNuozhaduhydropower
project is the high earth-rockfill damwith amaximumheight
of 261.5m, which is the highest one with the same type in
China and the fourth highest in the world. The reservoir has
a storage capacity of 237.0 × 108m3, with the normal storage
water level of 812.5m and dead water level of 765m.

Figure 3 shows the material zoning and construction
stages of the maximum cross-section. The elevation of the
earth core bottom and the crest of the dam are 562.6m and
824.1m, respectively. The dam crest has a longitudinal length
of 630mwith a width of 18m.The upstream and downstream
slopes are at 1.9 : 1 and 1.8 : 1, respectively. The dam body is
composed of several different types of materials. The shells
of upstream and downstream are composed of decomposed
rock materials. Anti-seepage material in the earth core is clay
mixed with gravel. Adding gravel to the clay can improve the
strength of clay and reduce the arching effect between shells
and earth core. The gravel material consists of fresh crushed
stone of breccia and granite with a maximum diameter of
150mm. In addition to these, the fine rockfill and filter
materials are filled against the earth core to prevent the fine
particle from being washed away.

The dam construction was started in 2008 and was
completed at the end of 2012. Figure 2(c) shows the dam
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Figure 2: Nuozhadu dam. (a) Nuozhadu dam location, (b) project blueprint, (c) Nuozhadu dam under construction, and (d) dam site
geomorphology.

under construction. Figure 3(b) demonstrates the practical
construction process.

4. Experimental Validation of
Model Parameters

The modified PZ-III model was implemented in a finite
element code which has been successfully used to analyze
earth dams with Duncan and Chang’s EB model and some
other constitutive models. A set of triaxial test data was used
to make sure that the model has been incorporated into the
FEM code accurately.

The proposed generalized plasticity model totally needs
17 parameters. The model parameters used in the computa-
tion of the earth-rockfill dam were obtained by fitting the
triaxial test results. Drained triaxial tests under different con-
fining pressures were conducted to test the rockfill materials
and mixed gravel clay, which are the main parts of the dam
body.

Duncan and Chang’s EB model parameters are shown in
Table 1 and the modified PZ-III model parameters in Table 2.
As shown in Figures 4, 5, 6, 7, 8, and 9, the modified PZ-
III model presents a better ability to simulate the mechanics

Table 1: Material parameters of Duncan and Chang’s EB model.

Material Rockfill I Rockfill II Mixed gravel clay
𝜑/∘ 55.82 54.33 39.30
Δ𝜑/∘ 12.29 12.07 9.80
𝑅
𝑓

0.73 0.74 0.77
𝐾 1450 1360 520
𝐾
𝑏

550 600 250
𝐾
𝑢𝑟

2800 2500 900
𝑛 0.30 0.43 0.42
𝑚 0.13 0.08 0.25

behavior of rockfillmaterials andmixed gravel clay, especially
for dilatancy. With the reduction of confining pressure,
the rockfill materials tend to dilate as the experimental
volumetric strain curve shows. Especially for the rockfill
materials under low confining pressure, negative volumetric
strain rapidly develops after a short stage of volumetric
contraction. Due to the intrinsic limitation, Duncan and
Chang’s EB model cannot simulate the dilatancy which is a
crucial feature of rockfill materials.
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Figure 3: The maximum cross-section. (a) Material zoning and (b) construction stage.
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Figure 4: Comparison between fittings of Duncan and Chang’s EB model and experimental triaxial tests results for rockfill material I.
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Figure 5: Comparison between fittings of the modified PZ-III model and experimental triaxial tests results for rockfill material I.
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Figure 6: Comparison between fittings of Duncan and Chang’s EB model and experimental triaxial tests results for rockfill material II.
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Figure 7: Comparison between fittings of the modified PZ-III model and experimental triaxial tests results for rockfill material II.
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Figure 9: Comparison between fittings of the modified PZ-III model and experimental triaxial tests results for clay.

Figure 10: 3D FEMmesh of Nuozhadu dam.

5. Three-Dimensional Finite Element Analyses

5.1. Computation Model. The numerical analyses were per-
formed to simulate the performance of the dam during
construction and impounding periods with effective stress
finite element analysis.

First, the 2D finite element mesh of the maximum cross-
section of the dam was discretized according to the material
zoning and construction design (see Figure 3). Then, the 2D
mesh was extended to 3D mesh in accordance with contour
line of the river valley. Figure 10 shows the 3D mesh of
the Nuozhadu dam with 8095 brick and degenerated brick
elements and 8340 nodes.

The numerical simulations contain two stages, filling and
impounding. During the filling stage, the dam body mainly
subjects to body weight. Then, at the end of construction,
upstream water level goes up to the normal storage water
level. The interaction between pore water and soil skeleton
was considered through the whole numerical computation.

5.2. Results and Analyses

5.2.1. Numerical Results Analyses. Figures 11 and 12 show the
numerical results of finite element analyses with Duncan
and Chang’s EB model and the modified PZ-III model,
respectively.
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Figure 12: Displacement and stress contour of the maximum section for the modified PZ-III model: (a) displacement along river (m), (b)
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Through the comparison and analysis of the numerical
results (Figures 11 and 12), we can find some similarities and
differences for these two models.

On one hand, we can see many similar places in the
distributions of displacements and stresses.

(1) After the reservoir impounding, due to the hugewater
pressure on upstream dam, horizontal displacement
develops toward the downstream, and the largest
displacement is about 1.05m for EBmodel and 0.74m
for modified PZ-III model.

(2) Themaximumsettlement occurs in themiddle of core
wall due to lower modulus of clayey soil.

(3) Because of the tremendous differences of modulus
between rockfill material and clayey soil, there exists
obvious arching effect in the core wall.

(4) Effective stress in upstream shell is less than the
downstream shell due to the water pressure in the
upstream shell.

On the other hand, some differences also exist, which
illustrate the advantages of modified PZ-III model.

(1) After the reservoir is impounded, upward displace-
ment as large as 0.7m (see Figure 11(b)) develops
on the upstream shell near dam crest for EB model
and nearly 0m for modified PZ-III model (see
Figure 12(b)). In fact, monitoring data of practical
engineering projects shows that no large upward
displacement happened after impounding. This is
due to its weakness of EB model to distinguish the
loading and unloading condition during the water
impounding.

(2) In the distribution of minor principle stress (Figures
11(d) and 12(d)), negative stress (i.e., tensile stress)
occurs in the upstream shell for EB model, whereas
very little tensile stress exists for modified PZ-III
model. As we know, rockfill material is a typical kind
of cohesionless coarse-grained soil, which means that
it has no tensile strength. Therefore, the existence of
large area of tensile stress in the upstream shell is
unreasonable.

5.2.2. Comparison between Numerical and In Situ Monitoring
Data. Settlement is a key indicator to assess the safety of an
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Table 2: Material parameters of the modified PZ-III model.

Material Rockfill I Rockfill II Mixed gravel clay
𝐾
0

500 1000 300
𝐺
0

1500 3000 900
𝑚 0.50 0.50 0.50
𝑛 0.50 0.50 0.50
𝛼
𝑓

0.45 0.45 0.45
𝛼
𝑔

0.45 0.45 0.45
𝑀
𝑓𝑐

1.05 0.90 0.60
𝑀
𝑔𝑐

1.60 1.35 1.10
𝛽
0

0.00 0.00 0.00
𝛽
1

0.00 0.00 0.00
Γ 0.34 0.31 0.34
𝜆 0.10 0.09 0.03
𝑚
𝑝

0.35 0.40 0.0
𝐻
0

800 1200 900
𝛾 5 5 5
𝛾
𝑢

5 5 5
𝐻
𝑢0
/MPa 9 9 10

earth dam. Figures 13 and 14 show the in situmonitoring data
and FEM results of settlement in themaximum cross-section.
The in situ data were obtained from electromagnetism type
settlement gaugeswhichwere embedded during construction
in the dam (as shown in Figure 3(a)). Through the compar-
isons of in situmonitoring and numerical results, we can see
that the modified PZ-III model gave a better prediction than
the EB model. However, as deformation induced by wetting
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Figure 14: Comparison between in situ monitoring settlement and
FEM results.

of rockfill materials was not considered, the FEM result of
settlement was below than the in situmonitoring data.

As an elastoplastic model, the PZ-III model is capable
of representing the mechanical behavior of soils better than
nonlinear elastic model such as Duncan and Chang’s EB
model. And the above finite element analyses also proved it.

6. Conclusions

This paper presents a modified PZ-III model based on the
generalized theory and original Pastor-Zienkiewicz-Chan



Journal of Applied Mathematics 11

model to simulate the stress-strain relationship of rockfill
materials.

Triaxial test results of the filling materials of Nuozhadu
damwere used to validate the proposedmodel and determine
the model parameters of Duncan and Chang’s EB model and
the modified PZ-III model, respectively. The simulations of
triaxial stress-strain response show that the modified PZ-
III model is capable of representing the key features of
cohesionless soil, such as nonlinearity, dilatancy, and pressure
dependency.

The proposed model has been incorporated into a finite
element code to simulate the static response of a high earth-
rockfill dam in China. The results were compared with those
of Duncan and Chang’s EB model. The two set of results
have both similarities and differences and the differences
illustrate the advantages of the modified PZ-III model. The
comparisons of FEM results, and in situ monitoring data
showed that the modified PZ-III model can give a better
description of deformation of the earth-rockfill dam than
Duncan and Chang’s EB model.
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