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We establish a strong convergence for the hybrid S-iterative scheme associated with nonexpansive and Lipschitz strongly pseudo-
contractive mappings in real Banach spaces.

1. Introduction and Preliminaries

Let 𝐸 be a real Banach space and let𝐾 be a nonempty convex
subset of 𝐸. Let 𝐽 denote the normalized duality mapping
from 𝐸 to 2

𝐸
∗

defined by

𝐽 (𝑥) = {𝑓
∗
∈ 𝐸
∗
: ⟨𝑥, 𝑓

∗
⟩ = ‖𝑥‖

2
,

𝑓
∗ = ‖𝑥‖} , ∀𝑥, 𝑦 ∈ 𝐸,

(1)

where 𝐸
∗ denotes the dual space of 𝐸 and ⟨⋅, ⋅⟩ denotes the

generalized duality pairing. We will denote the single-valued
duality map by 𝑗.

Let 𝑇 : 𝐾 → 𝐾 be a mapping.

Definition 1. Themapping 𝑇 is said to be Lipschitzian if there
exists a constant 𝐿 > 1 such that

𝑇𝑥 − 𝑇𝑦
 ≤ 𝐿

𝑥 − 𝑦
 , ∀𝑥, 𝑦 ∈ 𝐾. (2)

Definition 2. Themapping 𝑇 is said to be nonexpansive if

𝑇𝑥 − 𝑇𝑦
 ≤

𝑥 − 𝑦
 , ∀𝑥, 𝑦 ∈ 𝐾. (3)

Definition 3. Themapping 𝑇 is said to be pseudocontractive if
for all 𝑥, 𝑦 ∈ 𝐾, there exists 𝑗(𝑥 − 𝑦) ∈ 𝐽(𝑥 − 𝑦) such that

⟨𝑇𝑥 − 𝑇𝑦, 𝑗 (𝑥 − 𝑦)⟩ ≤
𝑥 − 𝑦



2
. (4)

Definition 4. Themapping 𝑇 is said to be strongly pseudocon-
tractive if for all 𝑥, 𝑦 ∈ 𝐾, there exists 𝑘 ∈ (0, 1) such that

⟨𝑇𝑥 − 𝑇𝑦, 𝑗 (𝑥 − 𝑦)⟩ ≤ 𝑘
𝑥 − 𝑦



2
. (5)

Let 𝐾 be a nonempty convex subset 𝐶 of a normed space
𝐸.

(a) The sequence {𝑥
𝑛
} defined by, for arbitrary 𝑥

1
∈ 𝐾,

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝑇𝑦
𝑛
,

𝑦
𝑛
= (1 − 𝛽

𝑛
) 𝑥
𝑛
+ 𝛽
𝑛
𝑇𝑥
𝑛
, 𝑛 ≥ 1,

(6)

where {𝛼
𝑛
} and {𝛽

𝑛
} are sequences in [0, 1], is known

as the Ishikawa iteration process [1].
If 𝛽
𝑛
= 0 for 𝑛 ≥ 1, then the Ishikawa iteration process

becomes the Mann iteration process [2].
(b) The sequence {𝑥

𝑛
} defined by, for arbitrary 𝑥

1
∈ 𝐾,

𝑥
𝑛+1

= 𝑇𝑦
𝑛
,

𝑦
𝑛
= (1 − 𝛽

𝑛
) 𝑥
𝑛
+ 𝛽
𝑛
𝑇𝑥
𝑛
, 𝑛 ≥ 1,

(7)

where {𝛽
𝑛
} is a sequence in [0, 1], is known as the 𝑆-

iteration process [3, 4].

In the last few years or so, numerous papers have been
published on the iterative approximation of fixed points
of Lipschitz strongly pseudocontractive mappings using the
Ishikawa iteration scheme (see, e.g., [1]). Results which had



2 Journal of Applied Mathematics

been known only in Hilbert spaces and only for Lipschitz
mappings have been extended to more general Banach spaces
(see, e.g., [5–10] and the references cited therein).

In 1974, Ishikawa [1] proved the following result.

Theorem 5. Let 𝐾 be a compact convex subset of a Hilbert
space 𝐻 and let 𝑇 : 𝐾 → 𝐾 be a Lipschitzian pseudocon-
tractive mapping. For arbitrary 𝑥

1
∈ 𝐾, let {𝑥

𝑛
} be a sequence

defined iteratively by

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝑇𝑦
𝑛
,

𝑦
𝑛
= (1 − 𝛽

𝑛
) 𝑥
𝑛
+ 𝛽
𝑛
𝑇𝑥
𝑛
, 𝑛 ≥ 1,

(8)

where {𝛼
𝑛
} and {𝛽

𝑛
} are sequences satisfying

(i) 0 ≤ 𝛼
𝑛
≤ 𝛽
𝑛
≤ 1,

(ii) lim
𝑛→∞

𝛽
𝑛
= 0,

(iii) ∑
𝑛≥1

𝛼
𝑛
𝛽
𝑛
= ∞.

Then the sequence {𝑥
𝑛
} converges strongly at a fixed point of 𝑇.

In [6], Chidume extended the results of Schu [9] from
Hilbert spaces to the much more general class of real Banach
spaces and approximated the fixed points of (strongly) pseu-
docontractive mappings.

In [11], Zhou and Jia gave the more general answer of the
question raised by Chidume [5] and proved the following.

If 𝑋 is a real Banach space with a uniformly convex dual
𝑋
∗,𝐾 is a nonempty bounded closed convex subset of𝑋, and

𝑇 : 𝐾 → 𝐾 is a continuous strongly pseudocontractive
mapping, then the Ishikawa iteration scheme converges
strongly at the unique fixed point of 𝑇.

In this paper, we establish the strong convergence for
the hybrid 𝑆-iterative scheme associated with nonexpansive
and Lipschitz strongly pseudocontractive mappings in real
Banach spaces. We also improve the result of Zhou and Jia
[11].

2. Main Results

We will need the following lemmas.

Lemma 6 (see [12]). Let 𝐽 : 𝐸 → 2
𝐸 be the normalized

duality mapping. Then for any 𝑥, 𝑦 ∈ 𝐸, one has

𝑥 + 𝑦


2
≤ ‖𝑥‖

2
+ 2 ⟨𝑦, 𝑗 (𝑥 + 𝑦)⟩ ,

∀𝑗 (𝑥 + 𝑦) ∈ 𝐽 (𝑥 + 𝑦) .

(9)

Lemma 7 (see [10]). Let {𝜌
𝑛
} be nonnegative sequence satisfy-

ing

𝜌
𝑛+1

≤ (1 − 𝜃
𝑛
) 𝜌
𝑛
+ 𝜔
𝑛
, (10)

where 𝜃
𝑛
∈ [0, 1],∑

𝑛≥1
𝜃
𝑛
= ∞, and 𝜔

𝑛
= o(𝜃
𝑛
). Then

lim
𝑛→∞

𝜌
𝑛
= 0. (11)

The following is our main result.

Theorem 8. Let 𝐾 be a nonempty closed convex subset of a
real Banach space 𝐸, let 𝑆 : 𝐾 → 𝐾 be nonexpansive, and let
𝑇 : 𝐾 → 𝐾 be Lipschitz strongly pseudocontractive mappings
such that 𝑝 ∈ 𝐹(𝑆) ∩ 𝐹(𝑇) = {𝑥 ∈ 𝐾 : 𝑆𝑥 = 𝑇𝑥 = 𝑥} and

𝑥 − 𝑆𝑦
 ≤

𝑆𝑥 − 𝑆𝑦
 , ∀𝑥, 𝑦 ∈ 𝐾,

𝑥 − 𝑇𝑦
 ≤

𝑇𝑥 − 𝑇𝑦
 , ∀𝑥, 𝑦 ∈ 𝐾.

(C)

Let {𝛽
𝑛
} be a sequence in [0, 1] satisfying

(iv) ∑
𝑛≥1

𝛽
𝑛
= ∞,

(v) lim
𝑛→∞

𝛽
𝑛
= 0.

For arbitrary 𝑥
1

∈ 𝐾, let {𝑥
𝑛
} be a sequence iteratively

defined by
𝑥
𝑛+1

= 𝑆𝑦
𝑛
,

𝑦
𝑛
= (1 − 𝛽

𝑛
) 𝑥
𝑛
+ 𝛽
𝑛
𝑇𝑥
𝑛
, 𝑛 ≥ 1.

(12)

Then the sequence {𝑥
𝑛
} converges strongly at the common fixed

point 𝑝 of 𝑆 and 𝑇.

Proof. For strongly pseudocontractive mappings, the exis-
tence of a fixed point follows from Delmling [13]. It is shown
in [11] that the set of fixed points for strongly pseudocontrac-
tions is a singleton.

By (v), since lim
𝑛→∞

𝛽
𝑛
= 0, there exists 𝑛

0
∈ N such that

for all 𝑛 ≥ 𝑛
0
,

𝛽
𝑛
≤ min{ 1

4𝑘
,

1 − 𝑘

(1 + 𝐿) (1 + 3𝐿)
} , (13)

where 𝑘 < 1/2. Consider
𝑥𝑛+1 − 𝑝



2
= ⟨𝑥
𝑛+1

− 𝑝, 𝑗 (𝑥
𝑛+1

− 𝑝)⟩

= ⟨𝑆𝑦
𝑛
− 𝑝, 𝑗 (𝑥

𝑛+1
− 𝑝)⟩

= ⟨𝑇𝑥
𝑛+1

− 𝑝, 𝑗 (𝑥
𝑛+1

− 𝑝)⟩

+ ⟨𝑆𝑦
𝑛
− 𝑇𝑥
𝑛+1

, 𝑗 (𝑥
𝑛+1

− 𝑝)⟩

≤ 𝑘
𝑥𝑛+1 − 𝑝



2
+
𝑆𝑦𝑛 − 𝑇𝑥

𝑛+1



𝑥𝑛+1 − 𝑝
 ,

(14)
which implies that

𝑥𝑛+1 − 𝑝
 ≤

1

1 − 𝑘

𝑆𝑦𝑛 − 𝑇𝑥
𝑛+1

 ,
(15)

where
𝑆𝑦𝑛 − 𝑇𝑥

𝑛+1

 ≤
𝑆𝑦𝑛 − 𝑇𝑦

𝑛

 +
𝑇𝑦𝑛 − 𝑇𝑥

𝑛+1



≤
𝑥𝑛 − 𝑆𝑦

𝑛

 +
𝑥𝑛 − 𝑇𝑦

𝑛

 +
𝑇𝑦𝑛 − 𝑇𝑥

𝑛+1



≤
𝑆𝑥𝑛 − 𝑆𝑦

𝑛

 +
𝑇𝑥𝑛 − 𝑇𝑦

𝑛

 +
𝑇𝑦𝑛 − 𝑇𝑥

𝑛+1



≤
𝑆𝑥𝑛 − 𝑆𝑦

𝑛

 + 𝐿 (
𝑥𝑛 − 𝑦

𝑛

 +
𝑦𝑛 − 𝑥

𝑛+1

) ,

(16)
𝑦𝑛 − 𝑥

𝑛+1

 ≤
𝑦𝑛 − 𝑥

𝑛

 +
𝑥𝑛 − 𝑥

𝑛+1



=
𝑦𝑛 − 𝑥

𝑛

 +
𝑥𝑛 − 𝑆𝑦

𝑛



≤
𝑦𝑛 − 𝑥

𝑛

 +
𝑆𝑥𝑛 − 𝑆𝑦

𝑛

 ,

(17)
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and consequently from (16), we obtain
𝑆𝑦𝑛 − 𝑇𝑥

𝑛+1

 ≤ (1 + 𝐿)
𝑆𝑥𝑛 − 𝑆𝑦

𝑛

 + 2𝐿
𝑥𝑛 − 𝑦

𝑛



≤ (1 + 3𝐿)
𝑥𝑛 − 𝑦

𝑛



= (1 + 3𝐿) 𝛽𝑛
𝑥𝑛 − 𝑇𝑥

𝑛



≤ (1 + 𝐿) (1 + 3𝐿) 𝛽𝑛
𝑥𝑛 − 𝑝

 .

(18)

Substituting (18) in (15) and using (13), we get

𝑥𝑛+1 − 𝑝
 ≤

(1 + 𝐿) (1 + 3𝐿)

1 − 𝑘
𝛽
𝑛

𝑥𝑛 − 𝑝


≤
𝑥𝑛 − 𝑝

 .

(19)

So, from the above discussion, we can conclude that the
sequence {𝑥

𝑛
− 𝑝} is bounded. Since 𝑇 is Lipschitzian, so

{𝑇𝑥
𝑛
− 𝑝} is also bounded. Let 𝑀

1
= sup

𝑛≥1
‖𝑥
𝑛
− 𝑝‖ +

sup
𝑛≥1

‖𝑇𝑥
𝑛
− 𝑝‖. Also by (ii), we have

𝑥𝑛 − 𝑦
𝑛

 = 𝛽
𝑛

𝑥𝑛 − 𝑇𝑥
𝑛



≤ 𝑀
1
𝛽
𝑛

→ 0

(20)

as 𝑛 → ∞, implying that {𝑥
𝑛
− 𝑦
𝑛
} is bounded, so let 𝑀

2
=

sup
𝑛≥1

‖𝑥
𝑛
− 𝑦
𝑛
‖ + 𝑀

1
. Further,

𝑦𝑛 − 𝑝
 ≤

𝑦𝑛 − 𝑥
𝑛

 +
𝑥𝑛 − 𝑝



≤ 𝑀
2
,

(21)

which implies that {𝑦
𝑛
− 𝑝} is bounded. Therefore, {𝑇𝑦

𝑛
− 𝑝}

is also bounded.
Set

𝑀
3
= sup
𝑛≥1

𝑦𝑛 − 𝑝
 + sup
𝑛≥1

𝑇𝑦𝑛 − 𝑝
 . (22)

Denote𝑀 = 𝑀
1
+𝑀
2
+𝑀
3
. Obviously,𝑀 < ∞.

Now from (12) for all 𝑛 ≥ 1, we obtain
𝑥𝑛+1 − 𝑝



2
=
𝑆𝑦𝑛 − 𝑝



2
≤
𝑦𝑛 − 𝑝



2
, (23)

and by Lemma 6, we get
𝑦𝑛 − 𝑝



2
=
(1 − 𝛽

𝑛
) 𝑥
𝑛
+ 𝛽
𝑛
𝑇𝑥
𝑛
− 𝑝



2

=
(1 − 𝛽

𝑛
) (𝑥
𝑛
− 𝑝) + 𝛽

𝑛
(𝑇𝑥
𝑛
− 𝑝)



2

≤ (1 − 𝛽
𝑛
)
2𝑥𝑛 − 𝑝



2
+ 2𝛽
𝑛
⟨𝑇𝑥
𝑛
− 𝑝, 𝑗 (𝑦

𝑛
− 𝑝)⟩

= (1 − 𝛽
𝑛
)
2𝑥𝑛 − 𝑝



2
+ 2𝛽
𝑛
⟨𝑇𝑦
𝑛
− 𝑝, 𝑗 (𝑦

𝑛
− 𝑝)⟩

+ 2𝛽
𝑛
⟨𝑇𝑥
𝑛
− 𝑇𝑦
𝑛
, 𝑗 (𝑦
𝑛
− 𝑝)⟩

≤ (1 − 𝛽
𝑛
)
2𝑥𝑛 − 𝑝



2
+ 2𝑘𝛽

𝑛

𝑦𝑛 − 𝑝


2

+ 2𝛽
𝑛

𝑇𝑥𝑛 − 𝑇𝑦
𝑛



𝑦𝑛 − 𝑝


≤ (1 − 𝛽
𝑛
)
2𝑥𝑛 − 𝑝



2
+ 2𝑘𝛽

𝑛

𝑦𝑛 − 𝑝


2

+ 2𝑀𝐿𝛽
𝑛

𝑥𝑛 − 𝑦
𝑛

 ,

(24)

which implies that

𝑦𝑛 − 𝑝


2
≤

(1 − 𝛽
𝑛
)
2

1 − 2𝑘𝛽
𝑛

𝑥𝑛 − 𝑝


2
+

2𝑀𝐿𝛽
𝑛

1 − 2𝑘𝛽
𝑛

𝑥𝑛 − 𝑦
𝑛



≤ (1 − 𝛽
𝑛
)
𝑥𝑛 − 𝑝



2
+ 4𝑀𝐿𝛽

𝑛

𝑥𝑛 − 𝑦
𝑛



(25)

because by (13), we have ((1−𝛽
𝑛
)/(1−2𝑘𝛽

𝑛
)) ≤ 1 and (1/(1−

2𝑘𝛽
𝑛
)) ≤ 2. Hence, (23) gives us

𝑥𝑛+1 − 𝑝


2
≤ (1 − 𝛽

𝑛
)
𝑥𝑛 − 𝑝



2
+ 4𝑀𝐿𝛽

𝑛

𝑥𝑛 − 𝑦
𝑛

 .
(26)

For all 𝑛 ≥ 1, put

𝜌
𝑛
=
𝑥𝑛 − 𝑝

 ,

𝜃
𝑛
= 𝛽
𝑛
,

𝜔
𝑛
= 4𝑀𝐿𝛽

𝑛

𝑥𝑛 − 𝑦
𝑛

 ,

(27)

then according to Lemma 7, we obtain from (26) that

lim
𝑛→∞

𝑥𝑛 − 𝑝
 = 0. (28)

This completes the proof.

Corollary 9. Let 𝐾 be a nonempty closed convex subset of a
real Hilbert space𝐻, let 𝑆 : 𝐾 → 𝐾 be nonexpansive, and let
𝑇 : 𝐾 → 𝐾 be Lipschitz strongly pseudocontractive mappings
such that 𝑝 ∈ 𝐹(𝑆) ∩ 𝐹(𝑇) and the condition (C). Let {𝛽𝑛} be a
sequence in [0, 1] satisfying the conditions (iv) and (v).

For arbitrary 𝑥
1

∈ 𝐾, let {𝑥
𝑛
} be a sequence iteratively

defined by (12). Then the sequence {𝑥
𝑛
} converges strongly at

the common fixed point 𝑝 of 𝑆 and 𝑇.

Example 10. As a particular case, wemay choose, for instance,
𝛽
𝑛
= 1/𝑛.

Remark 11. (1) The condition (C) is not new and it is due to
Liu et al. [14].

(2) We prove our results for a hybrid iteration scheme,
which is simple in comparison to the previously known
iteration schemes.
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