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A new numerical method is introduced for solving linear Fredholm integrodifferential equations which is based on a hybrid of
block-pulse functions and Chebyshev polynomials using the well-known Chebyshev-Gauss-Lobatto collocation points. Composite
Chebyshev finite difference method is indeed an extension of the Chebyshev finite difference method and can be considered as a
nonuniformfinite difference scheme.Themain advantage of the proposedmethod is reducing the given problem to a set of algebraic
equations. Some examples are given to approve the efficiency and the accuracy of the proposed method.

1. Introduction

Linear and nonlinear Fredholm integrodifferential equations
can be used to model many problems of science and theoret-
ical physics such as engineering, biological models, electro-
statics, control theory of industrial mathematics, economics,
fluid dynamics, heat andmass transfer, oscillation theory, and
queuing theory [1].

In recent years, many authors have considered different
numerical methods to solve these kinds of problems. In 2012,
Dehghan and Salehi employed [2] the meshless moving least
square method for solving nonlinear Fredholm integrodif-
ferential equations. A sequential method for the solution
of Fredholm integrodifferential equations was presented by
Berenguer et al. [3] in 2012.The formulation of the Fredholm
integrodifferential equation in terms of an operator and the
use of Schauder bases are the main tools of this method.

In [4], the operational Adomian-Tau method with Pade
approximation was used for solving nonlinear Fredholm
integrodifferential equations. This approach is based on two
matrices, and Pade approximation was used to improve
the accuracy of the method. Chebyshev finite difference
method was proposed in [5] in order to solve Fredholm
integrodifferential equations. In this scheme the problem is
reduced to a set of algebraic equations. In [6], Legendre collo-
cation matrix method was introduced for solving high-order

linear Fredholm integrodifferential equations. In this way, the
equation and its conditions are converted tomatrix equations
using collocation points on the interval [−1, 1]. Atabakan
et al. [7, 8] proposed a modification of homotopy analy-
sis method (HAM) known as spectral homotopy analysis
method (SHAM) to solve linear Volterra and Fredholm inte-
grodifferential equations. In this procedure, the Chebyshev
pseudospectral method was used to obtain an approximation
of solutions to higher-order equation. The semiorthogonal
spline method was discussed in [9]. This approach is used to
solve Fredholm integral and integrodifferential equations.

In this paper, we applied a composite Chebyshev finite
difference (ChFD) method for solving Fredholm integrodif-
ferential equations. Fredholm integro differential equation is
given by
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where 𝑘(𝑥, 𝑡), 𝑓(𝑥), and 𝑦(𝑥) are analytic functions, 𝜆 is a
constant value, 𝐺

𝑟
, 𝑟 = 0, . . . , 𝑛 − 1, are linear functions and

the points 𝜏
0
, 𝜏
1
, . . . , 𝜏

𝑛
lie in [0, 𝑇]. It will always be assumed

that (1) possesses a unique solution 𝑦 ∈ 𝐶𝑛[0, 𝑇].
The base of the proposed method is a hybrid of

block-pulse functions and Chebyshev polynomials using
Chebyshev-Gauss-Lobatto points. This method was intro-
duced and applied for solving the optimal control of delay
systems with a quadratic performance index in [10, 11].

Chebyshev polynomials which are the eigenfunctions of
a singular Sturm-Liouville problem have many advantages.
They can be considered as a good representation of smooth
functions by finite Chebyshev expansions provided that the
function is infinitely differentiable.TheChebyshev expansion
coefficients converge faster than any finite power of 1/𝑚 as
𝑚 goes to infinity for problems with smooth solutions. The
numerical differentiation and integration can be performed.
Moreover, they have been applied to solve different kinds of
boundary value problems [12–14].

The paper is organized in the following way. Section 2
includes some necessary preliminaries and notations. Cheby-
shev finite differencemethod and composite Chebyshev finite
difference method for solving Fredholm integrodifferential
equations are described in Sections 3 and 4, respectively.
Convergence analysis of the proposed method is presented
in Section 5. In Section 6 discretization of the method is
introduced, and some numerical examples are presented in
Section 7. In Section 8, concluding remarks are given.

2. Preliminaries and Notations

In this section, we present some notations, definitions, and
preliminary facts that will be used further in this work.

2.1. Block-Pulse Functions (BPF). In order to introduce
block-pulse functions, we first suppose the interval [0, 𝑇)
to be divided into 𝐾 equidistant subintervals [((𝑘 −

1)/𝐾)𝑇, (𝑘/𝐾)𝑇), 𝑘 = 1, 2, . . . , 𝐾. A set of block-pulse
functions 𝐵

(𝐾)
(𝑡) composed of 𝐾 orthogonal functions with

piecewise constant values is defined on the semiopen interval
[0, 𝑇) as follows:

𝐵
(𝐾)

(𝑡) = [𝑏
1
(𝑡) , 𝑏
2
(𝑡) , . . . , 𝑏

𝑘
(𝑡) , . . . , 𝑏
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(𝑡)] , (2)

where the 𝑘th component is given by

𝑏
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{

{
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𝐾
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𝐾
)𝑇,

0, otherwise.
(3)

Block-pulse functions have some nice characteristics. They
are disjoint and orthogonal; that is,

𝑏
𝑘
(𝑡) 𝑏
𝑙
(𝑡) = {

𝑏
𝑘
(𝑡) , 𝑘 = 𝑙,

0, 𝑘 ̸= 𝑙,

∫
𝑇

0

𝑏
𝑘
(𝑡) 𝑏
𝑙
(𝑡) 𝑑𝑡 =

𝑏𝑘(𝑡)

2

𝛿
𝑘,𝑙
,

(4)

where 𝛿
𝑘,𝑙
is the Kronecker delta function. In addition, the set

of block-pulse functionies satisfy Parseval’s identity when 𝐾
tends to infinity. In other words, for any function V ∈ £2[0, 𝑇),
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(5)

where

𝑐
𝑘
=

1
𝑏𝑘 (𝑡)


∫
𝑇

0

V (𝑡) 𝑏
𝑘
(𝑡) 𝑑𝑡, 𝑘 = 1, 2, 3, . . . , (6)

so they are complete. For more information about block-
pulse functions, interested reader is referred to [20–30].

2.2. Chebyshev Polynomials. Chebyshev polynomials of the
first kind of degree𝑚 can be defined as follows [12]:

𝑇
𝑚
(𝑡) = cos𝑚𝛽, 𝛽 = arccos 𝑡, (7)

which are orthogonal with respect to the weight function
𝑤(𝑡) = 1/√1 − 𝑡2, where
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2
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(8)

Chebyshev polynomials also satisfy the following recursive
formula:

𝑇
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(9)

The set of Chebyshev polynomials is a complete orthogonal
set in the Hilbert space £2

𝑤
[−1, 1]. The Chebyshev expansion

of a function 𝑓 ∈ £2
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where

𝑐
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= {

2, 𝑚 = 0,

1, 𝑚 ≥ 1.
(11)

They have also another useful characteristic; see [14]. If
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Table 1: A comparison of absolute errors between Wc, WG, Cfd, and present method.

𝑥 Wavelet collocation [15] Wavelet Galerkin [15] Chebyshev finite difference [5] Present method
0.125 9.3 × 10

−4
7.9 × 10

−7
2.1 × 10

−9
1.16 × 10

−15

0.250 1.6 × 10
−3

1.3 × 10
−6

2.0 × 10
−8

2.28 × 10
−15

0.375 2.0 × 10
−3

1.6 × 10
−6

1.8 × 10
−7

1.27 × 10
−15

0.500 1.9 × 10
−3

1.6 × 10
−6

1.9 × 10
−8

3.15 × 10
−16

0.625 1.6 × 10
−3

1.5 × 10
−6

1.9 × 10
−7

2.79 × 10
−17

0.750 1.1 × 10
−3

1.1 × 10
−6

4.9 × 10
−8

1.63 × 10
−16

0.875 5.5 × 10
−4

6.5 × 10
−7

4.2 × 10
−8

1.52 × 10
−15

Table 2: The maximum errors of 𝐸
𝐾𝑀

for different values of 𝐾 and
𝑀.

𝐾 4 10 8
𝑀 8 8 10
𝐸
𝐾𝑀

6.66 × 10
−10

3.01 × 10
−13

2.28 × 10
−15

2.3. Hybrid Functions of Block-Pulse and Chebyshev Polyno-
mials. The orthogonal set of hybrid functions 𝑏

𝑘𝑚
(𝑡), 𝑘 =

1, 2, . . . , 𝐾, 𝑚 = 0, 1, . . .𝑀, is defined on the interval [0, 𝑇)
as
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0, otherwise,
(14)

where 𝑘 and 𝑚 are the order of block-pulse functions
and Chebyshev polynomials, respectively. The set of hybrid
functions of block-pulse and Chebyshev polynomials is
a complete orthogonal set in the Hilbert space £2

𝑤
𝑘

[0, 𝑇)

because the set of block-pulse functions and the set of
Chebyshev polynomials are completely orthogonal. In view
of the following formula:
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in which 𝛿
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is the Kronecker delta function and 𝑤
𝑘
(𝑡), 𝑘 =

1, 2, . . . , 𝐾, are the correspondingweight functions on the 𝑘th
subinterval [((𝑘 − 1)/𝐾)𝑇, (𝑘/𝐾)𝑇) and defined as
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we can conclude that the hybrid functions are orthogonal
with respect to weight functions 𝑤

𝑘
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functions is complete, so any function V ∈ £2
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where (⋅, ⋅) 𝑤
𝑘
is the weighted inner product.

3. Chebyshev Finite Difference Method

We can approximate a function 𝑓(𝑡) in terms of Chebyshev
polynomials as follows [31]:

(𝑃
𝑀
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with double primes meaning that the first and last terms
should be halved. Moreover, 𝑡

𝑘
are the extrema of the Mth-

order Chebyshev polynomial 𝑇
𝑀
(𝑡) and defined as

𝑡
𝑘
= cos(𝑘𝜋

𝑀
) , 𝑘 = 0, 1, 2, . . . ,𝑀. (20)

In view of (7), we have

𝑇
𝑚
(𝑡
𝑘
) = cos(𝑚𝑘𝜋

𝑀
) , (21)

so 𝑓
𝑚
can be rewritten as
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𝑚
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𝑀
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) . (22)

The first three derivatives of the function 𝑓(𝑡) at the points
𝑡
𝑚
, 𝑚 = 0, 1, . . . ,𝑀, are given in [32, 33] as

𝑓
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𝑚
) =
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(𝑖)
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Table 3: A comparison of absolute errors between Wc, WG, Cfd, and present method.

𝑥 Wavelet collocation [15] Wavelet Galerkin [15] Chebyshev finite difference [5] Present method
0.125 2.6 × 10

−2
2.7 × 10

−4
1.8 × 10

−10
1.45 × 10

−15

0.250 1.5 × 10
−2

3.0 × 10
−5

4.4 × 10
−10

1.78 × 10
−15

0.375 9.3 × 10
−3

2.6 × 10
−4

1.4 × 10
−9

1.71 × 10
−15

0.500 5.1 × 10
−3

4.3 × 10
−4

2.4 × 10
−10

5.00 × 10
−15

0.625 2.5 × 10
−3

5.6 × 10
−4

1.7 × 10
−9

1.22 × 10
−15

0.750 1.0 × 10
−3

6.5 × 10
−4

7.7 × 10
−10

8.66 × 10
−16

0.875 2.3 × 10
−4

7.2 × 10
−4

1.3 × 10
−9

4.52 × 10
−16

Table 4: The maximum errors of 𝐸
𝐾𝑀

for different values of 𝐾 and
𝑀.

𝐾 8 10 8
𝑀 6 6 7
𝐸
𝐾𝑀

6.01 × 10
−13

8.72 × 10
−14

1.22 × 10
−15

where

𝑑
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𝑀

𝑀
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− 𝑙
2
) 𝜃
𝑛

𝑐
𝑙
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𝑛𝑗𝜋

𝑀
)

× cos(𝑙𝑚𝜋
𝑀

) ,

(24)

𝑑
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𝑚,𝑗
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𝑀

𝑀
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𝑛−2

∑

𝑙 = 1
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𝑙−1

∑

𝑟 = 0

(𝑙 + 𝑟) odd

𝑛𝑙 (𝑛
2
− 𝑙
2
) 𝜃
𝑛

𝑐
𝑙
𝑐
𝑟

× 𝑇
𝑛
(𝑡
𝑗
) 𝑇
𝑟
(𝑡
𝑚
)

=
4𝜃
𝑗

𝑀

𝑀

∑
𝑛=2

𝑛−2

∑

𝑙 = 1

(𝑛 + 𝑙) even

×

𝑙−1

∑

𝑟 = 0

(𝑙 + 𝑟) odd

𝑛𝑙 (𝑛
2
− 𝑙
2
) 𝜃
𝑛

𝑐
𝑙
𝑐
𝑟

cos(
𝑛𝑗𝜋

𝑀
)

× cos(𝑙𝑚𝜋
𝑀

) ,

(25)

with 𝜃
0
= 𝜃
𝑀
= 1/2, 𝜃

𝑗
= 1 for 𝑗 = 1, 2, . . .𝑀 − 1.

As can be seen from (23), the first three derivatives of the
function 𝑓(𝑡) at any point of the Chebyshev-Gauss-Lobatto
points is expanded as a linear combination of the values of
the function at these points.

In view of (13) and (19), we have

∫
1

−1

𝑓 (𝑡) 𝑑𝑡 ≈ 𝑓
0
−

𝑀−1

∑
𝑚=2

1 + (−1)
𝑚

𝑚2 − 1
𝑓
𝑚
−
1 + (−1)

𝑀

2 (𝑀2 − 1)
𝑓
𝑀
. (26)

4. Composite Chebyshev Finite
Difference Method

In this Section, we present the composite Chebyshev finite
difference (ChFD) method. Consider 𝑡

𝑘𝑚
, 𝑘 = 1, 2, . . . ,

𝐾, 𝑚 = 0, 1, . . . ,𝑀, as the corresponding Chebyshev-
Gauss-Lobatto collocation points at the 𝑘th subinterval [(𝑘 −
1)/𝐾, 𝑘/𝐾] such that

𝑡
𝑘𝑚

=
𝑇

2𝐾
(𝑡
𝑚
+ 2𝑘 − 1) . (27)

A function 𝑓(𝑡) can be written in terms of hybrid basis
functions as follows:

(𝑃
𝑀
) 𝑓 (𝑡) =

𝐾

∑
𝑘=1

𝑀

∑


𝑚=0

𝑓
𝑘𝑚
𝑏
𝑘𝑚
(𝑡) , (28)

where 𝑓
𝑘𝑚
, 𝑛 = 1, 2, . . . , 𝐾, 𝑚 = 0, 1, . . . ,𝑀, are the

expansion coefficients of the function 𝑓(𝑡) at the subinterval
[(𝑘−1)/𝐾, 𝑘/𝐾] and 𝑏

𝑘,𝑚
(𝑡), 𝑘 = 1, 2, . . . , 𝐾, 𝑚 = 0, 1, . . . ,𝑀,

are defined in (14).
In view of (14) and (19), we can obtain the coefficients𝑓

𝑘𝑚

as

𝑓
𝑘𝑚

=
2

𝑀

𝑀

∑


𝑝=0

𝑓 (𝑡
𝑘𝑝
) 𝑏
𝑘𝑚
(𝑡
𝑘𝑝
)

=
2

𝑀

𝑀

∑


𝑝=0

𝑓 (𝑡
𝑘𝑝
) cos(

𝑚𝑝𝜋

𝑀
) .

(29)
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Table 5: A comparison of absolute errors between Tm, Cfm, and present method.

𝑥 Exact solution Tau method [16] Chebyshev finite difference [5] Present method
−1.0 0.367879441 1.52 × 10

−6
1.19 × 10

−8
1.32 × 10

−16

−0.8 0.449328964 1.74 × 10
−6

1.33 × 10
−8

1.36 × 10
−16

−0.6 0.548811636 1.95 × 10
−6

1.29 × 10
−8

1.38 × 10
−16

−0.4 0.670320046 2.02 × 10
−6

1.43 × 10
−8

1.40 × 10
−16

0.2 0.818730753 1.97 × 10
−6

1.27 × 10
−8

1.20 × 10
−16

0.0 1.000000000 1.83 × 10
−6

1.02 × 10
−8

9.99 × 10
−16

0.2 1.221402758 1.63 × 10
−6

1.04 × 10
−8

7.91 × 10
−17

0.4 1.491824698 1.36 × 10
−6

8.68 × 10
−9

7.31 × 10
−17

0.6 1.822118800 1.04 × 10
−6

2.92 × 10
−9

3.08 × 10
−17

0.8 2.225540928 5.56 × 10
−7

1.65 × 10
−9

3.69 × 10
−17

1.0 2.718281828 1.52 × 10
−6

1.19 × 10
−8

1.32 × 10
−16

Table 6: The maximum errors of 𝐸
𝐾𝑀

for different values of 𝐾 and
𝑀.

𝐾 4 10 8
𝑀 8 8 10
𝐸
𝐾𝑀

4.07 × 10
−12

3.93 × 10
−15

2.79 × 10
−17

Using (23)–(25), the first three derivatives of the function𝑓(𝑡)
at the points 𝑡

𝑘𝑚
, 𝑘 = 1, 2, . . . , 𝐾, 𝑚 = 0, 1, . . . ,𝑀, can be

obtained as

𝑓
(𝑖)
(𝑡
𝑘𝑚
) =

𝑀

∑
𝑗=0

𝑑
(𝑖)

𝑘,𝑚,𝑗
𝑓 (𝑡
𝑘𝑗
) , 𝑖 = 1, 2, 3, (30)

where

𝑑
(1)

𝑘,𝑚,𝑗
=
8𝑁𝜃
𝑗

𝑇𝑀

𝑀

∑
𝑛=1

𝑛−1

∑

𝑙 = 0

(𝑛 + 𝑙) odd

𝑛𝜃
𝑛

𝑐
𝑙

𝑏
𝑘𝑛
(𝑡
𝑘𝑗
) 𝑏
𝑘𝑙
(𝑡
𝑘𝑚
)

=
8𝑁𝜃
𝑗

𝑇𝑀

𝑀

∑
𝑛=1

𝑛−1

∑

𝑙 = 0

(𝑛 + 𝑙) odd

𝑛𝜃
𝑛

𝑐
𝑙

cos(
𝑛𝑗𝜋

𝑀
) cos(𝑙𝑚𝜋

𝑀
) ,

𝑑
(2)

𝑚,𝑗
=
8𝐾
2
𝜃
𝑗

𝑇2𝑀

𝑀

∑
𝑛=2

𝑛−2

∑

𝑙 = 0

(𝑛 + 𝑙) even

𝑛 (𝑛
2
− 𝑙
2
) 𝜃
𝑛

𝑐
𝑙

𝑇
𝑛
(𝑡
𝑗
) 𝑇
𝑙
(𝑡
𝑚
)

=
8𝑁
2
𝜃
𝑗

𝑇2𝑀

𝑀

∑
𝑛=2

𝑛−2

∑

𝑙 = 0

(𝑛 + 𝑙) even

𝑛 (𝑛
2
− 𝑙
2
) 𝜃
𝑛

𝑐
𝑙

cos(
𝑛𝑗𝜋

𝑀
)

× cos(𝑙𝑚𝜋
𝑀

) ,

𝑑
(3)

𝑚,𝑗

=
32𝐾
3
𝜃
𝑗

𝑇3𝑀

𝑀

∑
𝑛=2

𝑛−2

∑

𝑙 = 1

(𝑛 + 𝑙) even

×

𝑙−1

∑

𝑟 = 0

(𝑙 + 𝑟) odd

𝑛𝑙 (𝑛
2
− 𝑙
2
) 𝜃
𝑛

𝑐
𝑙
𝑐
𝑟

𝑇
𝑛
(𝑡
𝑗
) 𝑇
𝑟
(𝑡
𝑚
)

=
32𝑁
3
𝜃
𝑗

𝑇3𝑀

𝑀

∑
𝑛=2

𝑛−2

∑

𝑙 = 1

(𝑛 + 𝑙) even

×

𝑙−1

∑

𝑟 = 0

(𝑙 + 𝑟) odd

𝑛𝑙 (𝑛
2
− 𝑙
2
) 𝜃
𝑛

𝑐
𝑙
𝑐
𝑟

× cos(
𝑛𝑗𝜋

𝑀
) cos(𝑙𝑚𝜋

𝑀
) .

(31)

In view of (26) and (28), we get

∫
𝑇

0

𝑓 (𝑡) 𝑑𝑡 ≈
𝑇

2𝑁

𝐾

∑
𝑘=1

𝑓
𝑘0
−

𝑀−1

∑
𝑚=2

1 + (−1)
𝑚

𝑚2 − 1
𝑓
𝑘𝑚

−
1 + (−1)

𝑀

2 (𝑀2 − 1)
𝑓
𝑘𝑀
.

(32)

5. Convergence Analysis

A detailed proof of the following results can be found in [11].

Lemma 1. If the hybrid expansion of a continuous function
ℎ(𝑡) converges uniformly, then it converges to the function ℎ(𝑡).

Theorem 2. A function ℎ(𝑡) ∈ £2
𝑤
𝑘

[0, 𝑇) with bounded second
derivative, say |ℎ(𝑡)| ≤ 𝐵, can be expanded as an infinite sum
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Table 7: A comparison of absolute errors between DTM, IHPM, Sa, and present method.

𝑥 CAS wavelet method [17] DT method [18] Improved homotopy perturbation [19] Sequential approach [3] Present method
0.1 1.34 × 10

−3
1.00 × 10

−2
0.23 × 10

−5
1.01 × 10

−7
1.25 × 10

−17

0.2 1.15 × 10
−3

2.78 × 10
−2

0.92 × 10
−5

4.82 × 10
−7

4.27 × 10
−17

0.3 5.67 × 10
−3

5.08 × 10
−2

0.20 × 10
−4

1.017 × 10
−6

1.46 × 10
−16

0.4 5.93 × 10
−2

7.08 × 10
−2

0.37 × 10
−4

1.61 × 10
−6

1.53 × 10
−16

0.5 1.32 × 10
−2

9.71 × 10
−2

0.57 × 10
−4

2.30 × 10
−6

1.44 × 10
−16

0.6 4.39 × 10
−2

1.09 × 10
−1

0.83 × 10
−4

3.09 × 10
−6

1.68 × 10
−16

0.7 1.41 × 10
−2

1.04 × 10
−1

0.11 × 10
−3

3.97 × 10
−6

1.74 × 10
−16

0.8 1.34 × 10
−2

6.94 × 10
−2

0.14 × 10
−3

4.90 × 10
−6

5.40 × 10
−17

0.9 1.32 × 10
−2

1.00 × 10
−2

0.18 × 10
−3

6.13 × 10
−6

1.72 × 10
−17

Table 8: A comparison of absolute errors between Lps and ChFd.

𝑥 Legendre polynomial solutions [6] Present method
−1.0 1.00 × 10

−8
0

−0.8 1.00 × 10
−8

2.98 × 10
−13

−0.6 0.00 6.56 × 10
−13

−0.4 1.00 × 10
−8

9.80 × 10
−13

−0.2 0.00 1.13 × 10
−13

0.0 0.00 1.18 × 10
−12

0.2 1.00 × 10
−8

9.18 × 10
−12

0.4 0.00 8.34 × 10
−13

0.6 2.00 × 10
−8

7.80 × 10
−13

0.8 4.60 × 10
−7

4.75 × 10
−13

1.0 5.25 × 10
−6

0

of hybrid functions and the series converges uniformly to ℎ(𝑡),
that is,

ℎ (𝑡) =

∞

∑
𝑘=1

∞

∑
𝑚=0

ℎ̂
𝑘𝑚
𝑏
𝑘𝑚
(𝑡) . (33)

Theorem 3. Suppose that ℎ(𝑡) ∈ £2
𝑤
𝑘

[0, 𝑇) with bounded
second derivative, say |ℎ


(𝑡)| ≤ 𝐵, and then its hybrid

expansion converges uniformly to ℎ(𝑡); that is,

𝐾

∑
𝑘=1

∞

∑


𝑚=0

ℎ
𝑘𝑚
𝑏
𝑘𝑚
(𝑡) = ℎ (𝑡) , (34)

where the summation symbol with prime denotes a sum with
the first term halved.

Theorem 4 (accuracy estimation). Suppose that ℎ(𝑡) ∈

𝐿
2

𝑤
𝑘

[0, 𝑇)with bounded second derivative, say |ℎ(𝑡)| ≤ 𝐵, and
then one has the following accuracy estimation:

𝜎
𝐾,𝑀

≤ (𝑆 +

∞

∑
𝑘=𝐾+1

∞

∑
𝑚=𝑀+1

𝐶
2

(𝑚2 − 1)
2
×
𝜋𝑇𝑐
𝑚

4𝐾
)

1/2

, (35)

where

𝜎
𝐾,𝑀

= (∫
𝑇

0

[

[

ℎ(𝑡) −

𝐾

∑
𝑘=1

𝑀

∑


𝑚=0

𝑓
𝑘𝑚
𝑏
𝑘𝑚
(𝑡)]

]

2

𝑤
𝑘
(𝑡)𝑑𝑡)

1/2

,

𝐶 =
𝑅𝜋
3

12
+
𝐵𝑇
2

𝑘2𝑐
𝑚

,

𝑅 = max{ 𝑑
2

𝑑𝛽2
(ℎ(

cos (𝛽) + 2𝑘 − 1
2𝐾

𝑇) cos (𝑚𝛽)) ,

0 ≤ 𝛽 ≤ 𝜋}

𝑆 =
1

4
ℎ
2

10

𝜋𝑇

2𝐾
+
1

4
ℎ
2

𝐾𝑀

𝜋𝑇

4𝐾
.

(36)

Proof. Consider

𝜎
2

𝑘𝑀
=
1

4
ℎ
2

10
∫
𝑇

0

𝑏
2

10
(𝑡) 𝑤
𝑘
(𝑡) 𝑑𝑡

+
1

4
ℎ
2

𝐾𝑀
∫
𝑇

0

𝑏
2

𝐾𝑀
(𝑡) 𝑤
𝑘
(𝑡) 𝑑𝑡

+ ∫
𝑇

0

[ℎ (𝑡) −

𝐾

∑
𝑘=1

𝑀

∑
𝑚=0

ℎ
𝑘𝑚
𝑏
𝑘𝑚
(𝑡)]

2

𝑤
𝑘
(𝑡) 𝑑𝑡

=
1

4
ℎ
2

10

𝜋𝑇

2𝐾
+
1

4
ℎ
2

𝐾𝑀

𝜋𝑇

4𝐾

+ ∫
𝑇

0

∞

∑
𝑘=𝐾+1

∞

∑
𝑚=𝑀+1

ℎ
2

𝑘𝑚
𝑏
2

𝑘𝑚
(𝑡) 𝑤
𝑘
(𝑡) 𝑑𝑡

= 𝑆 +

∞

∑
𝑘=𝐾+1

∞

∑
𝑚=𝑀+1

ℎ
2

𝑘𝑚
∫
𝑇

0

𝑏
2

𝑘𝑚
(𝑡) 𝑤
𝑘
(𝑡) 𝑑𝑡

= 𝑆 +

∞

∑
𝑘=𝐾+1

∞

∑
𝑚=𝑀+1

ℎ
2

𝑘𝑚
×
𝜋𝑇𝑐
𝑚

4𝐾
.

(37)
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Table 9: A comparison of absolute errors between Lps and present method.

𝑥 Exact solution Legendre polynomial solutions [6] Present method
−1.0 −0.8414709848 4.39 × 10

−9
7.00 × 10

−20

−0.8 −0.7173560909 4.69 × 10
−9

1.50 × 10
−15

−0.6 −0.5646424734 1.19 × 10
−9

4.91 × 10
−15

−0.4 −0.3894183423 2.30 × 10
−9

8.38 × 10
−15

−0.2 −0.1986693308 9.50 × 10
−11

1.05 × 10
−14

0.0 0.0 1.99 × 10
−17

1.07 × 10
−14

0.2 0.1986693308 1.04 × 10
−10

8.79 × 10
−15

0.4 0.3894183423 1.06 × 10
−8

5.34 × 10
−15

0.6 0.5646424734 5.00 × 10
−8

1.48 × 10
−15

0.8 0.7173560909 1.35 × 10
−6

1.11 × 10
−15

1.0 0.8414709848 4.65 × 10
−7

7.00 × 10
−20

Table 10:Themaximum errors of 𝐸
𝐾𝑀

for different values of𝐾 and
𝑀.

𝐾 4 5 9 10
𝑀 5 5 8 9
𝐸
𝐾𝑀

4.13 × 10
−6

3.32 × 10
−6

3.77 × 10
−14

1.07 × 10
−14

With the aid of (15) and the proof ofTheorem 3, we will have

𝜎
2

𝑘𝑀
≤ 𝑆 +

∞

∑
𝑘=𝐾+1

∞

∑
𝑚=𝑀+1

𝐶
2

(𝑚2 − 1)
2
×
𝜋𝑇𝑐
𝑚

4𝐾
, (38)

where

𝐶 =
𝑅𝜋
3

12
+
𝐵𝑇
2

𝑘2𝑐
𝑚

,

𝑅 = max{ 𝑑
2

𝑑𝛽2
(ℎ(

cos (𝛽) + 2𝑘 − 1
2𝐾

𝑇) cos (𝑚𝛽)) ,

0 ≤ 𝛽 ≤ 𝜋} ,

𝑆 =
1

4
ℎ
2

10

𝜋𝑇

2𝐾
+
1

4
ℎ
2

𝐾𝑀

𝜋𝑇

4𝐾
.

(39)

6. Discretization of Problem

In this section, we apply the composite ChFDmethod to solve
Fredholm integrodifferential equations of the form (1). For
this purpose, we approximate integral part in (1) using (32).
We expand 𝑘(𝑥, 𝑡)𝑦(𝑡) in terms of hybrid functions:

𝑘 (𝑥, 𝑡) 𝑦 (𝑡) ≈

𝐾

∑
𝑘=1

𝑀

∑


𝑚=0

𝑓
𝑘𝑚
𝑏
𝑘𝑚
(𝑡) , (40)

where

𝑓
𝑘𝑚

=
2

𝑀

𝑀

∑


𝑝=0

(𝑘 (𝑥, 𝑡
𝑘𝑝
) 𝑦 (𝑡
𝑘𝑝
)) 𝑏
𝑘𝑚
(𝑡
𝑘𝑝
)

=
2

𝑀

𝑀

∑


𝑝=0

(𝑘 (𝑥, 𝑡
𝑘𝑝
) 𝑦 (𝑡
𝑘𝑝
)) cos(

𝑚𝑝𝜋

𝑀
) ;

(41)

with aid of (32), we will have

∫
𝑇

0

𝑘 (𝑥, 𝑡) 𝑦 (𝑡) 𝑑𝑡 ≈
𝑇

2𝐾

𝐾

∑
𝑘=1

𝑓
𝑘0
−

𝑀−1

∑
𝑚=2

1 + (−1)
𝑚

𝑚2 − 1
𝑓
𝑘𝑚

−
1 + (−1)

𝑀

2 (𝑀2 − 1)
𝑓
𝑘𝑀
.

(42)

In order to obtain the solution 𝑦(𝑥) in (1), by applying the
composite ChFDmethod, we first collocate (1) in Chebyshev-
Gauss-Lobatto collocation points 𝑡

𝑘𝑚
, 𝑘 = 1, . . . , 𝐾,𝑚 =

0, 1, . . . ,𝑀 − 𝑛. In addition, substituting (28) and (30) into
boundary conditions (1), we get 𝑛 equations. Moreover, the
approximate solution and its first 𝑛 derivatives should be
continuous at the interface of subintervals; that is,

𝑦
(𝑖)
(𝑡
𝑘,0
) = 𝑦
(𝑖)
(𝑡
𝑘+1,𝑀

) , 𝑘 = 1, 2, . . . , 𝐾 − 1,

𝑖 = 0, 1, . . . 𝑛 − 1.
(43)

Therefore, we have a system of𝐾(𝑀+1) algebraic equations,
which can be solved by using Newton’s iterative method for
the unknowns 𝑦(𝑡

𝑘𝑚
), 𝑘 = 0, 1, . . . , 𝐾, 𝑚 = 0, 1, . . . ,𝑀.

Consequently, the approximate solution 𝑦(𝑥) of (1) can be
calculated.

7. Numerical Examples

In this section, we apply the technique described in Section 6
to some illustrative examples of higher-order linear Fredholm
integrodifferential equations.
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Example 1. Consider the second-order Fredholm integrodif-
ferential equation [5, 15]

𝑦


(𝑥) + 4𝑥𝑦


(𝑥) = −
8𝑥
4

(𝑥2 + 1)
3

− 2∫
1

0

𝑡
2
+ 1

(𝑥2 + 1)
2
𝑦 (𝑡) 𝑑𝑡, 0 ≤ 𝑥, 𝑡 ≤ 1

(44)

subject to the boundary conditions

𝑦 (0) = 1, 𝑦 (1) = 1, (45)

with the exact solution 𝑦(𝑥) = 1/(𝑥2 + 1).

We solve the problem with 𝑀 = 10, and 𝐾 = 8. A
comparison between absolute errors in solutions obtained
by composite Chebyshev finite difference method, wavelet
collocation method, wavelet Galerkin and Chebyshev finite
difference method is tabulated in Table 1. As can been seen
in Table 1, our results are much more accurate than those
𝐾 obtained by other methods specially wavelet collocation
method.

The maximum errors for approximate solution 𝑦
𝐾𝑀

(𝑥)

can be defined as

𝐸
𝐾𝑀

=
𝑦𝐾𝑀 − 𝑦exact (𝑥)

∞

= max {𝑦𝐾𝑀 (𝑥) − 𝑦exact (𝑥)
 , 0 ≤ 𝑥 ≤ 1} ,

(46)

where the computed result with 𝐾 is shown by 𝑦
𝐾𝑀

and
𝑦exact(𝑥) is the exact solution. For different values of 𝐾, the
errors of 𝐸

𝐾𝑀
are presented in Table 2.

Example 2. Consider the second-order Fredholm integrodif-
ferential equation [5, 15]

𝑥
2
𝑦


(𝑥) + 50𝑥𝑦


(𝑥) − 35𝑦 (𝑥)

=
1 − 𝑒
𝑥+1

𝑥 + 1
+ (𝑥
2
+ 50𝑥 − 35) 𝑒

𝑥

+ ∫
1

0

𝑒
𝑥𝑡
𝑦 (𝑡) 𝑑𝑡, 0 ≤ 𝑥, 𝑡 ≤ 1,

(47)

subject to the boundary condition

𝑦 (0) = 1, 𝑦 (1) = 𝑒. (48)

The exact solution of this equation is 𝑦(𝑥) = 𝑒𝑥.

The problem is solved with 𝑀 = 7, and 𝐾 = 8. A
comparison between absolute errors in solutions by compos-
ite Chebyshev finite difference method, wavelet collocation
method, wavelet Galerkin and Chebyshev finite difference
method is tabulated in Table 3. It is clear from Table 3 that
our method is reliable and applicable to handle Fredholm
integrodifferential equations. For different values of 𝐾, the
errors of 𝐸

𝐾𝑀
are shown in Table 4.

0 0.2 0.4 0.6 0.8 1
t

2

1.5

1

0.5

×10
−16

Figure 1: The graph of absolute errors for Example 4 for𝐾 = 4, and
𝑀 = 9.

Example 3. Consider the second-order Fredholm integrodif-
ferential equation [5, 16]

𝑒
𝑥
𝑦


(𝑥) + cos (𝑥) 𝑦 (𝑥) + sin (𝑥) 𝑦 (𝑥) + ∫
1

−1

𝑒
(𝑥+1)𝑡

𝑦 (𝑡) 𝑑𝑡

= (cos (𝑥) + sin (𝑥) + 𝑒𝑥) 𝑒𝑥

− 2
sin ℎ (𝑥 + 2)

𝑥 + 2
, −1 ≤ 𝑥, 𝑡 ≤ 1,

(49)

subject to

𝑦 (−1) + 𝑦 (1) = 𝑒 +
1

𝑒
,

𝑦 (−1) + 𝑦


(−1) + 𝑦 (1) = 𝑒,

(50)

with the exact solution 𝑦(𝑥) = 𝑒𝑥.

In order to apply the presented method for solving the
given problem, we should transform using an appropriate
change of variables as

𝑥 = 2𝜁 − 1, 𝜁 ∈ [0, 1] . (51)

In this example, we set 𝑀 = 9, and 𝐾 = 10. In Table 5,
absolute errors in solutions obtained by composite Cheby-
shev finite difference method are compared with Taumethod
andChebyshev finite differencemethod. According to Table 5
using the proposed method, we can obtain approximate
solution which is almost same as exact solution. For different
values of𝐾 the errors of 𝐸

𝐾𝑀
are shown in Table 6.
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−12
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Figure 2:The graph of absolute errors for Example 5 for𝐾 = 4, and
𝑀 = 8.

Example 4. Consider the first-order Fredholm integrodiffer-
ential equation [3, 17–19]

𝑦


(𝑥) = (𝑥 + 1) 𝑒
𝑥
− 𝑥 + ∫

1

0

𝑥𝑦 (𝑡) 𝑑𝑡, 0 ≤ 𝑥, 𝑡 ≤ 1, (52)

subject to

𝑦 (0) = 0. (53)

𝑀 = 9, and 𝐾 = 4 are considered to solve Example 4. In
Table 7, absolute errors in solutions obtained by compos-
ite Chebyshev finite difference method are compared with
CAS wavelet method, differential transfer method, Improved
homotopy perturbation method, and a sequential method.
It is illustrated in Table 7 that the results obtained using
current method are very closed to exact solution. The graph
of absolute errors for𝑀 = 9, and𝐾 = 4 is shown in Figure 1.

Example 5. Consider the first-order Fredholm integrodiffer-
ential equation [6, 34, 35]

𝑦


(𝑥) + 𝑥𝑦


(𝑥) − 𝑥𝑦

= 𝑒
𝑥
− 2 sin (𝑥)

+ ∫
1

−1

sin (𝑥) 𝑒−𝑡𝑦 (𝑡) 𝑑𝑡, −1 ≤ 𝑥, 𝑡 ≤ 1,

(54)

subject to

𝑦 (0) = 1, 𝑦


(0) = 1. (55)

0 0.5 1
t

−0.5−1

1

0.8

0.6

0.4

0.2

×10
−14

Figure 3: The graph of absolute errors for Example 6 for 𝐾 = 10,
and𝑀 = 9.

This example is solved for 𝑀 = 8 and 𝐾 = 4. In order to
apply the presentedmethod for solving the given problem, we
should transform using an appropriate change of variables as

𝑥 = 2𝜁 − 1, 𝜁 ∈ [0, 1] . (56)

In Table 8, absolute errors in solutions obtained by compos-
ite Chebyshev finite difference method are compared with
Legendre polynomial method. As can be shown in Table 8,
the introduced method is more efficient than Legendre
polynomial method, and the numerical results are in good
agreement with exact solutions up to 13 decimal places. The
graph of absolute errors for 𝐾 = 4, and 𝑀 = 8 is shown in
Figure 2.

Example 6. Consider the third-order linear Fredholm inte-
grodifferential equation [6]

𝑦


(𝑥) − 𝑦


(𝑥) = 2𝑥 (cos 1 − sin 1) − 2 cos𝑥

+ ∫
1

−1

𝑥𝑡𝑦 (𝑡) 𝑑𝑡,

(57)

subject to

𝑦 (0) = 0, 𝑦


(0) = 1, 𝑦


(0) − 2𝑦


(0) = −2. (58)

The exact solution for this problem is 𝑦(𝑥) = sin𝑥. We solve
the problem with 𝑚 = 9, and 𝑛 = 10. In Table 9, absolute
errors in solutions obtained by composite Chebyshev finite
difference method are compared with Legendre polynomial
solutions. For different values of 𝐾 the errors of 𝐸

𝐾𝑀
are

shown in Table 10. The graph of absolute errors for 𝐾 = 10,
and𝑀 = 9 is shown in Figure 3.
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8. Conclusion

In this paper, we presented the composite Chebyshev finite
difference method for solving Fredholm integrodifferential
equations. The composite ChFD method is indeed an exten-
sion of the ChFD scheme with 𝐾 = 1. This method is based
on a hybrid of block-pulse functions and Chebyshev polyno-
mials using Chebyshev-Gauss-Lobatto collocation points.

The useful properties of Chebyshev polynomials and
block-pulse functions make it a computationally efficient
method to approximate the solution of Fredholm integrod-
ifferential equations. We converted the given problem to a
system of algebraic equations using collocation points.

Themain advantage of the presentmethod is the ability to
represent smooth and especially piecewise smooth functions
properly. It was also shown that the accuracy can be improved
either by increasing the number of subintervals or by increas-
ing the number of collocation points in subintervals. Several
examples have been provided to demonstrate the powerful-
ness of the proposedmethod.A comparisonwasmade among
the present method, some other well-known approaches, and
exact solution which confirms that the introduced method is
more accurate and efficient.
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